Quantum electrodynamic calculation of the hyperfine structire of 3He
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The combined fine and hyperfine structure of #ié states in*He is calculated within the framework of
nonrelativistic quantum electrodynamics. The calcutatiocounts for the effects of ordeta® and increases
the accuracy of theoretical predictions by an order of ntagei. The results obtained are in good agreement
with recent spectroscopic measurementéHe.
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I. INTRODUCTION sults obtained represent an order-of-magnitude improm¢me
over the previous theory [11, 12] and are in good agreement

ith the experimental data available [5, 13]. The improved

eory allows us to make a reevaluation of #f1é determi-

Spectroscopic measurements of the helium atom havﬁi
nation by Shineet al.[10], in reasonable agreement with the

presently reached the level of accuracy, on which they ar
sensitive to uncertainties of fundamental constants aed th ;
Florence result [5]. We also update the previous results for

nuclear effects. This fact can be utilized for improving our . e A
hyperfine splitting of the3 S state o’ He [14], making its

knowledge on fundamental constants and nucl tefe NP plitting of the: ' g

nowiedge on fundarenta constants and huclear parame eE[eatment fully consistent with that of ti2é P states.

A recent example is the independent determination of the fin
structure constant [1] made by comparison of the theoret-
ical prediction and the experimental r(_asults for tite fine . GENERAL APPROACH
structure. Good agreement of the obtained value wfth the
more precise determinations [2, 3] provided a highly sessit
test of consistency of different theories across a wideeanig
energy scales.

Recent optical measurements?He [4, 5] and*He [6]
achieved the relative precision of abat!! and thus be-
came sensitive to the uncertainties of the Rydberg consta
and the nuclear charge radius. These experiments create
possibility for the spectroscopic determination of thelaac
charge radii ofHe and*He, with a significantly higher accu-

racy than can be reached by the electron scattering metho investigated separately. For &P states of He, how-

[7]. Suc_h determination is of particular interes_t now, iewi .ever, both effects are of the same order of magnitude and thus
of the discrepancy for the proton charge radius observed 'Ehodld be calculated together

the muonjc hydrogen experiment [8] andthe prqpoged fOIIOW' The general method of calculation of the combined fine and
up experiment on the muonic helium [9]. Realization of this yperfine structure is the nonrelativistic perturbatioadty

proje_ct requires pr709ress iU theory, namely a complete ca or quasidegenerate states. The active space of (stromgly i
culat|on_ of t.he”??‘ corrections to the energy levels. Such teracting) quasidegenerate states is defined B$ , whereF’
calculation is difficult but probably feasible, at least toe i< 1q total angular momentum of the atomic state dne 0
Iow—Iy.lng triplet states. ) _ 1, 2 is the electronic angular momentum. In the casétof
While the present theory is not accurate enough to providehe nuclear spin = /2,80 F = J +1/2 > 0 and the ac-
the nuclear charge radii 6He and'He separately, it can pro- - tive space consists of five levels. Note that, unlike in pesi
vide their differencejr?, as the isotope shift is considerably stydies [11, 12, 15], we do not include tieP state in the ac-
simpler to calculate than the energy levels. Two such detefkive space, as its mixing with tt23 P levels is relatively weak.
minations have recently been reported by experiments of thghe contribution of this state is accounted for by the stamhda
Amsterdam [4] and the Florence [5] groups, their results beperturbation theory for non-degenerate states.
ing in disagreement of four standard deviations. There was The energies of the’ PI" states are the eigenvalues of the

also the older spectroscopic valuedof by Shineretal.[10], 5 x 5 matrix of the effective Hamiltoniafif, whose elements
which relied on the theory of the hyperfine splitting avaldab gre

at that time. EF . (P IMAH I M 1
The main goal of the present investigation is to calculate th g = r|H| P (1)
combined fine and hyperfine structure of & levels of’He ~ where M is the projection of the total angular momentum

with the complete treatment of thea® corrections. The re- F. (Since the energies do not dependMi, it can be fixed

The 23 P energy level it He is split by the hyperfine and
fine structure effects. The hyperfine splitting is induced by
the interaction between the dipole magnetic moment of nu-
cleus and that of electrons, whereas the fine structure is due
to the interaction between the electron spin and the electro

bital angular momentum. For heavy atoms, it is common

tfat the hyperfine splitting (being suppressed by the elaetr

to-proton mass ratio) is much smaller than the fine structure
litting, and so the hyperfine and fine structure effects can
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arbitrary.) In practical calculations, it is convenientdon-  where the constantd; do not depend o', M, J, J’, and
sider the shifts of the individua®PZ" levels with respect to  are represented by expectation values of purely electayic

the23 P centroid. In other words, we require that erators between the spatzlP wave functions. The matrix
elements of the basic angular-momentum operators are-calcu
2(2 F+1) Z EY, =0. (2) lated analytically by means of the Racah algebra and listed i
F 7 Appendix A.

. The first two terms in the right-hand-side of Eq. (4) do not
In this case, all effects that do not depend on the nucleagepend on the nuclear spin and correspond to the fine struc-
and(or) electron spin do not contribute and can be omitted ifyre, The fine structure splitting in the absence of the raicle

the calculations. . - spin was investigated in our previous investigations [1, 49
The matrix elements of the effective Hamiltonian (1) are\ye yse results obtained in there.

obtained in this work by expansion in terms of the fine struc-
ture constanty,

4+ 6 Ill. LEADING HYPERFINE STRUCTURE
EY = (Hy), 850 + (HE) + (HD)

+2(HY % (2 + HP)) The leading hyperfine-structure Hami_ltoniéiﬁ}*j)_ is well
(£ —H) known. For our purposes, it is convenient to write it in the
4 1 4 following form,
+ <H}(1fs) m Hl(lfs)> + <Hnucl&ho> ) (3) 9

