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The quantum electrodynamic formalism is presented for the systematic and exact in Z α derivation of nuclear
recoil corrections in hydrogenic systems.

I. INTRODUCTION

The quantum electrodynamics (QED) of atomic systems
has so far been formulated for an infinitely heavy nucleus, us-
ing the so called Furry picture, in which the Dirac propagator
includes the Coulomb potential [1]. The inclusion of finite nu-
clear mass effects in the exact relativistic formalism is highly
nontrivial. The unperturbative in the Z α formula for the lead-
ing recoil correction to the binding energy was originally de-
rived about 40 years ago by Shabaev in Refs. [2, 3] and was
confirmed by an independent derivation in Ref. [4]. This for-
mula formed the basis of extensive numerical QED calcula-
tions of nuclear recoil effects in heavy hydrogenic [5, 6] and
heavy few-electron ions within the so-called 1/Z expansion
[7]. This leading recoil correction was later extended to the
presence of the homogenous magnetic field [8], and recently
to the finite-size nucleus [9], but no other progress has been
achieved so far.

Nuclear recoil effects are significant for light hydrogenic
systems, where a different QED approach has been developed.
These corrections have been calculated over many years using
Z α expansion, which led to very accurate results and conse-
quently the accurate determination of fundamental constants
and quantum electrodynamics tests. Nevertheless, some im-
portant higher-order recoil corrections are not yet known and
limit theoretical predictions. For example, the radiative recoil
correction α (Z α)6m/M currently limits theoretical predic-
tions for the hydrogen Lamb shift and the muonium hyperfine
structure [10]. This is due to the high complexity in calcula-
tions of higher order (in α and Z α) recoil corrections. Some
of them have been calculated only by one group, such as the
(Z α)2m/M correction to the hyperfine splitting in hydrogen
about 40 years ago by Bodwin and Yennie [11], which has
not yet been confirmed. Therefore, the exact in Z α formulas
for recoil and radiative recoil corrections of arbitrary order in
mass ratio would be very desirable.

Very recently, the method from Refs. [4, 9] has been ex-
tended to derive the exact, in Z α, pure recoil correction to the
hyperfine splitting in hydrogenic systems [12]. It was noticed
there, that the use of the temporal gauge for the photon ex-
change propagators greatly simplifies the derivation and final
formulas, so they can be a basis for direct numerical calcula-
tions, but also they can be a basis for the analytic derivation of
Z α expansion coefficients, such as that of Bodwin and Yen-
nie [11].

In this paper, we demonstrate that the method from Ref.

[12] can be further developed to derive exact, in Z α, formu-
las for corrections of an arbitrary order in the mass ratio and
α. As an example, we present them for the leading radiative
recoil correction and for the complete non-radiative second
order in mass ratio correction. Finally, we perform an exem-
plary numerical calculation of nuclear recoil with the elec-
tron vacuum-polarization for muonic atoms. Theoretical units
ℏ = c = 1 are used throughout this work with α = e2/(4π)
and e being an electron charge.

II. EXPANSION IN THE ELECTRON-NUCLEAR MASS
RATIO

To begin with the precise formulation of the nuclear recoil
correction, let us note that on the basis of QED theory, the
binding energy of a two-body system is a function of α,Z α,
and the mass ratio m/M , namely E = E(m/M,Z α, α). As-
suming that one of the particles is much heavier and of ex-
tended size, one can perform an expansion in the mass ratio
together with the expansion in the fine structure constant α,

E
(m
M
,Z α, α

)
=

∑
i,j

E(i,j)(Z α) , (1)

where the dependence on the finite nuclear size, typically
mrC , is not explicitly shown, and where

E(i,j)(Z α) =m
(m
M

)i

αj E(i,j)(Z α) . (2)

The power of α represents the number of QED loops,
namely the number of the lepton self-energy and the vacuum-
polarization loops. Here, E(0,0)(Z α) = ED is the Dirac en-
ergy in the infinite nuclear mass limit,

HD ϕ = ED ϕ , (3)

where

HD = α⃗ · p⃗+ βm+ VC , (4)

and where VC is a Coulomb potential including the nuclear
charge distribution ρC(r),

VC(r) = −
∫
d3r′

Z α

|r⃗ − r⃗ ′|
ρC(r

′) . (5)
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The next term, E(0,1)(Z α) = Eself + Evp, is the sum of the
one-loop electron self-energy and vacuum-polarization cor-
rections. Namely, the electron self-energy correction is

