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Abstract

We investigate the finite nuclear mass corrections in the helium atom in order to resolve a
significant disagreement between the 238 — 23P and 23S — 215 transition isotope shifts. These
two transitions lead to discrepant results for the nuclear charge radii difference between *He and
3He. The accurate treatment of the finite nuclear mass effects is quite complicated and requires the
use of the quantum field theoretical approach. We derive the a®m?/M correction with the help
of nonrelativistic QED and dimensional regularization of the three body Coulombic system, and
present accurate numerical results for low-lying states. The previously reported 4 ¢ discrepancy in
the nuclear charge radius difference between 3He and “He from two different atomic isotope shift

transitions is confirmed, which calls for verification of experimental transition frequencies.

PACS numbers: 31.30.Gs, 31.30.J-



I. INTRODUCTION

The atomic spectroscopy of light atoms has reached the level of precision that allows the
determination of nuclear parameters from measured transition frequencies, in particular the
nuclear charge radius. The best known example is the hydrogen spectroscopy from which
one obtains the proton mean square charge radius of , = 0.8758(77) fm, in agreement with
the result derived from the electron-proton elastic scattering, 0.895(18) fm [1]. Both these
values are in significant disagreement with the result derived from the muonic hydrogen
Lamb shift, r, = 0.84087(39) fm [2, 3]. This discrepancy attracted much attention from the
scientific community and became known as the proton charge radius puzzle [4]. Up to now
the determination of nuclear charge radii from light atoms other than hydrogen has been
limited by the lack of sufficiently accurate theory. It was only possible to find the nuclear
charge radii differences from the isotope shifts of atomic transition frequencies [5]. Bearing
in mind the discrepancy between the electronic and the muonic hydrogen determinations of
the proton charge radius, we investigate the isotopic differences in the nuclear charge radii in
order to explore other potential discrepancies. Indeed, the nuclear charge radii difference §r?
between *He and *He was determined to be 1.069(3) fm? from the 23S — 23 P transition [6]
and 1.027(11) fm® from the 23S — 2§ transition [7]. The 4 ¢ discrepancy between these two
results could be explained by a 8.8 kHz shift in the 23S — 215 transition, a small correction
which in principle might have been overlooked in previous calculations. The corresponding
shift in the 23S — 23P transition would have to be much larger, 49.7 kHz, and thus is less
probable. In this work we calculate the last unknown correction, of order a® m?/M, which
might contribute at this level of accuracy. We find out that the result for the isotope shift of
the 235 — 21 transition almost coincides with our previous estimate [7], namely 2.73 kHz
versus 2.75(69) kHz. Since we do not see any possibility to miss a 8.8 kHz effect in our
theoretical predictions, we are in a position to claim a discrepancy between the isotope shift

in the 235 — 23P [9-11] and 23S — 215 [12] transition frequencies.

II. NOTATIONS

In this work we closely follow our previous paper devoted to nuclear recoil effects for

triplet states of helium [6] and use the same notations. The reader may consider checking
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that paper first, but nevertheless we repeat here the main principles. The operators, energies,
and wave functions for a nucleus with a finite mass M are marked with indices “M”: X,
FEyr, and ¢p. The operators, energies, and wave functions in the infinite nuclear mass limit
are without indices: X, F/, and ¢. The recoil corrections to the operators and energies are

denoted by 0, X and 0y F,
m m\ 2
X=X+ 26X +0(1) (1)
m m\ 2

We also introduce the shorthand notations:

(X = (Pm| X |Pur) (3)
and
P21 P2

Bt (a2 o

where P; is the momentum of the nucleus in the center-of-mass frame, and H, E, and ¢

5M(X>E<

are the nonrelativistic Hamiltonian, energy, and wave function in the infinite nuclear mass
limit.

According to the QED theory, the expansion of energy levels in powers of a has the form

(o 22) = B + B + B + ) + B + 0(a®), (5)

where E](\Z) is a contribution of order m o™ and may include powers of In a. E](\Z) is in turn

expanded in powers of the electron-to-nucleus mass ratio m/M

2

n n m n m
E§\4):E()+M5ME()+O<M) . (6)

We are interested here in E](S), which can be expressed as

1
EY = <H<4> Ve H§j>> +(HY),, = A + Bar, (7)
M

where the last equation is a definition of Ay, and Bj;. In this paper we derive the recoil
part of this correction §,;FE©® for singlet states in helium. The computational approach is
similar to the one used for triplet states in Ref. [6] and to the nonrecoil a®m correction for

singlet states in Ref. [8].



III. DIMENSIONAL REGULARIZATION

Since individual terms in E© are divergent they have to be regularized. We found in
Ref. [8] that the most convenient regularization is the dimensional one, although it seems to
be very exotic for atomic systems. In this regularization, the dimension of space is assumed
to be d = 3 — 2¢e. The photon propagator, and thus the Coulomb interaction preserves its
form in the momentum representation, while in the coordinate representation the Coulomb

potential is

A’k Am ps e—1/2 21— O
/Wﬁe =1V D(1/2 =€) = (8)

The elimination of singularities is performed in atomic units by the transformation

7 — (ma) /029 7 (9)

and pulling common factors m1=26/(1426) 2/(1426) an(d g (1-109/(142€¢) (,6/(14+26) from H and

H®)  respectively. The nonrelativistic Hamiltonian of hydrogen-like systems is

H = 2%2 — Z%, (10)
and that of helium-like systems is

p BBy "
where

We calculate further integrals involving the photon propagator in the Coulomb gauge as

follows

d g @ Jed - g o
/ d'k_Am (6” Rk ) kT = /2 plt2e L% 6 T(=1/2 —€)r? +%F(1/2 —e)r rj]

(2m)e Kt k2
1 [ripd .
Ryl w
and

d%k 4r N L 2 o 1. .
=0 ij ik-r _ _e—1/2  —3+2¢ | ~ 5ij _ 2 _ i,.J
/(27?)4 12 ((5 2 ) e T r [26 I'1/2—e)r +I'3/2—¢€)r 7":|

1 [ripd 6%

The solution of the stationary Schrodinger equation H ¢ = E ¢ is denoted by ¢, and we will

never need its explicit (and unknown) form in d dimensions.
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IV. EFFECTIVE HAMILTONIAN IN d-DIMENSIONS

We pass now to the effective Hamiltonian terms in Eq. (7). The Breit-Pauli Hamiltonian

Hj(\;l[) [8, 13] is split into two parts (with ris = r, rof =7, and P= L+ Ds)