3
. ) ) . (4+) _ My 4|7 & 7oA i Qi g
where Hy, is the effective operator responsible for the fine-  uts ~ = mM(l + K)o {I SQFI-Q+I'S7QY
structure splitting in the absence of the nuclear spin and
the other terms are the nuclear-spin dependent contriimitio +7-84 Qa+1° Six g] , (5)

H}(]}f) is the leading hyperfine Hamiltonian with the recoil

and anomalous magnetic moment additions; it is of nominal - - ) ~ .
orderma? and contains parts of higher-order contributions."l’heres andSa ar(ithe ?lectron spin operatofs,= (1 +

a9 is the effective Hamiltonian of ordena® and is derived ~ 92)/2 and S = (01 — 52)/2, m, is the reduced mass of

in the present work. The next two terms in Eq. (3) are then€ electron-nucleus system is the nuclear mass, andis
second-order corrections that also contribute to ordef.  h€ magnetic moment anomaly related to the nuclear dipole
2 is H{) without the recoil and anomalous magnetic mo-Magnetic moment by

ment additionst(f) is the effective Hamiltonian responsible m ( no 1

for the leading fine-structure splitting of ordein*, andHr(l‘flg M L+r) = up 221° 6

is the effective Hamiltonian responsible for spin indepamtd

effects of orderma?. Finally, H,..1¢1o represents the nuclear whereu g is the Bohr magneton. The electronic operators are
effects and the higher-ordéx~ ma’) QED corrections pro- given by (in atomic units)

portional to they function at the origin. This part cannot be P

accurately calculated at present, because of insuffidiemt-t _ z 3 3

retical knowledge of the nuclear structure. It will be ohtad @ = +ar)gdr [6 (r) +9 (TQ)] ’ ™

. ) . o 7

ZTI(T the experiment on the ground-state hyperfine spliiting Qa = (1+a,) 5 A [53(T1) B 53(T2)] ’ ®)
In order to facilitate the evaluation of the matrix elements

in Eq. (3), it is convenient to factorize out their dependenc B .

on the nuclear degrees of freeddfrand M and on the elec- G=2 {T_l X Py + 2 52}

tronic angular momentuni. It can be achieved by observing r3 r3

than any operator contributing to Eq. (3) can be represented ml142Z [7 7 L

in terms of six basic angular-momentum operatdi$: L), TV T s 2 L“_i)’ + g} X (Pv+p2),  (9)

(I-L), (I-8), (58 (L L), 1187 (LI LH)), and
I' L7 (S* $7)(?), where the second-order tensors are defined
by (L' L/)® =12 L'LJ +1/2 /L' —1/3 [?6" and the sum- . Z[1 ([, .rird 1 (. . rird
mation over the repeated indices is assumed. Since theanucle?” = —(1 +ac) D) L—% (5 7-3 ) > + = <5 S )} )

,
spin of helionI = 1/2, there are no operators quadratic/in ! (1%)
So, Eg. (3) can be represented as o o

QY =—(1+a )Z {i (5ij _ 3@) - i<5ij _ 3%)}
Ef; = Aa(S- L)+ A ((S'57)® (L1 L7)@) . AL it ) 13 )]

+AJ(T-S) + AT - L) + Ay (I' 7 (L' 1))
+Ag (I L7 (S° 873y | (4)  whereq, is the anomalous magnetic moment of the electron.
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Derivation of the effective Hamiltonian to ordera for an

TABLE |: Expectation values of thewa* hyperfine operators for the arbitrary state of helium is given in Appendix B. The ressilt i

23 P state of*He, with the mass polarization included, in a.u. The

expected numerical uncertainty is less than 1 on the lastfignt mﬁ - o
digit. HiQ) = T (14 k) af [I -5 (Prad + Paraa)
Q Q) 4T-Pyris Pij] (17)
2Z
ek 83(r1) 21.092 193 Where
271 xpy 0.277 443 5N\ 7
" 3 3
S ., Poa=2 <1n2 — —> — 4 [5 (ri)+9¢ (7’2)] ,  (18)
rLy T2 7 —0. 2) 3
Z <E + E) x P 0.060 491
g1 (i 37{7’{) 0.140 395 is the effective operator induced by the radiative QED effec
ﬁ i . zZ:1  Z
Pnrad = ? 7’_4 - gp%4ﬂ—53(rl)
1
The matrix element of the Hamiltonian between #i@ g F_; .8 <1n2 B §> Z2x5%(r), (19)
states can be represented as r3 r{ 3 2
HENT = T (et [ERIQIP) (T §) 5 m m o7
S VAR A | < f%rzﬁjx@—Z—sxm—Z(zX7(ﬁmx
L oo o L ry T 1 T
+5 CPIQPP(I- L) (20)
N and
— - CPIQIPP)({I"S? (L* L7 12 -
LERQPP s (L)) @2 pre 2 ) (-2
— o9 \lg3. 1 5 .3
where the shorthand notations for the matrix elements of the 2\3m [
electronic operators are Z ([ rhry g T
= (¢ilQ[vi), 13 . . .
<¢J€'@ <¢_ Ing ) (13) It can be immediately seen that the operayf.4 involves
(0lQIY) = —ie"™(ilQjlvn), (14) " nhighly singular operators, whose matrix elements between t
(6|0 = (i Qijl05) (15)  °P functions diverge. However, the divergence cancels out if

P,..a is considered together with the second-onaer® con-
and the spatial triplet od& wave function is represented as  tribution, as will be explained below.