Eself = ⟨ϕ̄|Σrad(ED)|ϕ⟩ , (6)

where ϕ̄ = ϕ+ γ0, and

Σrad(E) = e2
∫

d4k

(2π)4 i

1

k2
γµ e−i k⃗·r⃗ SF (E + ω) γµ e

i k⃗·r⃗

(7)

with ω = k0 the Feynman integration contour is assumed, and
where

SF (E) =
1

̸p− γ0 VC −m
(8)

is the Dirac-Coulomb propagator.
In the second contribution Evp, the electron vacuum polar-

ization modifies the photon propagator, which is exchanged
between the lepton and the nucleus

−gµν
k2

→ − gµν
k2(1 + ω̄(k2))

. (9)

At the one–loop level ω̄ (in electron mass units) is given by

ω̄(k2) =
α

π
k2

∫ ∞

4

d(q2)
1

q2(m2
e q

2 − k2)
u(q2) , (10)

where

u(q2) =
1

3

√
1− 4

q2

(
1 +

2

q2

)
. (11)

The resulting vacuum polarization potential for a point in-
finitely heavy nucleus is given by

Vvp(r) = −Z α
r

α

π

∫ ∞

4

d(q2)

q2
e−me q r u(q2) , (12)

while for the finite size nucleus it is

VCvp(r) =

∫
d3r′ Vvp(|r⃗ − r⃗ ′|) ρC(r′) , (13)

and the corresponding vacuum polarization correction to the
binding energy is

Evp = ⟨ϕ|VCvp|ϕ⟩ . (14)

These QED corrections in the infinite nuclear mass limit can
be formally extended to an arbitrary number of loops, and
calculated numerically (see, for example, the two-loop self-
energy calculation of the Lamb shift by one of us [13]).

III. HPQED

Heavy-particle quantum electrodynamics (HPQED) is the
formalism that allows to derive nuclear recoil corrections of

an arbitrary order in m/M and α. The starting point is the
nonrelativistic QED Hamiltonian for the nucleus, namely

Hnuc =
Π⃗2

2M
+ q A0 − q

2M
g I⃗ · B⃗ − q δI

8M2
∇⃗ · E⃗

− q

4M2
(g − 1) I⃗ · [E⃗ × Π⃗− Π⃗× E⃗] + . . . ,

(15)

where Π⃗ = P⃗ − q A⃗, q = −Z e, I is the nuclear spin, δ0 =
0, δ1/2 = 1, and where we introduced the nuclear g factor,
defined as

µ⃗ =
q

2M
g I⃗ . (16)

We will neglect the nuclear quadrupole and all higher electro-
magnetic moments, because their contribution is usually very
small. Moreover, the finite charge and magnetic moment dis-
tributions, which are described by electromagnetic form fac-
tors GE(−k2) and GM (−k2) (normalized to 1 at k2 = 0)
will be moved to the photon propagator. This can be done,
because every photon exchange between the point lepton and
the nucleus is associated with the product of the nuclear vertex
which contains these form factors and of the photon propaga-
tor. Moreover, we will assume at the beginning that all these
form factors are the same, namely GE(−k2) = GM (−k2) =
ρC(−k2). This can be generalized at the final stage of deriva-
tion. We will also neglect nuclear polarizability, namely all
interactions beyond the elastic form factors. Its calculation
would require a separate treatment. Moreover, the diagrams
involving the photon emission and absorption by the nucleus
will also be neglected. Their consideration is very problem-
atic when an elastic approximation is assumed. This is be-
cause, even for light elements such as Mg (Z = 12), the ef-
fective electromagnetic coupling Z2 α is larger than 1 and the
QED perturbation theory may not work in such a case, which
demonstrates limitations of the elastic form factor approxima-
tion.