HY) = HY + HY, (15)
where
1 A 1, [69 rigd ,
HY = == (pi +p3) + = [0%(r1) + 6%(r)] + 7 (d — 2) 6%(r) — = p} | — | 7
8 2 2 r e,
Zm [, [69 rigd T84 i) ,
— — | | — Ll — P’ 16
2M[p1{7’1+ T?LWQ{WJF sl (16)
and
Z Fl - FQ 5 1 7_" - 5 Zm Fl FQ — 51—52
HM — | = = - = - — — = -= P| —H17
3, {4(r;1),><pl 7012;><Z?2>+47,3><(]91+]02)+2Jw(,,,ig T%)X 1 5 )

H) in the above equation can be represented in d = 3 as it does not lead to any singularities.
The other terms in H](é) do not contribute to energies of singlet states. The corresponding

second-order correction is

1
(Enm — Hy)

1

Ay = (HM - -
M < A (EM_HM)/

HY )y + (HY HM (18)

whereas the first-order contribution is given by

By = < Z HiM>M (19)

i=1,12

where, following Ref. [6] HM in arbitrary d—dimensions are as follows

6 2
J2 L Ny P
my = OOV 5 (s v g v ) - ({o, v3v+{a3, v3v)
2 8 128 1 1 2 29 64 1> 1 2 2 )
(21)
1 167 2 1 P ,
HM = a(—47TV2(53(T) + id-1 otlospt {5(5]471'(53(7') + T—5(37’ r _5JT2)LPJQ) :
(22)
1 ' i ‘ 2 2
HY' = 5 (07 +p3) l— <<5” — )} s+ ;:p?) T2 46 (r)

7z , 41 ] o e -
S U I RS S 2% il g 22 Pi
+2M(p1p1{27“1( + 7"% . + D2y 9 + r% ) )



1,1/, rird 1,1/, rird 1
Hé”=§ (M >p1+8p2 (59 ) {—4}
Zml[ , (69 ripd\ (&F ik - m
+ZM[p2(r+r3><’f’1+ rl)P (1H2>1 M

+
(69 il (69 rir 7“ r 6k ok
wlpi (2o 3™y ki (O g7 19 1 1 O T ok
{p1 (7”1 3 > Py T P2 Ty 3 pz I Ty 3 P

Z_
E

ol 1 oo 1 ol o 7 7y
— — 2 25
- d |:7“£11:| * d |r5 6+ d ) (25)
v L, riri—369r? : ; ps 'l =389
Hiy == V] ———[Vim] + V] |5 ————— | »
8 r 2 r
[rird — 36U 2 p2 p3 [riri —36Ur% p? ;
| Lm0 By, Dp (LT =207 b1 26
e I R L et PP S
ol ol 1
Hye = <54 [pi {pi, H ” : (27)
H%—sz(VzV+VZV) H_E. 7’17’1—35”7“1 H_E. T§T§—35ijr§p%- .
8 M 1 T2

(28)
HY would contain the spin-orbit type of interaction, but it vanishes for singlet states.
Further terms come from high energy photons and are known as pure, radiative and radiative

recoil corrections, which are the same as in hydrogenic systems [14]:

HY =73 % <4 In2— ;) [6%(r1) + 6%(r2)] (29)
Hy' = Z7° % (% — 24;1; —2In(2) + %(23)) [6%(r1) + 6% (ra) ], (30)

HY =777 <49267 —21n(2 )) [6%(r1) + 6% (ra)]

6¢(3 697 1099
g ( ig) ~ 5o~ 8In(2) + — ) 6%(r) (31)
2179 10 3 9¢(3
i =nZ (‘m Ty @ Affr)) [8°(r1) + 6%(r)]



15¢(3 631 29
+7 ( 2€r(2 ) tos T 5In(2) + 2—7> 53 (r). (32)

The last term comes from the hard three-photon exchange between electrons. It was origi-

nally calculated for positronium in Ref. [15], and for electrons its sign is reversed, see Hy

in Ref. [§]

1 2 d
HY = ———41r10z—39q3)+3——61n(2)+z W(S(T),
€ 2 2 3 4

(33)

where by convention we pull out the common factor [(47) T'(1+-)] ? from all matrix elements.

V. ELIMINATION OF SINGULARITIES

The principal problem of this approach is that both the first-order and the second-order
contributions in Eq. (7) are divergent and the divergence cancels out only in the sum. To
achieve the explicit cancellation of the divergences, we (i) regularize the divergent contribu-
tions by applying dimensional regularization with d = 3 — 2, (ii) move singularities from
the second-order contributions to the first-order ones, and (iii) cancel algebraically the 1/¢
terms.

In the following we first consider the recoil correction coming from the second-order
matrix elements, i.e. the first term in Eq. (7), which is denoted by A,;. The recoil correction
from the second term in Eq. (7), denoted by By, is examined next. It is the second-order
contribution due to HA! which is divergent and therefore is treated in d dimensions. To pull

out divergences we rewrite H}! as

Hy' = HE' + {Hy — B, Qui} s (34)
where Qy = Q + 0@ and
__1[Z, 7] @=L
o2+ 2y
3\ Z Z
5MQ:4_LL“_1+T_2L' (36)

The operator Q) is the same as that in Ref. [8] with the exception that it also includes the
recoil part 6,;Q. The regular part of operator H! can be evaluated in three dimensions to
yield
M m
Hy :HR+M5MHR, (37)
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1 ZFl'ﬁl ZFQ‘?Q 1 1 opipd .
H —_ _ - E—V 2~ _ = _v2v2_ i~ 51] 9 38
R|¢> { 2( ) 4 r:i)) 4 rg +4 1 2 pl 2T( + T2 )p2}|¢>’ ( )

P P 327 -Vy 327V,
SnHrld) = (E—V)[— - ( ik 22
wttnl) ={E-V) (G- () + T
Z 1 (.. rir 7 1/ iy ,
g g Ly pi 2 [ 222 pi 39
S (o ) P 2t (0 B el
where
Z Z 1
V=-———+- (40)

and the kinetic energy of the nucleus is (P2?/2) = 0,/ E. After the transformation in Eq. (34)
Ay takes the form

_ R T
Aur = Z <Ha (Ex — Hy)' Ha M

a=R,C
+ <QM (Hy — En) QM>M + 2E1(\j) <QM>M —2 <H1(\3) QM>M
=AM 4 AV (41)

where A stands for the first term (i.e. the second-order contribution), and A) incorporates
the remaining first-order matrix elements. Recoil corrections are obtained by perturbing the

second-order matrix element by the kinetic energy of the nucleus. As a result d,;4; becomes

- 3 (i -] )

a=R,C
1 1 P2 1
+2<HGM[HG_ <Ha>]m7> + 2<5MHamHa>u (42)
while the first-order terms are
AY = (Q (Hu — Ea) Q)ur + 2 B (Q)ar — 2 (HY Q)
+ 5 {2Q U - B)5uQ) + 2590 Q) - 210w} (13)