X , The second-ordena® corrections s is given b
W (r,ra,r) =1 f(rira,r) — (r o r2),  (16) R

. . . o 1 @ @
with f(r1,7o,7) being a real scalar function of,, r,, and 0Esec = 2 (Hygg (F—HY [Hyp + H']) s (22)
r = |1 — T|. The P-state wave function defined above is
real and normalized toﬁ|ﬁ) = (Pi|Pi>f 1. whereH}(jS) is obtained frorrH}(f:) from Eq. (5) by dropping

Matrix elements of the operato€g, @, andQ in Eq. (12) the electron magnetic moment anomalyand the recoil part,
are evaluated between the wave functions that include thand
mass polarization term in the nonrelativistic Hamiltonibiu- HY LW 7 L §. TLsigiTii 4 §,.T 23
merical results for the expectation values of these opeyato nts T s + + +5a-Ta, (29)
are presented in Table |. We observe that the Fermi contagihere 7(Y) = 7 is the spin independent part of the effective
int_e_ra_ction yieldfs a dominating contribution, which coblgl Hamiltoﬁ]itzsm of orderna®,
aniticipated, as it comes from botk and2p electrons. This

also explains why the hyperfine splitting is of the same order _ pi+ s n Zm

! Ly T : T = 53 53
as the fine splitting, since the latter comes mainly fromhe 8 2 [%(r1) +6%(r2)]
electron. 1 . /848 pipd\
J
—§p11<7+r—3>1)2a (24)
IV. ma® CORRECTIONS and the remaining operators are responsible for the fine-stru

ture to ordema?,

Calculation of thena® contribution to the hyperfine struc- A 7 3 7
. . . . . . T — 1 = 2 g g - 25
ture of the23 P state is the principal objective of this work. =7 | Xt g xp| 5 x (P2 h), (25)
Analogous calculation for the3S; state have already been P ! 2 | 7
performed in Ref. [14]. Here we verify the calculation foeth 7, — T [% 2 ] +3 :_3 % (Fa +71), (26)
1

) X P — —3 X D2
235 state and extend it to tHe2 P state. TS



TABLE II: Expectation values of thena® hyperfine operators for
the 23 P state o’ He, in a.u. The expected numerical uncertainty is
less than 1 on the last significant digit.

P (P)

Prad —76220 978
Prraa 0.367 674
P —0.529 385
P —0.361070

TABLE llI: Individual second-order matrix elements, forfféirent
types of intermediate staté€, in a.u. The expected numerical un-
certainty is less than 1 on the last significant digit, whehgigen

explicitly.

S 1

L (A, B) <Am3>

3p Q1) 63.531 80
@.T) 0.085 734
Q,T) 0.044 830
Q. T) 0.030473
@, T) 0.010 782
Q. T) —0.051433
Q,7) —0.048 826
@, 1) 0.237 962
@Q,7) 0.114 340

ip (Qa , Th) 157.531 64
(Qa,Tha) —1.150 (5)

3D Q. T) 0.001 148
@, 1) —0.000 434
Q. T) 0.0206 (2)
Q,7) —0.000 740

D (Qa,Th) 0.001 8 (3)

5k @, T) 0.011 100

and
g _ L1 (s or'r?

T—2r3<5 3r2>' (27)

Let us now consider the sum of singular contributions,

3
m
T
5SingE =
m

—

S

— T (1+k)aST- [<Pmd>

4

While the expectation values of the operat¢ysandT" are
finite, the second-order matrix element of these operaters d
verges. In order to eliminate the divergences, we reguariz
the Coulomb electron-nucleus interaction by introducing a
artificial parametea,

Z Z

Z 5= (1 -
Ta  Ta

All other electron-nucleus interaction terms are regakadiin

the same way. This entails the following replacements in ef-

fective Hamiltonians,

e—)\mZTQ)

; (29)

47TZ53(7’a) = _V? g SN v 2 5(1 _ e—)x'era) 7
Ta Ta
(30)
22 Z ’ Z —AmZr 2
£ (o2) iy
(31)

Once the electron-nucleus interaction is regularized,came

in principle calculate all matrix elements and take the fimi
A — oo. However, since matrix elements can be calculated
only numerically, it is more convenient to transform the ef-
fective operators to the regular form, wherean be taken to
infinity before numerical calculations.

To this end, we transform the operators in the second-order
matrix elemenf” — 7" and@Q — Q' by

. 1 Z
T :T—Z;{E,E—H}, (32)
, 2 Z
Q :Q+§;{E,E—H}, (33)

..y...} is the commutator and the impliciA-
regularization is assumed. After this transformation,gime
gular part takes the form

3
my

m M
+ <Q’ ﬁ T+ h.c.>]

where both the first and second order terms are separately fi-
nite and thus the limiA — oo can be evaluated analytically.
The result for the regularized operat@f,, , is

(SsingE =

(1+m>a6f-5'[< ')

(34)



2 N\°/z =z 1\ [ 22
P = 5((23) (F+2)+ (5-7) (G5
3 r 1 T T T 5

Z? Z 7
T T2

ZZ (24 2 1 Z p3 3 57t (vt 1

22 2 Y (BE-2+ 2B ypzeey -2 (12
T r1 To (r1+r2) ( T+T2 2 T (r1) 4 3 \r3

; 722 72 A S il
+pi 2p1+p§ —p3— p?+2p2 <7+ = >p31>
1

1 /2 Z 1/7 Z
Y2 2N g 53 222N . 35
6<r1+r2>< w2 15%n) + <T2”>+3<rl+m><> @)

Matrix elements of the regularizeda® Hamiltonian are ob-
tained by

() = 22 () a® [ 0P (P + Pl PP (T-5)
1 =g i=d —» — —
+ 5 CPIPPP)(I- L)

g (GP|PPP)(I' 7 (L LJ‘)<2>>] : (36)

are presented in Table Ill. Note a large contribution of the
L P intermediate states, which is mainly due to #Hé>-2' P
mixing. We also mention that the numerical uncertainties of
the second-order corrections are completely negligiblthen
level of the total theoretical error.

V. SECOND-ORDER HFS CORRECTION

The numerical results for the expectation values of the-elec  The fifth term in Eq. (3) is the second-order hyperfine cor-

tronic operators are listed in Table II.