Returning to the nuclear Hamiltonian in Eq. (15) we con-
struct the quantum electrodynamic theory using the Coulomb
gauge and the Furry picture. Namely, the Coulomb interaction
VC between the finite size nucleus and the lepton is accounted
for unperturbatively, and all other interactions are treated us-
ing the perturbation theory. At the zeroth order, we have the
standard QED with the static Coulomb potential, as described
in the previous section. The first-order term in the mass ratio
is represented as an expectation value

E(1) =

〈
Ψ

∣∣∣∣ (P⃗ − q A⃗)2

2M
− q

2M
g I⃗ · B⃗

∣∣∣∣Ψ〉
QED

(17)

on a hydrogenic state |Ψ⟩, which is a second-quantized Fock
state centered at the position of nucleus R⃗. The meaning of
the“QED” expectation value needs to be explained and we
here follow Refs. [1, 12]. The matrix element of an arbitrary
operator Q on a state Ψ in a QED theory is

⟨Ψ|Q|Ψ⟩QED =
⟨Ψ|TQ exp

[
−i

∫
d4y HI(y)

]
|Ψ⟩

⟨Ψ|Texp
[
−i

∫
d4y HI(y)

]
|Ψ⟩

, (18)
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where T denotes chronological ordering with an assumption
that the time coordinate of Q is t = 0, the interaction Hamil-
tonian is

HI(y) = e jµ(y)A
µ(y) , (19)

and jµ is the four-vector current.
The second term in Eq. (17) leads to the well-known hyper-

fine splitting, and its calculation is standard. The crucial point
is the interpretation of P⃗ from the first term in Eq. (17) and
its action on |Ψ⟩ and ψ̂. Namely, let us consider the represen-
tation of the fermion field ψ̂ in terms of creation and annihila-
tion operators of one-particle hydrogenic states ϕs,

ψ̂(x) =

+∑
s

asϕs(x⃗) e
−i Est +

−∑
s

bsϕs(x⃗) e
−i Est ,

ψ̂+(x) =

+∑
s

a+s ϕ
+
s (x⃗) e

i Est +

−∑
s

b+s ϕ
+
s (x⃗) e

i Est . (20)

The differentiation ∇⃗R acts on functions ϕs and operators
as, bs, and this can be represented as [12]

∇⃗R =

∫
d3r ψ̂+(r⃗) ∂⃗R ψ̂(r⃗) + ∂⃗R

= −
∫
d3r ψ̂+(r⃗) ∂⃗r ψ̂(r⃗) + ∂⃗R (21)

where ψ̂(r⃗) ≡ ψ̂(0, r⃗), and ∂⃗R is understood in the following
sense. The hydrogenic state ϕs is a function of ϕs(r⃗ − R⃗) of
the difference in electron and nucleus position vectors; there-
fore ∂⃗R ϕs = −∂⃗r ϕs, and âs, b̂s remain intact. As a test, for
t = 0,

∇⃗Rψ̂(0, x⃗) = −
∫
d3r ψ̂+(r⃗) ∂⃗r ψ̂(r⃗) ψ̂(0, x⃗)− ∂⃗xψ̂(0, x⃗)

= 0 , (22)

as it should. Moreover, for an arbitrary Fock state |Ψ⟩,

∇⃗R |Ψ⟩ = −
∫
d3r ψ̂+(r⃗) ∂⃗r ψ̂(r⃗)|Ψ⟩ , (23)

and this holds in particular for the vacuum state |0⟩.
A crucial observation was made in Ref. [12], that every

occurrence of P⃗ − q A⃗ in the Coulomb gauge can be replaced
by −q A⃗ in the temporal gauge, where the photon propagator
becomes

Gij
T (ω, k⃗) =

ρC(−k2)
k2

(
δij − ki kj

ω2

)
. (24)

The temporal gauge is a particular case of the axial gauge and
is defined by the conditionG0µ

T = 0 for every µ. The singular-
ity at ω = 0 is taken care of, as explained below. This crucial
observation leads to a significant simplification of matrix ele-
ments for all recoil corrections, because one can use standard
perturbation theory, such as a two-time Green’s function ap-
proach [1], and thus avoid cumbersome ∇⃗R differentiation.
Below, we present formulas for the leading two terms in the
large nuclear mass expansion for hydrogenic atoms.