Reduction of these terms will be left to the Appendix A, and we present here the final result
for the recoil part

VAR A —1)(d— 1 1(/Zr  Zr o
5MA2:5M<_3|: _|__:| _{_w{ :| +_(i_£>.i+2E(4)Q

Q99 | 4 4 4 3 3 3
32 r] Ty 16 r 4\ ry Ty r

L AUZ=2) (63<m . 53<r2>) iy (z Lz 2)1@ . rw)pg

4 Ty T r ry TJ)T r2



S P e )] v (22
—(d_l)p? H Py — (dm ) ?[pi,V]HZ;((S )>+5ME ( +<2—1r>>

HOO

72 Z2 3 727 -7 3 EW 3 7 7
— — = —3EEW 4+ (E-V)?} =4+ =
[ T§:| 16 r?r% +2 r +4( ) r1+r2 .

Z Z 3 z 7 J
(2 2B (222 herne g

]
7 —
+ 753(7’1) (

T2

Z Z -
6 +2E+222) +%53(r2)<

r1

+PE Z+Z E+1 Z+Z2 3 Z+Z +1 B
4 \ry 1y 2r  4\ry 1y 4r\ry 19 2r2

Sl (F ) G reen] G

We examine now the recoil correction coming from By in Eq. (19). For each of the

6+2E—|—2Z2>

operators H = H; + 1 0, H;, the recoil correction is the sum of two parts: (i) the per-
turbation of the nonrelativistic wave function, of £ and H by the nuclear kinetic energy
in the nonrecoil part, and (ii) the expectation value of the recoil part o, H; (if present).
The derivation is straightforward but tedious, therefore we have moved its description to

Appendix B and present here only the final result for the recoil correction

7 22 Z2 13 ZT’l Z’FQ r 1 ZFl ZFQ r 1(1
oyB =9 — - =) =+ =] ===
v M<w[ +rA€em( 7 aiG-F) 7 4L46

1 3
Z(E—-V)Y —Zp2(E— 2
o], 5 HH+2( YmgnEm TR

—4ZP(E Z- )ﬁmym(E+Z])ﬁmwm%%w—£ﬁmﬂ

™

Z 7 5P? 111 N 1
1—-F -2 _—= _ 7 3 it N 1] 77| Z
+< reooT 48)7“5(T) 2{27”(6 HRE )]GVVL’L

1 . 1 g e 172 pJ g
—i—ipﬁ (E—V);(yj rrr>p%__ 37“137’2 <TT —35”7”)

8 1Ty r
AR -kri el ok rr]rk
——| = &’ -0 — 09— — 12
8 ['rf pQ( r r r P+ )
1 L 5z‘15jk: 5z‘k6jl 5ij5kl §]lrzrk 5zk,rgrl 7ni?ajrkrl Ay
TR T T T T T T T T T s T T3 9 L
1/, 1, . 1, 1, 3rird — 54 p?
+1(1772 1—|—pgr—2p2>—QPPJT—5+H10+H11—|—H12>
3 s 3 3 3 522 2
H(gmE(E-V) =2 P(E— V)? P——5MEP1P2+1—6PP1P2



—z((5ME+3E+?)(Zr—2_1)—]5‘1']72>7TZ(53(7“1)+(1H2)
+%5MEP§% (5”+ Trzj)p% - ilﬁpi% (5” +i—§j) p%+;—§{f—;+ f—ﬂ
where
@MMW:<§pHE—m<%ﬁfZﬂ+-%E—W<%}H%g P
- g{p’ip’z“ (i—jntr;—?) ps P74 ph ph <%j+ Té?)z?’fpj} —Zg%
el ) (B ) (22 ()

[ 54 rir{ 5k 7‘%7“’2“ i
P [ —+ — 22
2 T P1 (7’1 ,r,;l), e 7’3 P2

4
37 -1y 237 Ty 22 (r} r%) (7“21'7"{—35“7% rér%—35“r%)rj

+ 4r3r3 4r3rs 8 T_§+T_§’ 1 - T2 rs
72 i O S S o A
cEa (et ort ) psnea]
1 2
1z Z3 1[z% 7?2 373
+ 4{—+—} ‘é[ﬁ*ﬂ ‘TW3<“>+”3<””+5MH8”MH9>’
1 2 € 1 2 €

and where Hg and Hy are presented in Eqgs. (29) and (30) respectively.

VI. TOTAL RECOIL CORRECTION

The final results are split into five parts: (i) the second-order and third-order matrix
elements containing Hp, (iii) the second-order and third-order matrix elements containing
He, (v) the first-order matrix elements between the reference state and the perturbed wave
function, and (vi) the remaining first-order terms with the exception of (vii) pure recoil, the
radiative recoil and the recoil corrections to one-loop and two-loops radiative corrections.

The final formula for singlet states of helium is then

omE® = E + Eyi + B, + Eyi + By, (47)
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where
= (1m0 -y (5 o) Gy ) (1)
+2<HRG;}EVu@-wﬂ%ﬂaféﬁy€;>+2<@¢h65%ﬁyﬂg>,
£~ o gy (5 - 00E) gy )

1 1 P2 1

and where Hp is defined in Eq. (38), dpyHg in Eq. (39), and He and 6y He in Eq. (17).
The terms Ej; and E;, vanish for singlets. The first-order terms d,;A> and &, B become the
sum of Fy, Ey; and Fy;. In order to explicitly cancel out 1/¢ terms and simplify the final

result we perform the following further transformations

1 AL 7 1 3l — §U 2
2 | 2 1 2 ;

- _ (222} L o9l pipi 2l 9T
{p” [pl’ HH ( oo ) r3 L"‘*LJF ro

4
—§7r5d(7“) P2, (50)
1] |1 +1 ﬁ1ﬁ+ﬁ1ﬁ E—I—Z+Z 1
rd E_ ], 2 P 72 pir P2 72 P2 o ro) r?
m 152 1
—— | yE—— )= 1
M(M 2)7‘2’ (51)
72 _ﬁZZH 5 E—I—Z 1 Z2+ 2Z2 2Z3
ri E_ ! r? P ry 1) 1} P2 r? .
m P2\ 72
—2—|oyE—— = 592
M(M 2)@’ (52)
i o7 it j (4) o, 1 55 3 3 3
pl ?"‘ 7“3 pé:_2HM —<E_V) +§p1p2+Z7T|:(S (7’1)"—5(7’2)]—’—27{'(5 (7’)
m P2
—2— |(E=V) (6yE - — | =6y HW 53
o I I
RS 1 1
D1+ Do |:;:| plp2:p% |:;:| pg—plprFpl Xp2—271'(5d(7")P2 (54)