The second-ordena® correction [Eq. (22)] is conceptually
simple but its calculation is rather involved technicaliis is
partly because of the coupling with intermediate statesfef d
ferent symmetries’P, ' P, 3D, ' D, and®F) and partly due
to the presence of nearly singular operators. For achieuing
merically stable results, some operators had to be tramsfr

rection. Its norminal order i&n?/M) of. However, it is en-
hanced by the small® P-2! P energy d|fference in the de-
nominator, which makes it numerically significant. Rigasou
calculation of this contribution is difficult because of eliv
gences, which are cancelled by the corresponding contribut
from the nuclear-structure effects. In the present workapre
proximate the second-order hyperfine contribuiton by kegpi

to the regular form by using the same method as for the sinenly the lowest lying! P/ intermediate state in the sum over

gular part. Details of the calculation and the regulartati
procedure are described in Appendix C.
Numerical results for the second-ordem® corrections

1 (4) m5 6 1

spectrum.
The second-order hyperfine correction induces contribu-
tions to the isotope shift (i.e., to the centroid of #ie® level),

1

(4)
H - 1
< hfs (E _ H)’ hfs>1so ( + H) E(23P) _

m2 M2
to the fine structure,

E(2'P) [Z <

. . 1 L .
2PQal2' P + 55 (2°PIQ2' P |, (37)

(4) 1 1)y~ m; 6 1 33 18\ /93 Bl1A 1ol B i i aiN2) (7 75\(2)

S gy e e O+ 90 p— P (ZPIQu P PIQARP) (1 (575 (1 1))
L 9

BP|Qal2' P2 (—— L - L' L) (87 §7)(2) 38

+ OPPIQR Y (1o -5 + 0 (L) (5759))| (39)

and to the hyperfine structure,

T — (4, my (1+r)2a® ! (23P|Qa2' P)? (~ L T §)
hfs (E o H)’ hfs hfs 2M2 E(23P) _ E(21P) 2
+ (2 PIQal2! P) (2P PIQaI2 P (= T §7 (L 1))
+ (28 P|Q 4|2 P)? <—if L+ if~§+£ﬁ ST (L LY — 9 g (5787)@)
40 20 00 00

(39)



TABLE IV Second-order hvberfine matrix elements. in a.u In order to infer the nuclear-structure contribution, we
all figures. shown -are exaﬁ) Notations are(A B’) _ %" subtract from the’He' experimental result the hydrogenic
(22 P|A]2' P) (2'P|B|2°P) /[E'(Qsp) —E(2'P)]. The expected limit of all corrections accounted for in the previous sens.
numerical uncertainty is less than 1 on the last significagit.d The remainder is the nuclear-structure contribution porses
(small) higher-order QED corrections. Specifically, we de-

(Qa,Qa) —47774.980 fine the nuclear-structure and higher-order QED contritsuti
(QA ’ QA) 249.528 Cnucl&ho as
(Qa,Qa) —1.303
E 3 H + mi 4
exp(1s,” He™) —W(l—i—m)a {1—}—%
Numerical results for the second-order hyperfine correstio 3
are presented in Table IV. +a? {5 Z’+Z (1112 - —)]

The approximate treatment of the second-order hyperfine
contribution yields, in our opinion, the dominant uncertgi 2Z 3
of our theoretical predictions for the hyperfine structute. + @ Chuelgho (4rd(r)),  (41)
is, therefore, important to estimate the neglected parthito
end, we introduce a different approximation for the secondy, parep (15,2 He')/h = 8665649.867 (10) kHz is the ex-
exp 5 - .

order hyperfine contribution, which is obtained from Eq.)(39 perimental result of Ref. [16]. The above equation yields
by the following substitution

1 Cnucl&ho = —0.031891. (42)

E(23P) — E(2'P)

(2°P|Qal2' P)? —
1 B A 1A This value does not have any theoretical uncertainty (by def
Z E(23P) — E(n'P) (2°P|Q)In" P)”, inition) and thus is accurate to all figures given. The corre-
n sponding contribution to the hyperfine structure in neteal
(40)  jium then is

where @), is the regularized function operator given by

3
Eqg. (C20). The difference between these two approximations (H,,,cigho) = My (1 + k) @ Chuclgho
(of about a half percent) is used as the estimated error of the mMZ
theoretical hyperfine structure. x (28| 3 A7 [6%(r1) + 6% (r2)] 123P) (I - S).
(43)
VI. NUCLEAR-STRUCTURE CONTRIBUTION
The last term in Eq. (3) is the nuclear-structure and higher- VIl. SMALL CORRECTIONS

order QED contribution. Accurate calculation of the nu-

clear contribution is presently not possible due to insigfit

knowledge of the nuclear dynamics. However, one may claim Here we pick up some higher-order contributions, which
that the dominant part of this effect comes from a local op-are not accounted for b§/',ci¢:n0 but might be relevant for
erator proportional to thé function at the origin. Using comparisonwith experiment. Since the mixing of #ié&> and

this assumption, one can infer the nuclear-structure corre 2' P levels by the fine-structure operator is large, we calculate
tion in neutraPHe from the experimental value of the ground- here the anomalous magnetic moment and recoil corrections
state hyperfine splitting ilHe*, measured very accurately by to this mixing, which are of ordes” m? /M anda® m? /M?,
Schluisseet al[16] half a century ago. This approach has beenfespectively.

used also in the previous studies of e hyperfine structure The nuclear spin dependertP-2! P fine-structure mixing

[11,12]. is given by
(o) = 2 (14 5yt 72 ! (28 B|Qa|2' P) (2" BT |28 Py (2 T- T — I LV (57 57)®)
mix/ =M m? E(23P) — E(2'P) 4 4 3
442%%@Aplﬁ>@Pﬁﬁ;p%%<_%fii4-%5ﬂsjqun@>+§%1¢Lusdsn@»], (44)

where theQ 4 andT'4 operators include the anomalous mag-  netic moment and ¢lod aglditions,