IV. PURE RECOIL CORRECTION

The leading pure recoil correction isErec = E(1,0)(Z α). It
is given by the first term in Eq. (17). As we have already men-
tioned, for the point nucleus it was first derived by Shabaev in
Refs. [2, 3], and the generalization for the finite size nucleus
was achieved recently in Ref. [9, 12], namely

Erec = ⟨ϕ̄|Σrec(ED)|ϕ⟩ (25)

Σrec(E) =
i

M

∫
s

dω

2π
Dj

T (ω)SF (E + ω)Dj
T (ω) , (26)

where

Dj
T (ω, r⃗) = − 4πZαγiGij

T (ω, r⃗) . (27)

The subscript s in the integration denotes a symmetric integra-
tion path. Namely, we perform Wick rotation and symmetri-
cally integrate around the pole at ω = 0. The apparent singu-
larity at ω = 0 is a spurious one, as can be seen by changing
to the Coulomb gauge propagators

Dj
C(ω) = Dj

T (ω) +
1

ω2

[
ω + ED −HD , p

j(VC)
]
. (28)

Moreover, the temporal gauge propagator for a point nucleus
with w =

√
−ω2 + i ε

Gij
T (ω, r⃗) = −

(
δij +

∇i ∇j

ω2

)
e−w r

4π r
(29)

contains the Dirac δ function; therefore, the Coulomb gauge
propagators are more convenient for numerical calculations.

V. RADIATIVE RECOIL CORRECTION

The exact, in Z α, radiative recoil correction Eradrec =
E(1,1) has not yet been published in the literature. We split
it into self-energy and vacuum-polarization parts

Eradrec = Eselfrec + Evprec . (30)

The vacuum polarization part can be implemented by the ef-
fective charge density ρvp(−k2), namely using Eqs. (9) and
(10),

ρCvp(−k2) = −ω̄(k2) ρC(−k2) , (31)

and thus takes the form analogous to Eq. (26)

Evprec = δvp
i

M

∫
s

dω

2π
⟨ϕ̄|Dj

T (ω)SF (ED + ω)Dj
T (ω)|ϕ⟩,

(32)

where δvp perturbs ϕ,HD, ED, and Dj
T , whenever ρC is

present, namely

Evprec =
i

M

∫
s

dω

2π

[
2 ⟨ϕ̄|Dj

Tvp(ω)SF (ED + ω)Dj
T (ω)|ϕ⟩
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+ 2 ⟨ϕ̄|γ0 VCvp S
′
F (ED)Dj

T (ω)SF (ED + ω)Dj
T (ω)|ϕ⟩

+ ⟨ϕ̄|Dj
T (ω)SF (ED + ω) γ0 (VCvp − ⟨VCvp⟩)

× SF (ED + ω)Dj
T (ω)|ϕ⟩

]
, (33)

and where S′
F (ED) is the reduced Dirac propagator (the ref-

erence state with the energy ED is subtracted out).
The self-energy part is obtained as follows. The fermion

propagator

1

̸p−m− Σ(E)
(34)

has corrections due to the self-energy and the recoil

Σ(E) = Σrad(E) + Σrec(E) + Σradrec(E) + . . . , (35)

where Σrad is defined in Eq. (7), Σrec in Eq. (26), and

Σradrec(E) =
i

M

∫
s

dω′

2π
e2
∫

d4k

(2π)4 i

1

k2

×
[
γµ e−i k⃗·r⃗ SF (E + ω)Dj

T (ω
′)SF (E + ω + ω′)Dj

T (ω
′)SF (E + ω) γµ e

i k⃗·r⃗

+Dj
T (ω

′)SF (E + ω′) γµ e−i k⃗·r⃗ SF (E + ω + ω′) γµ e
i k⃗·r⃗ SF (E + ω′)Dj

T (ω
′)

+ γµ e−i k⃗·r⃗ SF (E + ω)Dj
T (ω

′)SF (E + ω + ω′) γµ e
i k⃗·r⃗ SF (E + ω′)Dj

T (ω
′)

+Dj
T (ω

′)SF (E + ω′) γµ e−i k⃗·r⃗ SF (E + ω + ω′) Dj
T (ω

′)SF (E + ω) γµ e
i k⃗·r⃗

]
(36)

is a sum of all one-particle irreducible diagrams (in the tem-
poral gauge). The change in the position of the pole of the
fermion propagator in Eq. (34) due to the presence of Σ(E) is

Eselfrec = ⟨ϕ̄|Σradrec(ED)|ϕ⟩
+ 2 ⟨ϕ̄|Σrad(ED)S′

F (ED) Σrec(ED)|ϕ⟩
+ ⟨ϕ̄|Σ′

rad(ED)|ϕ⟩ ⟨ϕ̄|Σrec(ED)|ϕ⟩
+ ⟨ϕ̄|Σ′

rec(ED)|ϕ⟩ ⟨ϕ̄|Σrad(ED)|ϕ⟩ . (37)

This radiative recoil correction has been calculated only up
to α (Z α)5 order, and the higher-order terms are unknown,
which limits the accuracy of the hydrogen Lamb shift [10].
Moreover, we expect this correction to be significant for
light muonic atoms, where the electron vacuum-polarization
is combined with a relatively large muon-nucleus mass ratio.
Therefore, we perform exemplary calculation of this correc-
tion for several hydrogenic ions in Sec. VIII.