The final result for E, and E; in terms of (); operators defined in Tables I - III is

EV:—EZ(SM(Ql)+%5M<Q2>+éZ(1_22)5M<Q3>+1%Z(5M<Q4> _§5M<Q5>

8
E?2+2FE®

1 o (Q7) — §5M<Q8> + i(SM(QQ) + = Z% 5, (Q11)

1
+ ﬂ5M<Q6> + >
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2
+EZ° o (Q12) — E25M<Q13> Z? Oar(Qra) + VA O (Q1s) — Z— O (Q16)
2 2
-5 O (Qu7) + % O (Qus) + £) 5M<Q19> - % O (Q20) + ZI O (Q21)
2
+ ZZ O (Q22) + 0 (Qaz) + §5M<Q24> - 3% O (Qas) — %5M<Q26>

- §5M<Q27> - §5M<Q28> + i5M<Q29> + é5M<Q30> +ouEn, (55)

where 0y Fy is the remainder from His in Eq. (33) after cancellation of 1/e singularities,

39¢(3) | 32 On(Q2)
Eg=(—-4lnha— — —61In )
5]\/[ H ( no 7T2 +’/T2 6 () 3) 16 (56)
and
2 _
EVi:<—§E3—3EE(4)—2E25ME—3E+5M8E+4Z ZQI——Z(Sg 3)623
3 1 3E?+2E5yE +6E®W +26,E® 1
—ZZQ5+§Q6+ v 1 Y Q7—§5MEQ8
2F 4+ o0y FE 5
+TMZ2Q11+(3E+5ME)(Z2Q12—ZQ13)—3Z2Q14+§Z‘3Q15
3 3 3 1 3
_22Q16+_ZQ17+22Q21+_ZZQ22+_ZQ24__5MEQ27__ZQ28
Z2 3 3 ,
+ 3 ZQ31+—Q32—§EZQ34+ Q35—1Z Qs6 — 27 Q37+ = ZQ38
72 72 YA 72 Z3
+—Q40——Q41+—Q42+—Q43——Q44+ Q45+—Q46+—Q47
ZZ ZZ ZZ
+—Q48——Q49+—Q50> (57)
Finally,
Eyi = (0pHs + 0y Hg ) + 00 ( Hio + Hin ). (58)

VII. NUMERICAL RESULTS

The numerical calculations of the nonrelativistic energy and wave function were performed
in the explicitly correlated exponential basis with nonlinear parameters generated randomly
within variationally optimized intervals, a method described in the literature by Korobov
[16]. The method is very efficient and allows getting accuracy for energies as high as 16 digits
with a basis as small as 1500 functions. The evaluation of second-order matrix elements is

more complicated and requires large values of nonlinear parameters for obtaining accurate
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results. In order to avoid numerical problems related to linear dependence in the basis set,

all the calculations are performed in octuple precision arithmetics.

Table I presents our results for the expectation values of operators ();—; . 3o which appear
in the evaluation of the nonrecoil a®m corrections for singlet states of helium. Table II

presents results for the expectation values of additional operators ();—s3; . 50 which appear

in the recoil correction to order a® m?/M. Table III presents results for the matrix elements
of Qi=1,...30 perturbed by the nuclear kinetic energy operator. These are all matrix elements
that are needed to obtain energy shifts of order a®m and a®m?/M. Table IV presents the
results for the individual contributions to the recoil a®m?/M correction. We notice that
the photon exchange contributions F; + Ej; + E, + Ey; tend to cancel each other and their
net effect is relatively small in comparison to E;. Only for the 2! P; state are both parts of
the same order. Table VI presents our summary of all contributions to the isotope shift in
the 215 — 23S transition for a point nucleus. It includes two additional contributions. The
first one is a small shift due to the nuclear polarizability. The second contribution is due to

the hyperfine mixing of 215 and 235 levels, which is a nominally a®m?/M? correction, but

is enhanced by a small energy difference between these states.

In Table V we present the status of the theoretical prediction of the 215 — 23S transition
energy of “He. All contributions listed in the table are numerically exact [17], except for o m.
Following Refs. [17], this contribution is estimated based on the known hydrogenic result.
Due to a strong cancellation of the estimate between the 215 and 23S states, the uncertainty
of the difference is difficult to guess, so we assumed 50% of the whole contribution. We
observe a fair agreement with the experimental value from Ref. [12]. In fact, the difference
with the experiment will be 10 times smaller, if we neglect the o’ m contribution completely,

so we may have overestimated its magnitude.

VIII. NUCLEAR CHARGE RADIUS DIFFERENCE

We now turn to the determination of the nuclear charge radii difference from the isotope
shift. Table VI presents theoretical results for individual contributions to the isotope shift
in the 219 — 23S transition, for the point nucleus. The contribution of the higher-order

a”m?/M QED effects was estimated on the basis of the double logarithmic contribution to
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the Lamb shift in hydrogen, which for helium takes the form [14]
ED ~ 730" n* (Za) 2 m (83 (ry) + 0°(ra)) s (59)

and we ascribe a 50% uncertainty to this estimate. The total uncertainty of the theoretical
prediction amounts to just 0.2 kHz, which is an order of magnitude smaller than the present
experimental error, see Table VII.

By comparing the theoretical (point-nucleus) and experimental values of the centroid
energies of a transition in *He and “He, we extract the difference in the squares of the
nuclear charge radii, 672 = 7?(*He) — r?(*He). The difference between the theoretical point-
nucleus result and the measured isotope shift frequency can be ascribed solely to the finite
nuclear size shift, which can be parameterized as Ex = Cr?, with C being a parameter
calculated numerically. Using the experimental results for the 215 — 23S transition energies
in 3He and *He from Ref. [12] and taking into account the experimental hyperfine shift of
the 235 state, we obtain dr? as described in Table VII, with the result 6r* = 1.027 (11) fm?.
It does not agree with the 6r* values obtained in Ref. [6, 7] from the isotope shift in the
23P-238 transition, namely 672 = 1.069 (3) fm? [9, 10] and §r? = 1.061(3) fm® [11]. We
observe that the two results from the 2°P — 23S transitions are in only slight disagreement
with each other but both deviate significantly from the result obtained from the 215 — 235

transition.