Qa=(14a.) % 47T[53(r1) - 53(7°2)] , (45)

= A T - N 17 Ll
TA:(1+2ae)Z [EX 1_EXPQ]+ZT_3X(p2+p1)
m Z (™ T L.
Mg pa)Z(L_I2 . (@46

2



TABLE V: Nuclear-spin dependent fine-structure mixing maéle-  TABLE VI: Theoretical results for individua2® P¥ levels in®He,
ments, with the anomalous magnetic moment and mass pdianza relative to the2® P centroid energy, in comparison with available ex-
(upper entry) and without (lower entry), in a.u., all figus®own  perimental data, in kHz. The first error of the theoreticaliga is the
are exact,(A, B) = (2°P|A]2'P) (2'P|B|2°P) /[E(2°P) —  uncertainty due to the hyperfine structure and the second isrthe
E(2' P)]. The expected numerical uncertainty is less than 1 on thaincertainty due to the fine structure.

last significant digit.

= 2 pF=t/? 27923 393.7 (0.2)(2.5)
(Qa,Ta) 156.1127 27923394.7 (2.2) Smiciklas [13]
155.9034 27923 398.3 (1.9) Cancio [5]
(Qa . Ta) —0.81535
—0.81428 2’ pf=3/2 498 547.3 (1.4)(0.4)
498 543.7 (2.1) Smiciklas [13]
498 547.3 (2.1) Cancio [5]
and the matrix elements are calulated between the wave fune? pf=!/2 —169462.2 (0.5)(0.8)
tions that include the mass polarization correction. —169463.3 (1.7) Smiciklas [13]
The higher-order mixing contribution is obtained from —169460.2 (1.8) Cancio [9]
Eq. (44) after subtracting the part that is already accaliue 3 S F=3/2
[namely, then = 2 term in Eq. (C6)]. Numerical results for 2k —4681676.3 (0.7)(0.2) -
the corresponding matrix elements are given in Table V. The :igg} ggg‘? 823 gzr;i'ilga[‘g][ls]
recoil correction is due to both the the mass polarizatiah an T
the recoil addition tdl’4. Further corrections to this mixing 93 pr=5/2 —6462557.8 (0.7)(1.0)
(e.g., those coming from higher-order relativistic cofiats) —6462555.3 (1.5) Smiciklas [13]
are not known and contribute to the uncertainty of final rissul —6462562.8 (1.6) Cancio [5]
VIIl. RESULTS AND DISCUSSION where
In this section we present the total theoretical prediation for =29616676.5 (1.7) kHz, (55)
for the mixed fine and hyperfine structure of &e” states in f12 =2292167.6 (1.7) kHz. (56)
3He. The numerical values of nuclear parameters used in the
calculations are [18] We now have all contributions to the elements of the Hamil-
tonian matrifo}?J, in Eqg. (3). Diagonalizing the matrix, we
p/pp = —1.158740958(14) 102, (47)  obtain the positions of the energy levels of &é’/” states in
m/M = 1.8195430761(17) 1074, (48) 3He, relative to the centroid of tH#* P level. The numerical
results are listed in Table VI for the individual energy Isve
The conversion factors relevant for this work are and in Table VII for the transitions between the fine and hyper
5 fine levels. Our theoretical values have two uncertainthes,
m, (1+kK)a' = —202887.3247kHz x h, (49) first one belng due to the hyperfine effects and thg second one,
mJgi due to the fine-structure effects. The nuclear-spin depgnde
m? effects are calculated with an accuracy of about 1 kHz (and
o yACRED) o’ = —10.8040kHz x h, (50)  even better in some cases). This accurgcy is limited ma'm?y b
m? Yy 6 the incomplete treatment of the second-order hyperfine cor-
W(l +£)7a” = 0.0063kHz x h, (51)  rection. The second uncertainty of the theoretical enerigie
due to the fine-structure effects. It comes from the 1.7 kHz
whereh is the Planck constant. error of fo; and f15 in Egs. (55) and (56), which is exactly

The fine structure splitting in the absence of the nucleathe same as for the fine structure‘He. Interestingly, the
spin was calculated in our previous investigations [1, &  sensitivity of different levels to the error of the fine-stture
numerical results reported féHe. In this work, we reevaluate effects is very much different, varying from 0.2 kHz for the
all nuclear-mass-dependent corrections to the fine streidtu 23]313/2 level to 2.5 kHz f0r23P01/2. As could be expected,

order to extend our calculation f¢le. The numerical results the transitions between the levels with the same valutare

for the2® P; levels of’He are less sensitive to the error of the fine-structure effecta tha
L J — J' transitions.
(Hts) ;—g = = (8 for + 5 f12) s (52) The present theoretical results can be compared with the
9 experiment by Smiciklas [13] and with our recently reported
(Hy),_y = h (—for +5 fi2), (53)  absolute frequency measurements c_)fzhé—?’P transitions
9 [5]. The latter experiment was carried out by using the op-
h tical frequency comb assisted multi-resonant precisi@tsp
He) oy = = (—fo1 — 4 , 54 ; . .
(His) =2 9 (=for fr2) (54 troscopy [19] and by measuring simultaneously both optical