VI. RECOIL CORRECTION TO THE HYPERFINE
SPLITTING

The nonperturbative formula for the recoil correction to the
hyperfine splitting in hydrogen-like ions has recently been de-
rived in Ref. [12]. It comes from the NRQED Hamiltonian of
the nucleus in Eq. (15) ( including the relevant terms only)

Hnuc =
Π⃗2

2M
− q

2M
g I⃗ · B⃗

− q

4M2
(g − 1) I⃗ · [E⃗ × Π⃗− Π⃗× E⃗] , (38)

and takes the form

Ehfsrec = Ekin + Eso + Esec , (39)

where

Ekin =
1

M

∫
s

dω

2π

1

ω

[
⟨ϕ̄|Dj

T (ω)SF (ED + ω) ∂j(Vhfs(ω))|ϕ⟩

− ⟨ϕ̄|∂j(Vhfs(ω))SF (ED + ω)Dj
T (ω)|ϕ⟩

]
+ δhfs

i

M

∫
s

dω

2π
⟨ϕ̄|Dj

T (ω)SF (ED + ω)Dj
T (ω)|ϕ⟩ ,

(40)

Eso = − (g − 1)

M2
ϵijk Ii

∫
s

dω

2π
ω

× ⟨ϕ̄|Dj
T (ω)SF (ED + ω)Dk

T (ω)|ϕ⟩ , (41)

Esec =

(
4π Z α

2M
g

)2

ϵijk Ik
∫
s

dω

2π

1

ω

× ⟨ϕ̄|(γ⃗ × ∇⃗)iD(ω)SF (ED + ω) (γ⃗ × ∇⃗)j D(ω) |ϕ⟩ ,
(42)

where

D(ω, r) =

∫
d3k

(2π)3
eik⃗·r⃗

ρ(k⃗2 − ω2)

ω2 − k⃗2
(43)

and

Vhfs(ω, r⃗) = e µ⃗ · γ⃗ × ∇⃗D(ω, r) , (44)
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such that Vhfs(0, r) = Vhfs(r), where

Vhfs(r) =
e

4π
µ⃗ · γ⃗ ×

[
r⃗

r3

]
fs

. (45)

This recoil correction has not yet been numerically calculated.
Expansion terms up to (Z α)2EF are presently known [11],
but the higher-order recoil terms have not yet been studied.

VII. SECOND-ORDER RECOIL CORRECTION

The second-order recoil correction Equadrec = E(2,0) has
also not yet been considered in the literature. It comes from
the NRQED Hamiltonian for the nucleus in Eq. (15) (includ-
ing relevant terms only)

Hnuc =
Π⃗2

2M
− q

2M
g I⃗ · B⃗ − q δI

8M2
∇⃗ · E⃗ , (46)

and is split into three parts,

Equadrec = Ekin + Emag + Ezit , (47)

which are obtained as follows.

The kinetic energy part Ekin is the second-order correction
due to the nonrelativistic kinetic energy of the nucleus

Ekin = ⟨ϕ̄|Σquadrec(ED)|ϕ⟩
+ ⟨ϕ̄|Σrec(ED)S′(ED) Σrec(ED)|ϕ⟩
+ ⟨ϕ̄|Σ′

rec(ED)|ϕ⟩ ⟨ϕ̄|Σrec(ED)|ϕ⟩ , (48)

where Σrec(E) is defined in Eq. (26), and Σquadrec(E) is a
sum of all one-particle irreducible diagrams, namely

Σquadrec(E) =

(
i

M

∫
s

dω1

2π

)(
i

M

∫
s

dω2

2π

)
[
Dj

T (ω1)SF (ED + ω1)D
j
T (ω2)SF (ED + ω1 + ω2)D

j
T (ω1)SF (ED + ω2)D

j
T (ω2)

+Dj
T (ω1)SF (ED + ω1)D

j
T (ω2)SF (ED + ω1 + ω2)D

j
T (ω2)SF (ED + ω1)D

j
T (ω1)

]
(49)

The magnetic contribution Emag is the second-order cor-
rection due to −µ⃗ · B⃗ in Eq. (46)

Emag = ⟨ϕ̄|Vhfs S′
F (ED)Vhfs|ϕ⟩ , (50)

and the product of the nuclear magnetic moments in the above
is to be replaced by µa µb → δab µ⃗ 2/3. We note that the
antisymmetric part would contribute to the hyperfine splitting,
but it would be incorrect. The correct formula was presented
in the previous section in Eq. (42).