IX. SUMMARY

The 40 discrepancy for dr? is very puzzling, since we cannot explain it by any missed
corrections in the theoretical predictions. All significant theoretical contributions have been
calculated and the theoretical uncertainty is orders of magnitude smaller than the deviation.
This discrepancy calls for the verification of the experimental transition frequencies (first of
all, 215 — 239) by independent measurements. Moreover, it can be also accessed by isotope
shift measurements in muonic helium. Hopefully, this might be accomplished in the next
measurement, of the Lamb shift in muonic helium at the Paul Scherrer Institute by the
CREMA Collaboration [18]. This experiment will provide an independent determination of
the charge radii of helium isotopes, thus shedding light on the proton charge radius puzzle

and on the discrepancy for the helium nuclear charge radius difference.
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Appendix A: Derivation of §;;A4-

A is split into six parts in the order that they appear in Eq. (43)

Ay =AY+ AN + AL+ AY + AN + A

(A1)

The first three terms contain both recoil and nonrecoil parts while the latter three contain

only recoil terms. Individual parts are transformed as follows:

where

1

Ay =(Q(Hy — Ex) Q) :§<[Q7[HM_EM7QH>M
= S UTAQ) + (Va@Phus + ([, [P, Q1)
1[2z2 727  (d—1)2[1 Z(F
-(afz 2] 4 53
+m<_[22+2_2} N 1M>
M\ 32 ry |, 16 riry /)7

E 1
AN =2 ED(Q)y + 20, EW <— + <—>>
2 4r
AM = —2(H{) Q)n = X1+ Xo + X5 + X1,

Xy ==2(6uHY Q)

Z 89 iy Z 7 1 .
— __Pz a = = .
3 O IR R LR e €

1,]+

a

)]l

(00 TN (2 2 2\, 12 7 g
(-3 ) (R R Dl S )

a

L)

(A5)

In the above the term with the Dirac delta function was obtained by using dimensionally

regularized representation of the Coulomb potential. Further, using the identity (§¢(x)

0

X5 = — <[Z T8 () + Z 70°(ra) + 27 6% (r)] Q>

M
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_ <Z(Z—2)7r(53(7’1) N 53(7’2)) N Z7r<53(7’) +53(r))> |
4 T2 ™ 2 T T2 M
i1 TN
X2:<p1;(5’+r—2)p§ >M
1 Z Z 2 oripd . od—1 it 1
— [ _ = _ = ij J J | Z _
< S e U Ll A AR I -
1
Z [p1 +p2 —2])1]?2} Q>
1 1
Z< P+ p3) Q (0 + 1) + 5 [P+ 3, [Q. 0t + il — 207 Q5 — [, [, Q)
= X4+ X1+ X0+ Xip.
Here
9 m P2
Xia=((E-=V) Q>M+2M (E-V)Q 5ME—7

fread])

(Z?"l_Z’I“2> F_(d—]_)|:]_:|>
r3 4 Iy

Z2 22 1227“1 7“2

atoT| Ty e )

U ) T

7 7 9 (d— 1) 5 | 1] o
<7"1 + TQ)pQ 3 b1 , EPQ Mv
_ 1)

o= {0 A P,

The remaining A terms are

m
Azi =57 ((Q. [H - E, 6,Ql])
= T{V1Q)(Vi6Q) + (V2Q)(V2nQ))
m /| 3[z22 272 3(zZF ZR\ T
N\ 1wlaA T Telm T3 ) m )
T ry . 8\ 1y T r
w3 pw (1N s ppw
Aae—M(2E <T 3EE
Al = 2%(HA5MQ) Fi+ R+ Fy,

where

S LA )
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(A10)

(A11)

(A12)

(A13)

(A14)

(A15)

(A16)



(0 (5 i 2

1m
:——<[p1—|—p2 1p2]5Q>
1 1
= 7 77 \P1+P2)0Q (0 +p3) + 5 [t + 15, [t + 5, 0Q)] — 2070Q p3)
= Fia+ Fip+ Fic, (A18)
and where
m /3 Z 7
Fiu=— (S (E-V)?|=+Z A19
w- g (GeE-ve[Z+2) ). (A19)
m /322 Z? 3 (71 Zry T
Fp=-— (2|2 +2 | o2 _22). & A20
TR e Y 2 (420)
m /3 Z 7
Fio=——{(=p*[=+=)p3). A21
e M<8p1(rl+r2)p2> (A21)
Taking now only the recoil part of terms A) .. .A% we obtain the following results:
12722 72 (d—1)2[1 Z(T1 T d
OpAoy =0 — — -l —-=] = A22
ws=ou (g5 5+ )+ ) -5 (G R) ) (422
n 1 Z2+22 L= 1 227"1 FQ
32\ rt 3 16 73r3 ’
E 1
SprAoy =2 BN (Q) + 25 EW (5 + <E>)’ (A23)
Z(Z —2 53 53 Z 53 53
e = (2227 (Pl0) P 2 (P0) , P0)
4 T2 T1 2 1 T2
1 Z Z 2\1/( .. 7riri\
_ - 222 J
4p1(7“1+7“2 r)r( + 72 )p2
-7, [, 1 (. rrl 9 1[z* Z?
i - — | o¥ E-V — ==+ =
+ 4 P | P2 ], 2r +T2 E+( ) Q@ 8 7"1*4_7"36
RN A A T (d=1)]1 1 ,(Z Z\ ,
+8(r§’ > r3 4 ré E—'—8p1 r1+r2 P2
1
{ } = {p? ()
5” rrﬂ Z Z_2 p].+3 Z2+Z2
T r2 r)te 8|y s .
73 . R
7(%63(r1)+ﬂ5 (r2)) +20ME(E—-V)Q—P(E-V)QP
1 - = 1227 -7y
—|P,|P,(E — _—— A24
-SRI E- Qs 2R, (A21)
3 22 Z2 3 Z7?1 Z?"Q T
OpAog=( — —|— + — | — =] = A2
wi= (360 7] 35 - F) ) (A29)
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1
E®W —> —3EEW, (A26)
T

3
2
Z2 3 3 A VA
6MA2f:<_347T<(5 7“1 (57"2) < T)
2
; (

3 A 3 72 3
S(E—-Vv2lZ+ 2 Sl 2| 2222
4( y |:7"1+?"2:|6+8|: * } 8\ r} r3 r3
3 (42 Z\ 5, 3 B3(r)  83(r)
SN N B P ] SRR A I A27
8p1 (7"1 + Tz)p2 27T < 1 + T2 ( )
Summing all of the recoil parts dpr Az, ... darAsy and using the identity
S 1722 72 227 7y 27 —3
PIP(E-V)Ql == |5 +5| +52-(E Zy
PP V)Qll =5 [+ | + S - (2 2 e
27 —
— (E + 3)7‘( Z 5% (ry) (A28)
1

we get the final result in Eq. (44).