TABLE VII: Experimental and theoretical hyperfine transits, in = 2°P-2’S 1S [10 and this work]
kHz. The first error in the theoretical prediction is the utaiaty w 2°P-2°S IS [5]
due to the hyperfine splitting and the second error is thertaiogy 2'S-2°S IS [4,5] e
due to the fine-structure splitting. Electron-scattering [7,25]
(J,F)—(J,F") Value Reference Nuclear theory [23,24]
0.90 095 1.00 1.05 110 115 120 125
(0,1/2) — (1,1/2) 28092855.9(0.5) (1.7) 5 [*He-*He] (fm?)
28092 870 (60) Morton&Drake [11]
28092858 (3) Smiciklas [13] FIG. 1: (color online) Different determinations of the @ifence of
28092858.6 (2.1) Cancio [9] the squared nuclear charge radiféfe and*He.
(0,1/2) — (2,3/2) 27424846.4 (1.4) (2.9)
27424837 (12) Wué&Drake [12]
27424 851.0 (3.0) Cancio [9] . , -~ 3 .
TABLE VIII: Hyperfine splitting of the23S state offHe, in kHz.
(2,3/2) — (1,1/2) 668 009.5 (1.4) (1.2) -
668 033 (9) Wu&Drake [12] H EG)H 6740451.46
668007 (3) Smiciklas [13] LA \ —1313.99
668007.5(3.2)  Cancio [5] (H H) + HD) 2189.81
(H'3), =) —60.52 + 1.7
(1,3/2) — (2,5/2)  1780881.5(1.0) (1.2) Hoorono —1566.83
1780880 (1) Wu&Drake [12] Total 6739699.93 + 1.7
1780879 (3) Smiciklas [13] Experiment [20] 6739 701.177 (16)
1780890.7(3.5) Cancio [5]
(1,1/2) — (1,3/2)  4512214.1(0.8) (0.5)
4512191 (12) Wu&Drake [12]
4512213 (3) Smiciklas [13] of the theoretical prediction comes from the second-orger h
4512211.9(27)  Cancio [3] perfine correction and was estimated in the same way as for

the23 P state. Very good agreement of th&S theoretical re-
sult with the experimental value [16] gives us additionai-co

aaveraged value of the two differences between the measyechbtran-  fidence in our estimation of errors for tbép state.
sitions.

(2,3/2) — (2,5/2)  6961105.1(1.5) (0.5)

Having calculated the hyperfine and fine structure of the
23 P levels, we are now in a position to obtain an improved

. , . . etermination ofHe-*He nuclear charge radii differenée?
and microwave hyperfine transition frequencies. Agreeme

found between the microwave frequencies and the differenc the isotope shift measurement by Shiregral. [10].

X o =0 ENCE order to extractir? from the measured energy differ-
of the optical transition frequencies was used as a confirma- 3 3 51/2 03 a3/2 1 3 3
tion of the obtained experimental results. The comparisoffnCc&£("He, 2°Fy""-2°5,"")—E("He, 2°1-2°51), we sub-

of the two independent measurements (see Table VII) show&act the experimental hyperfine shift of thés' state [16],

. . ; i 3pl/2 ;
good agreement in all cases except forﬂ’féQ-Pf/g transi-  the theoretical shift of the°F, "~ level with respect to the
tion.

centroid energy (obtained in this work), the theoreticag fin
The experimental values for individual energy levels tiste

shift of the2? P, level with respect to the centroid [1], and the
in Table VI are obtained from the transition energies regmbrt theoretical isotope shift of the centroids for the pomthu_s

in the original references [5, 13] by using the definitiontuf t [5], see Table IX. The _remamdé_rE comes fro_m the finite
centroid [Eqg. (2)] and the experimental hyperfine shift af th nuclear size effect and is proportloznal to the dlff_er_encthef
23S state [16]. We observe that theoretical and experimen[nean square charge radify = C'6r°, where Coeﬁ'C'S”C IS
tal results are at the same level of accuracy of about 2-3 ngvaluated in this work to b€’ = —1212.2(1) kHz/fm*. The
and in very good agreement with each other. It can be Conr_esultmg value
cluded that our calculation of thea® correction represented
an important advance over the previous theory [11, 12] and 512 = r2(3He) — r2(1He) = 1.066(4) fm? (57)
significantly improved agreement between theory and the ex-

periment.

Table VIII shows our numerical results for the hyperfineis in a reasonable agreement with the result by Cancio et al.
splitting of the23S state of*He. The results listed represent [5], 672 = 1.074(3) fm2, and in a significant disagreement
an update of the calculation described in detail in Ref. [14] with the result of Ref. [4] (updated in Ref. [5] by recalcula-
As compared to that work, we have (i) sligtly improved thetion of the isotope shift)§»? = 1.028(11) fm?. Fig.1 shows
numerical accuracy and (ii) made the treatment of the secondjraphically the comparison of different determinationge,
order hyperfine and the nuclear-structure contributionseto including the results from nuclear theory [23, 24] and from
fully consistent with that for th@3 P states. The uncertainty nuclear electron-scattering measurements [7, 25].



TABLE IX: Determination of the difference of the mean squatelear charge radiir? of He and*He from the measurement by Shirer
al. [10]. The remainded E is proportinal tosr?, §E = C 62, with C' = —1212.2(1) kHz/fm?, see text for details. Units are kHz.

E(*He,2°Py/? — 225%/2) — E(*He, 2° P, — 235))
5 Enes(225377)

SEw(2° P,)

—6En(2°P)/?)

—0Eis0(23 P — 239) (point nucleus)

SE

—27923393.7 (1.7)

810 599.(3.)

—2246 567.059(5)
—4309074.2(1.7)

experiment [10]

experiment [16]

theory, [1] and this work, Eq. (54)
theory, this work, Table VI

33667 143.2(3.9) theory [5]

—~1292.8(5.2)

IX. SUMMARY

advantage at present, since the experimental accuraéiiéor
is lower than for*He [21, 22]. Because of this, we do not

fine structure of th@3 P states ofHe. Our investigation ad-

if the experimental precision of thdde hyperfine structure is

vances the previous theory by a complete calculation of thémproved to the sub-kHz level, one will be able to use these
ma® correction, which leads to an order-of-magnitude im-results for the spectropic determination of the fine stmectu
provement in accuracy. Theoretical predictions for most ofconstant.

the transitions are accurate to better than 2 kHz. tig'/*-
23P13/2 transition is calculated up to 0.9 kHz, which is cur-

rently the most precise theoretical result for the heliuamr
sitions. Both the hypefine and fine-structure transitioesiar

good agreement with measurements by Castial. [5] and
by Smiciklas [13].