Finally, the zitterbewegung term Ezit depends on the nu-
clear spin. It vanishes for scalar particles (nuclei), while for
spin 1/2 it is δ1/2 = 1, and

Ezit =
δI

8M2
⟨∇⃗2(VC)⟩ (51)

The numerical calculation of this second-order correction is
not trivial, but what is important is that all such formulas can
be written down.

VIII. NUMERICAL CALCULATION OF THE NUCLEAR
RECOIL ELECTRON VACUUM-POLARIZATION

CORRECTION IN MUONIC ATOMS

This is an exemplary numerical calculation of the nuclear-
recoil electron vacuum-polarization (EVP) correction for sev-
eral muonic (hydrogenlike) atoms. This correction, given by

Eq. (32), we transform to the Coulomb gauge

Evprec =
m2

µ

M

i

2π

∫ ∞

−∞
dω δvp⟨ϕ|

[
pj −Dj

C(ω)
]

× [ED −HD]−1
[
pj −Dj

C(ω)
]
|ϕ⟩ , (52)

where mµ is the muon mass, δvp denotes perturba-
tion by the electron vacuum polarization, Dj

C(ω) =

−4π ZααiGij
C (ω, r⃗) and Gij

C is the transverse part of the
photon propagator in the Coulomb gauge given by

Gij
C (ω, r⃗) = δij D(ω, r) +

∇i∇j

ω2

[
D(ω, r)−D(0, r)

]
,

(53)

and

D(ω, r) =

∫
d3k

(2π)3
eik⃗·r⃗

ρ(k⃗2 − ω2)

ω2 − k⃗2
. (54)

See Ref. [9] for details.
We divide Evprec into two parts,

Evprec = Evprec,ph + Evprec,el , (55)

where Evprec,ph is due to perturbation of DC(ω) by vacuum
polarization, whereas Evprec,el is the remainder. The calcula-
tion of Evprec,el is relatively straightforward. We include the
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TABLE I. Nuclear-recoil–vacuum-polarization correction to the 2P1/2-2S transition energy of H-like muonic ions, in meV.

1H 4He 7Li 12C 132Xe 208Pb

M/mµ 8.880243 35.27765 61.83924 105.7641 1162.618 1833.145
rC [fm] 0.84060 1.67860 2.4440 2.4702 4.7859 5.5012

Evprec,el −56.36324 −78.41878 −107.1656 −241.863 5407.20 6895.5
Evprec,ph 0.00555 0.03214 0.1068 1.191 −293.61 −971.2
Evprec −56.35769 −78.38664 −107.0588 −240.672 5113.59 5924.3
Evprec(l.o.) −56.36185 −78.60251 −108.66 −258.91 −1825. −2666.

vacuum-polarization potential VCvp(r) into the Dirac Hamil-
tonian, calculate the recoil correction using the procedure de-
veloped in Ref. [9], and then linearize with respect to VCvp by
taking the numerical derivative.

The computation of Evprec,ph is more complicated. We
write it in the Coulomb gauge as follows,

Evprec,ph =
m2

µ

M

i

π

∫ ∞

−∞
dω

∑
n

1

ED + ω − En(1− i0)

×
[
− ⟨ϕ| p⃗ |n⟩ ⟨n| δvpD⃗C(ω) |ϕ⟩ ,

+ ⟨ϕ| D⃗C(ω) |n⟩ ⟨n| δvpD⃗C(ω) |ϕ⟩
]
. (56)

The function δvpD
j
C(ω) is obtained from Dj

C(ω) by modi-
fying the photon propagator with vacuum polarization. This
modification leads to the replacement

D(ω, r) → Dvp(ω, r) , (57)

where

Dvp(ω, r) =

∫
d3k

(2π)3
eik⃗·r⃗

ρ(k⃗2 − ω2)

ω2 − k⃗2
[−ω̄(ω2 − k⃗ 2)] ,

(58)

and ω̄(k2) is defined in Eq. (10). Let us now obtain Dvp for
the exponential model of the nuclear charge distribution