Appendix B: Derivation of 6B

In the following we perform only derivation of terms B ... B} defined as
B = (H")u (B1)

and the evaluation of the remaining terms is trivial since they contain only Dirac delta-like
contributions. The expectation value of the kinetic energy term

1

HY' = 26 (o

Dy + pz) (B2)
18

1
G (P +p3)° — 3pips (0 +13)),,

1 m P2 9 9 1 m PN’
— ~E= - E——
el e (e vy (e -5)

a(eve s ),

B =

1 1 3
- (F U+ @+ E -V - L E- V)R
3, m /3 P2\ 3 P2
+ 16 [plv [pza VH>M + M<2 (E V) (5ME 5 8p1p2 omE 5
1 22 Z2 Z2 r - 772
2 {_ ! _] ) (B3)

19



Recoil correction 0,8, is then

17722 77 1 /77 AR r  1[1 1
ooy ({[EL 2] 32028 £ 0
€ 1 €

4| r] Ty

3 9 5 |1
+1_6 [pla {p% {;

3 Lo1[z2 22 1Z%F T
omE 2_SPE-VPP+- |+ 5 —
(gumE-vr-{PE-vr P 7 ] 3
Z - 3 P?

Here we used the identity

—_— 72 Z2 727 -7
— V) = g2 2
PP E-vP=-2| %+ 5] TR
+2(E=V) [4r Z6°(r1) + 47 Z5%(r5)]. (B5)

The operator H is

(VoV)? 5 3
Hy' =) =+ e [l [Pl V] - o (vl vav) (B6)
a=1,2

For the sake of simplicity we split its expectation value into three parts,

1 5 3
By'= <g [(ViV)? + (V2V)?] + o8 ([#3, 1, V1] + [p3. [p3.V]]) — 5 (PI VIV + ) VZV)>
M
= BM + B + B, (B7)
The term
1
Byy = §<(V1V)2 + (V2V)*)u (BS8)

needs no further reduction. The remaining terms could be simplified to

BY = = ([0 + 92 R V]] + [+ [p2. V)] — 2 2 [ V),

128
:—3<{v+—E ]| - bt ) (B9)
64 M 2 M ) ) M?
Byl = 3 (pl +P2) ViV + (pl +P2) ViV —p3 ViV —pi V2V>M (B10)

_ _§W< {E vl <5ME _ %2)} (Z6%(r1) + 2 83(rs) — 6°(r)

P2 26 (rs) — 1 253<r1>>

M

Taking now only the recoil parts of individual terms we get

51 Bog = %5M <(V1V)2 + (VQV)2>, (B11)
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OrrBoy = — 35—2(51\4 <(V1V)2 + (VoV)? +%[p%, [p%,VH> + 6% (v, [P V]]), (B12)
Ori By = — gﬂ'(SM <2 (E—|— Zr_z 1> 253(7’1) +2 <E—i— ZT_I 1) 253(7,2)

r T

Z  Z
-2 (E +—+ —) 83 (r) — pl Z 8% (ry) — p Z(53(r1)>
3 P? 3 3 3
The term d,; B, is then the sum of these three terms and is
1[22 272 1 [Zry  Zr, T 1]1 5 1
ouBos =0y ( — —=|— + — — (== =2 ) = — — | = — =P P |-
M2 M< 32{7“11+T§}6+16<T§’ r%) r3 16{7“4}6 64{])1’ [p2’ |:7“:|€:|:|

_§7T{2(E+Z_l)253(r1)+2<E+ZT—_11>Z63(r2)— 2(E+£+£> 8 (r)

8 "2 LT )

2 2 2= =
5 |:Z Z_:| EZ 1 T (B14)

— 2 Z 8% (ry) —pa Z 6° —|=
P (r2) = p3 (r)| )+ 2(rt s 6+16 r3rs

Sl (o pe 2 ) 20+ - (- D)o} )

T2 2

The operator H is
HY =~ V35 (r) — 6 PP+ oY (B15)

and its expectation value is

1 . 38 pi =92 g _
BM _ _ T 23 _—pipi2l 0T e300 B2
3 <SV5(T) 64 5 210 (7)
1 (Z7 Z7% 7 1711
S (ke ne D I e B16
64(?’? 'f’%) T+32['f’4L>M (B16)
where we used the identities
o S 3p3pd — U2 8 ~
4mGIP P = PP =26 (r) P, (B17)
r
1/Zr, Z7, 7 11
Ardipiy = —n V2B (r) — - (2t - 22 ) D | =] B18
To;p'p ™ (r) 4(7“:13 r%) 7‘+2[7‘4]6 ( )

Further, with the help of identity valid for singlet states

(V253(r)>M:—2<53(r)(E+r—Zl+g—§+%(5ME—?)) >M (B19)

we get the following recoil correction 6,;B3

T 7 7 P2 1 3r3pd — g2 g .
OBy =6y ( = 6° E+=+2 ") — i pi — — 5%(r) P?
M M<4 (T)( T 4) 64 = 220(r)



1 ZTl Z’Fg T 1 1 T 3 P2
-] -+ == -0 oy B — — ) B20
64( rg) r+32{r4L>+<4 (T)(M 2 (B20)
= H, + §; omHy into two parts: the recoil

We split the correction due to operator HM
correction to operator Hy, which we denote B}, and the expectation value of the recoil part

darHy which we denote BY. The nonrecoil part of the operator HM

AT L

1 riri 1
Hy = 4 (pl +p2) (52] 2 ) pz T (p1 +p2) 47“53( ). (B21)
The expectation value of this is
1 1/ J 1
ng:_<(E—v)pg—<5w ”)p;—-(E V)dm&i(r )>
2 T 2 M
m /1 P2\ 1 /.. rird\ . 1 P2
+M<§(5ME—7>]9’1;<5” = )pQ——(5ME—7>47T53<T)>
1 . 1/.. 7ripd 1)1 iyl 1
— ot (B — - i Y i i 7] _Z(F — 4 3
(o0 () (o ) ] b,
1 P2\ 1/ ipd 1 P2
+% < ((SME - 7) = (5@ + "’: ) ph— = <5ME - 7) 47T53(7")> . (B22)
The recoil correction 97 By, is then
1. /.. rrd\ o 1[1 (.. 7o 1
O0pBig =0 —pi (F — — oY + - = o+ V=
b= (7 (P =) (¢ r)pz =)
1 P2 SLf i ;
1 22
-5 (5ME — 7) 47r53(r)>. (B23)
The recoil part of HM is
Z 64 pipd , (69 i) ;
onHi= 7 <p1p1<r1 + 7{%1) P’ +p§p2<r—2 + 72,32) PJ)- (B24)
The expectation value of this operator can then be reduced to
A /5 i.d 5i i0.J
Op By = —<2 (E-V) {pﬁ(——l—r Ll )PJ —i—p2( +r2§2>Pﬂ}
4 r1 r3 ro Ty
[ <5£+T1r1)Pj+p1p2<5” r27"2) P7}>
A 5 pipd - 5 pipd ,
={= E— L PI oy ph (B - 22| pi
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Z1 o (09 N i ok (87 T ko
S piph [ Pl piph (& pilY. B25
1 |:p1 Do <7°1 + = Dy £ =+ Py Py 7"2 + 3 2 ( )