Another application of the hyperfine structure measure-
ments in®He might be determination of the dipole magnetic
moment of helion. The principal problem here is that the
present theory obtains the nuclear-structure contribiftiom
the experimental value of the hyperfine splitting le*. This

Since the present theoretical accuracy for the fine-strectu greatly reduces the sensitivity of the final theoreticaldpre

transitions in3He is comparable to that fatHe, one can

tion on the nuclear magnetic moment. Our calculation shows

in principle use theéHe spectroscopy for the determination that at present, the hyperfine structure’sie allows for de-

of the fine structure constant as in was done fotHe in

termination of the dipole magnetic moment of helion with an

Ref. [1]. However, such determination does not bring muchaccuracy of about x 10~° only.
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Appendix A: Angular-momentum matrix elements

In this section we calculate the matrix elements of the basgular-momentum operators that are relevant for the ptese
work. The angular-momentum algebra is conveninently doittefarmulas from Ref. [26]. The results are

(FIJLSMp|T- §|FIJL'S' My) = (=1)/+/+F { 5 Zf} T+ DI+ D)
X 0 Bs.s (1) EIHIL/SS EDES DRI F DRI+ 1) {5 Ts)
(AL)
(FIJLSMp|I - LIFIJ'L'S'Mp) = (=1)"/+F { JI, }7 Zf} I(I+1)(2I +1)
X 0.1 65,5 (1) EHST L LD+ 1)L + 1)(2J + 1)(2J + 1) { 5, ‘f i ,
(A2)
(I ST (L 1)) = i U +1) + T (7 +1) = 2L(L+1) = 25(S+1)] ([ L) — %L(L—F W8, (A3
(T L (S §7)®) = i U410+ T +1) = 2L(L+1) = 25(S+1)] (T §) — %S(S FOD),  (Ad)
(8 ) (L 1)) = (L §)2 4 (I §) - HEHLSE LY, »5)

Appendix B: Derivation of H}(,?i

We start with the Breit Hamiltoniaf/ g p of the atomic system in the external magnetic field,

Hpp = Y Ho+ Y Hy (B1)
a a,b;a>b
72 Za e = e A Z o T
Ha:—a_—_—_’a a — 2 53 a _»a'_a _»a
2m Tq om° 8m3  2m2 (T)+4 27 T2><7r
5 (G- B2+ 725, Ba) (82)
a To a (59 rtop
Hyp = —+—80ry) — —7° ab’ab \ _J
b Tab m2 (T b) 2 a (rab Tab
+4mO;T3 (Ga - Fab X (27 — Ta) = G - Tab X (270 — 7p)]
L@ T Ug 5 _ 3 Tab Tib (B3)
Am? 3, 2y 7
where7 = 5 — e A. Magnetic fields4 and B induced by the nuclear magnetic moment are
- e , T (1+k) » T
R i (1+kK) 8T 5, | (I+r) 1 (0 rird\
eBi(R) = (Vx A) =—Zoa—— P+ Za—F 5 (Y =3 — | I (B5)

The leading-order interaction between the nuclear fpind the electron spiéi, is obtained from the nonrelativistic terms
1/2m 72 ande/2m &, - B, yielding
e -, e =
Y = = S| A7) - 5 B (86)

a



11

in agreement with Eq. (5). The relativistic correction te tiyperfine interaction is similarly obtained from the reiatic terms
in the Breit HamiltonianH g p,

6 Za , Ty —— e L= o
HY = Tz a3 X [—e A(Fa)] + - (Go- Bap? + 9235, - Ba)
+ Y o GaTw x [~2e A(R) + e A7) (B7)
a,b;a#b ab
‘ 52 Do A(F) + P - A7) P2 a (69 iy, .
A3 a’ A a a * A a - ) — S —e A . B8
v (52 Po» A(Fa) + o - A7) 52 ;)27”21)(1 (rab o [— e AT(7)] (B8)

Using/T andB from Egs. (B4) and (B5), we derive Eq. (17).

Appendix C: Second order matrix elements

The second-ordema® correctioné E,.. [see Eq. (22)] is split into several parts in accordance with symmetry of the

intermediate states,

3
m
5Ese = =
C mM

(1+k)a® {5Esing(3p) + 0Eeg(*P) + 0E(*P) + 6E(*D) + 6E(*D) + SE(*F) | . (C1)

The angular momentum algebra for different intermediattestis simple but rather tedious and is performed with hethe
symbolic algebra computer program. Below we list the résglformulas expressed in a form convenient for the numkrica

evaluation.
The singular part with théP intermediate states is given by (after removing all diveaes)

1 I
Fang®P) = {Q ——=T")2(I- c2
whereE = E(23P),
, 2 Z 27 (P = M =
= - —VFE-H;=——|—=" —= - C3
Q Q+3; Ta’ 3 7’:1; V1+Tg VQ ’ ( )
1 Z 1 z zZ 1\ 1 ri g
T = T-- Z E-Hy=—|E+Z=+4+Z -2} —pi — (6% ]
4;{%7 } 2< Tn T 7‘> p127°<5 i 2>p2
loge Z7F = 27 o 17 o =
+ZV1V2—ZE'V1—Z§'V2+§T—3'(Vl—VQ), (C4)
and it is assumed that the operat@fsandQ’ act on the function on the right hand side that satisfies thed8iinger equation
with the energys.
The regular part with théP intermediate states is
1 . - T R
0Ewes(®P) = 22P|QIn*P) (nP|T|2°P) (5 I- L+ 1' L7 (8" 57)®

+(2°P|Q|n’P) (n®P|T|2°P) <_§ I' S (L L)@ + (28 P|Qn® P) (n® P|T|2°P) (I - L)
+(23B|Gn3P) (n® B T2 P) <% I-5+ % 189 (L1 L))