ρ(k⃗2) =
λ4

(λ2 + k⃗ 2)2
. (59)

We first consider the case of pure imaginary ω. For w2 =
−ω2, we get

Dvp(i w, r) = − α

π

∫ ∞

4

d(q2)
u(q2)

q2

∫
d3k

(2π)3
eik⃗·r⃗X ,

(60)

where

X =
1

(m2
e q

2 + w2 + k⃗ 2)

λ4

(λ2 + w2 + k⃗ 2)2

=
λ4

(λ2 −m2
e q

2)2

[
1

m2
e q

2 + w2 + k⃗ 2

− 1

λ2 + w2 + k⃗ 2
− λ2 −m2

e q
2

(λ2 + w2 + k⃗ 2)2

]
. (61)

Performing integration over k⃗, we obtain

Dvp(i w, r) = − 1

4π

∫ ∞

2

dq Avp(q)

[
e−

√
w2+m2

eq
2 r

r

− e−
√
w2+λ2 r

r
− λ2 −m2

eq
2

2
√
ω2 + λ2

e−
√
w2+λ2 r

]
,

(62)

where

Avp(q) =
α

π

2

3

√
q2 − 4 (2 + q2)

q4
1

(1−m2
eq

2/λ2)2
. (63)

For the general complex ω, we analytically continue the above
formulas and obtain

Dvp(ω, r) = − 1

4π

∫ ∞

2

dq Avp(q)

[
ei
√

ω2−m2
eq

2 r

r

− ei
√
ω2−λ2 r

r
− i(λ2 −m2

eq
2)

2
√
ω2 − λ2

ei
√
ω2−λ2 r

]
.

(64)

We note that for ω = 0, the function Dvp becomes propor-
tional to the vacuum-polarization potential VCvp,

VCvp(r) = 4πZαDvp(0, r) . (65)

Results of our numerical calculations of the recoil-vacuum-
polarization correction are presented in Table I for the 2P1/2-
2S transition energy of several muonic H-like ions, together
with the contribution of the leading order of the Zα expansion
of this correction,

Evprec(l.o.) = − 2

3π

m2
µc

2

M
α(Zα)2∫ ∞

1

du
β2(−1 + 6βu)

√
u2 − 1(1 + 2u2)

u2(1 + 2βu)5
,

(66)

where β = me/(Zαmµ).
It can be seen that the deviation of the all-order result from

the lowest-order term is quite small for hydrogen and helium
(as expected), but grows fast with the increase of the nuclear
charge. For heavy ions, the lowest-order formula does not
reproduce even the overall sign of the total correction. More-
over, we note that for light ions the nuclear-recoil electron
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vacuum-polarization correction is larger than the pure nuclear
recoil for this particular transition. So, for muonic hydrogen,
the first-order in m/M nuclear recoil contributes 1.63 meV
to the 2P1/2-2S energy difference, whereas the nuclear-recoil
with vacuum-polarization contributes −56.4 meV.

IX. SUMMARY

HPQED enables the systematic inclusion of finite nuclear
mass corrections using exact formulas in terms of Zα. By
recognizing that the nuclear momentum P⃗ − qA⃗ can be rep-
resented as −qA⃗ in the temporal gauge, the derivation falls
within the realm of standard bound state perturbative QED
and can thus be performed straightforwardly. The obtained
formulas can be extended to many-electron systems using the
1/Z expansion [1], similarly to the leading recoil correction
[7]. Numerical calculations would likely require transform-
ing to the Coulomb gauge, resulting in much longer formulas.
For electronic atoms, most of higher-order recoil corrections

derived here are probably insignificant, except for the radia-
tive recoil, which is required for the improved description of
the hydrogen Lamb shift. However, for muonic atoms, these
corrections could lead to substantial effects since muons are
206 times heavier than electrons. In fact, there is an ongo-
ing QUARTET project [14] to determine nuclear charge radii
from the spectra of 3 ≤ Z ≤ 10 muonic atoms. An additional
benefit of the obtained formulas is the complete inclusion of
finite nuclear size (but not the nuclear polarizability, which
needs to be accounted for separately). Finally, the derived for-
mulas can be used to obtain higher-order recoil corrections in
the Zα expansion, such as α(Zα)6m/M , which have yet to
be addressed in the literature.
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