The operator HM is

w3 (-5 5 S (L e b LD

(B26)

and its expectation value is

- Q) S B2 (e B BB,

(B27)

The recoil correction is then

o35 £ U] 0 s 1))

The operator HJ? contains the recoil part d,; Hg and we thus again split the calculation into
two parts: the recoil correction due to Hg, which we denote as d,;Bg,, and the expectation
value of d;; Hg, which we denote as d,;Bg,. The nonrecoil part of the operator Héw is

1 J 1 AN —-D[1
H—gpl (5” M)p{+ Py — <5W+3M>p§+(d4 ){ﬁ} (B29)

and the recoil correction due to it is simply

1 J 1 N o d-1DT[1
5MBGa:5M< (5” M)p§+ —ph— <6W+3M> §+( 1 ){—4] > (B30)

8 T

The expectation value of d,; Hg is

70 (60 i 5k gk /S5 g sik pdk
e Gl ) () 22 )
r r T r3 r r Ty 3
1 /122 272 727 T 73
+Z(|:F+_4:| —2—3 3 >+7{7T53(7°1)+7T(53(7”2)‘|

1 T'9 rirs
VA

72 ] . rirj . 'rj ,
+—[pi—2(5’”+3 121>pi+p2 (5”+3 )p%
r r 7"2 2

(6T N (07 rdrk f
298 | — — . B31
+ pl < r + Ti«; T + 7“% p2 ( )

Finally, we calculate the correction due to the operator HM = HM + HM + HM. We

split it into three parts, B¥ = B 4+ BM + BM . The operator H2! reads

1 . ipd 3 . iped B ,
i =~ {1 (55 - 3o ) ] + V] |2, B = 50
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[ pipd . 2 ripd . 2 .
+p§[ =340, %} [Vp2]—i—p1{pz? {r 367y, %Hpg}. (B32)

The recoil correction due to this operator is

12 Zrd (rird y 1 [/Zr  Zry 7oo11?
OnrBra = Oar { — = =5t =52 —300r )+ (S -5 - B33
M M< 8 r} r%(r ")t r3 rs r2 4|r], (B33)
Zrt o oar ne ke pipdeRN
——| = O — — " — — 0V — — 2+ (12
8[7‘1{’]92( T T r 73 P+ )

_|_

1 .1 . . 1(1

+§{p%—4(5jkr2—3rjrk)p§+(1<—>2)} —1—1{—} +7T53(7")
”

1

8p

. l|: 51‘15jk 5ik5jl 6ij5kl 5jl7"i7“k
1P2 | — -

gyt ripipket 1
+ - - +3 i .
r r r r3 r3 rd 172

Hyl = — (d1—_61) [p§7 {pi H H (B34)

and the corresponding recoil correction is simply

B 3

Finally, the operator H2/ is

Z? 7l ripl — 35r2
HM — Ta H—E b'b b
YV Zab r3 [ ’ r P

The operator H2 is

b

A ri il =382 [p2 pipd — 3502
E e g ]

T T 2’ Ty (B36)

The expectation value of this can then be written as

On Bra = Wi+ Ws (B37)
where
2 i ] ‘ i,.J 02 3
3 3 I
QL S
2 i i i 002 0d
and
W = <z f—;(%;:—g [pi, —Tbrb LUk Tb] P+ Z i { g, Tk 3% _rf 5”rb}pg>> (B39)
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TABLE I. Expectation values of operators Q; with i = 1...30 for the 115y, 215y and 2! P; states.

118y 215 21 Py
Q1 = 4783 (r1) 22.750526 16.455169 16.014493
Q2 = 4nd3(r) 1.336375 0.108679 0.009238
Q3 = 4nd3(r1) /72 33.440565 5.593743 3.934081
Q4 = 4nd3(r1) p2 49.160046 7.578158 3.866237
Qs = 483 (r) /1 5.019713 0.440864 0.012785
Q¢ = 47 63(r) P? 18.859765 1.800294 0.070787
Qr=1/r 0.945818 0.249683 0.245024
Qs =1/r2 1.464771 0.143725 0.085798
Qo =1/r3 0.989274 0.067947 0.042405
Q10 =1/r" —3.336384 —0.312402 0.008956
Qu =1/r? 6.017409 4.146939 4.043035
Q12 = 1/(r172) 2.708655 0.561861 0.491245
Q13 = 1/(r1r) 1.920944 0.340634 0.285360
Q14 = 1/(r17ar) 4.167175 0.398366 0.159885
Q15 = 1/(r?r2) 9.172094 1.472014 1.063079
Q16 =1/(r?r) 8.003454 1.348761 1.002157
Q17 = 1/(r172) 3.788791 0.337891 0.105081
Q18 = (71 - 7)/(r§r®) 3.270472 0.278353 0.010472
Q19 = (71 -7)/(r$r?) 1.827027 0.159078 0.043524
Qo0 = rird(rird — 369r2)/(r3r3r) 0.784425 0.063677 —0.004747
Q21 = p3/r? 14.111960 2.064285 1.127058
Q22 =1/ P1 21.833598 16.459209 16.067214
Q23 =1/ P 4.571652 0.499768 0.190797
Q24 = Pt (rird 4 6972) ) (r113) ] 0.811933 0.065354 0.053432
Q25 = P (3rird — §%r2)/r5 PJ —3.765488 —0.252967 0.013743
Qo6 = P i [r3(83ket fr — §ikpd fr — §iirk [p — pipipk /p8) pl —0.266894 —0.038928 —0.039976
Q27 = p? P2 7.133710 1.428213 0.973055
Q28 = p3 /11 p3 37.010643 5.955767 3.102248
Q29 = P1 X P2 /7 P1 X P2 4.004703 0.638960 0.216869
Q30 = p¥ ply (—89rirk Jrd — §ikpipl 3 4 Spipipkyl /p5) pt p% —1.591864 —0.252663 —0.126416
— Z_2 Zpllf Ta _5ikﬁ + 5jkr_117 _ 5@'3’@ _ _rgrﬁrf Z
8 rs Ty Ty Ty s

a#b

+l ZQ+Z2
8lri r3l. 4

373 Z? ,
+ == [m8? (1) + 763 (ra)] + 3 Zpi
b

b

Summing all of the recoils parts dy;B; we get the result in Eq. (45).
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TABLE II. Expectation values of operators (); with ¢ = 31...50, nonrelativistic energy FE, the

expectation value of the Breit Hamiltonian E*) and the first-order corrections 3/ F and 6y, E@W

for the 118y, 215y and 2' P, states.