+<23ﬁ|éln3ﬁ> <n3ﬁ|j—v|23ﬁ> <_13_O It LI (Sz Sj)(2)>

+(25B|On® B (n® P|T|2° ) <—g IS (L 17)®)
1- - 9 . . . 1 ..
ST L4 1S9 (L L) — — 17 (§°§9) )

3BIAIL3B 38 F3B L7 & 2l i i\ (2) 27 i qi i\ (2)
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The other parts are

1 - . . R S
1 _ 3 1 1 3 -7 Tty i Qj\(2)
SE(*P) Zn: B@P) —EniP) [<2 PlQaln' P) (' PITa[2 P) (5 I L I' L7 (8" 8))
o4 . . . 1 - -
+ (22P|Q a|n' P) (n' P|T4|2° P) <—61~L 290 I'ST (L' L)® + = 50 P L7 (S 87| (C6)

1 DA - -4 — 2 e 1 . . . X
’ = 3 3 3 3 Zr7r.g_Zg7vqQI i 17\(2)
D) ; E(23P) — E(nD) [<2 P|QIn”D) (n°D|T|2°P) <3I S 5] S (L L))

+(@PIQID) (n*DITI2°P) (S T-5 + o PW@%N”—%ﬂwaN%
+ (2PPIQ D) (n*DITI2P) (—2 L — 1187 (L' 1)) — = 111 (87 59)2)
+ (28P|@n®D) (n®D|T|2° P) <_§ﬁ L7 (S 87|, (C7)

n

e

3 1 .
. i gj (1 75)(2) i i (gt gi\(2)
L 1OIS(LL) +101L(SS) )y

1
3
(C8)

YA s - . 1 3
= PO FY (nPF|T12°PY (=T -8 — — 1" §7 (L [))? T L (S0 §7)(2)y
> 5P =) & P E) (n* FIT) B3 18— I8 (L) 4 21 (8757) )

(C9)
The matrix elements with th® and F'-state wave functions are defined by

(BAI) = —i(0ilQjlwig) = i (¥i;1Q51¢1) = (|Q]&), (C10)
(@IQIY) = €7™(gilQuultn) = €7 (| Quli) = (V|QI&) (C11)
(BRI = (DilQrlvoin) = Wikl Qislon) = BIQI) (C12)

wherey) denotes the odd wave function,
P = (eiklr]fréT{ + ejklr]frl TZ) flri,ra,r) £ (r1 © ra), (C13)

andy denotes the odd wave function,
2 . ) 17 . . o o
Pk = |r r{r’f — %1 (&-jrf + Gl + @kﬂ)} f(ri,re,r) + 3 [Tﬁr{réﬂ + ek 4 bl ek
5 k ik 2. 1.1..3 5jk 2 i 1.1,

i 2 (rirs + 2rirhrt) — 5 — (riry +2riryry) — ?(Tlrz +2riryry) | g(r1,72,7) £ (r1 <> 72) (C14)

All wave functions are real and normalized by’ |¢)?) = (¥ |[¢p7) = (p¥F|piik) = 1.

The second-order corrections listed above are finite. Hewsome matrix elements are too singular for the direct mioale
evaluation and need to be transformed to a more regular fare regularization method is described in Sec. IV. So, the
operatorT is transformed by Eq. (32), thus yielding

23 P|Q|n®P) (n®P|T|2° P

L . _ | 7 < aa L1 A .
23P|QIn*P) (n*P|T'12°P) + (2°P|= Y = Q[2°P) — (2°P|~ Y = |2°P) (2°P|Q|2°P).
ZE?P Epy & PP W TP + PPl 305 GR°P) = (PPl 3 Py @A)
(C15)
We observe that, after the transformation, the singular pfathe operatorl” is absorbed in the first-order matrix element,

whereas the second-order correction contains only theg(megular) operatdr”.
Similarly, the operato€® is transformed by

_ rtpd pk
Q”J = {5@” _ H} __Z Z( 51] 35zk a 35]1@ Ta 49 %) V§5 (C]_G)

a
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whereE = E(23P),

%

. 1 VA . rird
[ “ i a'a
QY = 2 za: - <5 35 ) (C17)

a

and it is assumed that the function on the right hand sidg’ sfatisfies the Schrodinger align with enety The second-order
matrix elements witl)*’ then are transformed by

(23 P|Q|n? P) (n®P|T)|2° P)

1
1;2 E(23P) — E(n®P)

1 — A — - = — . m — A — - = —
= Z E@P) B P) (2°P|Q'|n*P) (n®P|T|2°P) + (—ie"™) (2°P;|6Qux T1 |2° P) — (22 P|6Q|2°P) (22 P|T |2°P),
n>2

(C18)

and

1 . L L 1 . . . .
23p 3Py (n®P|T|23P) = 23P|Q'|n3P) (n®P|T"|2° P
> e m—Ewry 2 DA P PITRP) = 3 sy 2 PIQ Py n PIT'2°P)

I I T L _ . _
+ <23P|Z > =Q2°P) - <23P|Z > =12°P) (2°P|QI2°P) + (2° PIsQ T'|2° P) — (2°P|3Q|2° P) (2° P|T'[2°P) .
Ta p Ta

(C19)
The operatot) 4 is transformed as
= 2[Z2_Z p_ gl _2Z2( " g g
QA - QA + 3 - T ) E H, = 3 T? vl + 7’3 VQ ) (CZO)

where it is assumed that the function on the right hand sid@’ pfatisfies the Schrodinger equation with the endtgyThe
regularized form of the second-order matrix element then is

1 — — - = —
23p LPY (nlP|T4|23P) =

B} 2 (7 ZN 4.
@RI ) (i PITAP) - 0 (£ - 2) D). (c21)

T1 T2

1
Xn: E(23P) — E(n'P)