1180 215, 2t py
Q31 = 4783(r1) P - P2 5.610577 0.485629 0.281360
Q32 = (71 - 72)/(r373) —0.683465 —0.054344 0.005113
Q33 =p1 P2 0.159069 0.009504 0.046045
Qsa=P/r P 10.586465 5.103771 4.890226
Qss =P /rP 7.020556 1.367497 1.129114
Qss =P /r} P 38.918728 18.764418 17.426840
Q37 = P /(r1r2) P 17.360500 3.093110 2.275085
Qss =P /(rir) P 14.417322 2.139854 1.339969
Qz9=P/r2P 13.995389 1.425735 0.444219
Quao = p? p2 P? 244.833024 39.737868 20.202142
Qa1 = P2pi (rird 4 §1972) /r3 p) 12.204592 1.693435 0.490552
Qa2 = pi (rir] + §4r2) /rd P 45.454198 33.063647 32.258198
Qaz = pi (rir] + §1912)/(r3ro) P 16.864462 3.053603 2.163635
Qaa = pi pk (rird + §972)/r3 pk Pi 26.906923 4.533118 2.283665
Qus = ph(rird + §972)(rIrk 4+ 67k42) /(r313) PF 12.589902 1.471046 0.550295
Quae = pi (rird + 69r2)(rhrk + 87%02) /(r3r3) pk 1.225423 0.096713 0.111613
Qa7 = (71 - 72)/(r373) —0.275868 —0.021822 0.001588
Quas = rird(rir] — 384r2)/(rdr3) —2.285118 —0.185238 —0.034770
Qa9 = rird (r;ré —36973)/(rrard) —3.574722 —0.306798 —0.074979
Qs0 = pk ri /r3 (§7%rs fro — 85K r) Jro — 817k Jro — rirdrk /r3) p) —0.071814 0.014329 0.041860

E

E“)
SumE
Sy E@

—2.903724377
—1.951754768

3.062793852
—2.159371705

—2.145974046
—2.034167340

2.155477910
—0.069625849

—2.123843086
—2.040025575

2.169887611
—0.058484955
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TABLE III. Expectation values of operators dy/(Q;) with i = 1...30 for the 115y, 2155 and 2! P,
states.
118, 215, 2t py

S (Q1) —69.398419 —49.370647 —47.548301
S (Q2) —4.164065 —0.303860 —0.071149
S (Qs) —140.863781 —22.886485 —17.954636
O (Qa) —264.235067 —39.376218 —23.782626
v (Qs) —21.752541 —1.810273 —0.115562
S (Qs) —104.659635 —9.811620 —0.734559
S (Qr) —0.884405 —0.254546 —0.394523
Sa(Qs) —2.818398 —0.266907 —0.305911
S (Qo) —1.015798 —0.042815 —0.216329
S (Q10) 14.670321 1.241088 —0.016021
S (Q11) —12.344317 —8.297087 —8.038384
Sm(Q12) —5.755090 —1.156557 —1.274719
Sn(Q1s) —3.923779 —0.687748 —0.772874
Sar(Q14) —13.208243 —1.217078 —0.704072
o {Q1s) —29.209816 —4.532140 —3.865798
v {Que) —25.139317 —4.116908 —3.618037
v (Q17) —11.755788 —0.997079 —0.498120
O (Q1s) —14.692291 —1.220964 —0.076044
S (Q19) —6.384958 —0.549039 —0.222341
S (Q20) —5.471095 —0.509842 —0.028997
O {Q21) —61.053735 —8.609657 —5.848982
Inm(Q22) —89.811452 —65.992539 —64.011907
I (Q23) —19.418528 —2.078930 —1.071679
I (Q24) —6.349789 —0.818061 —0.508001
O (Qas) 20.318585 1.280443 —0.069997
Sa(Q26) 0.019487 0.013046 0.262948
Sar(Q27) —31.111811 —5.980380 —5.023306
S (Qas) —199.698515 —31.075150 —19.296491
S {Q29) —21.211342 —3.263956 —1.458861
S (Q30) 9.913115 1.535897 0.868894
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TABLE IV. Results for the a® m?/M contribution to ionization energies of the 115y, 21,5y and 2! Py

states of helium.

aSm? /M 118, 215, 2l p

E; —2.67612(3) —0.24521 —0.48276(12)
Eii 7.33746 0.68017 —3.41939

E, —48.91181 —52.988 42 —53.94011

E.; 60.445 89 53.983 65 54.110 62
Subtotal 16.19542(3) 1.43019 —3.73164(12)
Eii —152.16117 —9.85735 2.63040

S E© —135.965 75(3) —8.42716 —1.10124(12)
S E© (kHz - h) —347.79 —21.56 —2.82

TABLE V. Breakdown of theoretical contributions to the 21.5-23S centroid transition frequencies

in 4He, in MHz.

(m/M)° (m/M)! (m/M)*  (m/M)? Sum

o? 192 490 838.755 —24529.467 —6.511 0.004 192466 302.781

ot 45 657.859 —7.628 0.003 — 45 650.234

o’ —1243.670 0.173 — — —1243.497

ab —6.947 0.008 — — —6.939

al 1.4(0.7) — — — 1.4(0.7)
FNS —0.607 — — — —0.607
Total 192510 703.4(0.7)

Exp. [12] 192510 702.1456(1 8)
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TABLE VI. Breakdown of theoretical contributions to the 3He — 4He isotope shift of the 215239
centroid transition frequencies, for the point nucleus, in kHz. EMIX is the contribution due to
the mixing of the 2'S and 239 states that comes form the contact Fermii interaction. The related

uncertainty of a® (m/M)? term due to hyperfine mixing with other states is estimated to be of 0.15

kHz.
m (m/M)! (m/M)? (m/M)? Sum
a? —8026 758.52 —4958.33 5.07 —8031711.78
ot —2496.23 2.08 — —2494.15
a® 56.61 — — 56.61
ol 2.73 0.00(15) — 2.73(15)
a’ —0.21(11) —0.21(11)
NPOL [12] 0.20(2) — — 0.20(2)
EMIX — 80.69 — 80.69
Present theory —8034065.91(19)

TABLE VIL Determination of the nuclear charge difference dr? from the measurement by Rooij et

al. in Ref. [12], in kHz.

E(3He, 2'8F=1/2 _ 236F=3/2) _ p(‘He,2'S — 235) —5787719.2(2.4) Exp. [12]

6 Engs(235%/2) —2246 567.059(5) Exp. [20, 21]
—6Ei50(21S — 239) (point nucleus) 8034 065.91 (19) Theory, Table VI
0F —220.4(2.4)

C —214.66 (2) kHz/fm?* Ref. [7]

6r? = r?(3He) — r2(*He) 1.027 (11) fm?
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