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Large-scale ab initio QED calculations are performed for the 2p3/2–2p1/2 fine-structure interval
of Li-like ions with nuclear charges Z = 5 – 92. Improved theoretical predictions are obtained by
combining together two complementary theoretical methods, namely, the approach that accounts for
all orders in the binding nuclear strength and the nonrelativistic QED approach that accounts for all
orders in the nonrelativistic electron-electron interaction. The resulting unified approach provides
theoretical predictions which are more accurate than the available experimental results across the
interval of the nuclear charges considered.

Three-electron atoms, namely, Li and Li-like ions, are
among the simplest many-electron systems. They can
be calculated ab initio within quantum electrodynamics
(QED) and measured with a very high precision. Inves-
tigations of such atoms enable precision tests of bound-
state QED of many-body systems and allow studies of
nuclear properties probed by atomic electrons [1]. The
spectacular experimental progress achieved during the
past decades in spectroscopy of Li-like atoms [2–11] moti-
vated large efforts devoted to QED calculations of energy
levels in these systems.

There are presently two main ab initio methods that
systematically describe various atomic properties within
QED. The first method, described in Ref. [12], accounts
for all orders in the nuclear binding strength (i.e., the
parameter Zα, where Z is the nuclear charge number
and α is the fine-structure constant) but expands in the
number of virtual photons exchanged between the elec-
trons (i.e., in the parameter 1/Z). Such calculations
were performed by a number of authors, most notably,
by the Notre-Dame [13–15] and the St. Petersburg [16–
22] group. This method yields very accurate results for
high-Z ions, providing one of the best tests of QED in
the strong-field regime [23]. In the low-Z region, how-
ever, the applicability of this method diminishes, since
the relative contribution of the electron correlation in-
creases as Z goes down and the convergence of the 1/Z
expansion deteriorates.

For light atoms, the best results are obtained with the
second method, based on the nonrelativistic quantum
electrodynamics (NRQED) [24]. This method expands
the energy levels of a bound system in powers of α and
Zα, but accounts for all orders in 1/Z. High-precision
NRQED calculations were performed for energy levels of
Li and Be+ in Refs. [25–30]. For heavier systems, how-
ever, the accuracy of the NRQED results deteriorates as
Z increases, since the omitted higher-order effects be-
come enhanced by high powers of Z.

The fine structure (fs) of energy levels is particularly
favourable for theoretical calculations by the NRQED
method, offering numerous simplifications. For example,
only a few operators explicitly depending on the electron

spin contribute to the fs splitting at the leading order
of the NRQED expansion, mα4 (where m is the elec-
tron mass). Furthermore, at the next-to-leading order
mα5, the leading QED contribution comes only from the
anomalous magnetic moment of the electron. Owing to
these and other theoretical simplifications, the 2p fs in-
terval in Li and Be+ is presently calculated up to order
mα6 [30, 31], while for other energy intervals of three-
electron systems the mα6 effects remain uncalculated so
far.

In the present investigation we will combine the 1/Z-
expansion method and the NRQED approach and obtain
the most accurate theoretical predictions for the 2p3/2 –
2p1/2 fs interval through the lithium isoelectronic atomic
sequence with Z ≥ 5. To this end, we will match the
Zα expansion of numerical results obtained by the 1/Z-
expansion method and the 1/Z expansion of the NRQED
results. The main improvement will be achieved in the
region of medium nuclear charges, Z ≈ 8 – 20, in which
the both above-mentioned methods do not work well.

The relativistic units (h̄ = c = m = 1) will be used
throughout this paper, unless explicitly specified other-
wise.

I. 1/Z-EXPANSION QED

In the present work, theoretical contributions to the
energy of a Li-like atom are separated into three parts,
namely, the electron-structure part Estruc, the radiative
QED correction Erad, and the nuclear recoil correction
Erec,

E = Estruc + Erad + Erec . (1)

We note that we distinguish between the QED effects
of the self-energy and vacuum-polarization type (termed
as the radiative QED effects, Erad) and the QED ef-
fects originating from the frequency-dependence of the
electron-electron interaction (termed as the electron-
structure QED effects and included into Estruc).

The 2p fs splitting of Li-like atoms is obtained as
a difference of energies of the 2p states with different
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values of the total angular momentum, (1s)22p3/2 and

(1s)22p1/2. In the following, we will denote by Ei(v)
corrections to the ionization energy of the valence elec-
tron state v and by Ei(fs) corrections to the fs split-
ting, Ei(fs) = Ei(2p3/2) − Ei(2p1/2). We note that the
energy contributions involving interactions only between
the core electrons do not contribute neither to the ioniza-
tion energy or the fs interval, so they are not considered
in this work.

A. Electronic structure

The electronic-structure part of the energy is repre-
sented by an expansion in the number of virtual photons
exchanged between the electrons,

Estruc(v) = ED + E1phot + E2phot + E3phot + E≥4phot ,
(2)

where ED is the Dirac one-electron energy; E1phot,
E2phot, and E3phot are corrections due to the exchange
of one, two, and three virtual photons, respectively, and
E≥4phot corresponds to the exchange by four and more
photons.

The Dirac ionization energy of the valence state v, for
the point nuclear model, is given by the well-known for-
mula

ED(v) =

[
1 +

(
Zα

nv − |κv|+
√
κ2v − (Zα)2

)2
]−1/2

− 1 ,

(3)

where nv and κv are the principal and the relativistic an-
gular quantum numbers of the state v, respectively. The
point-nucleus Dirac energy receives a correction from the
finite nuclear size (fns), which is very small for low-Z ions
but becomes increasingly important as Z increases. The
fns correction can be easily calculated numerically, by
solving the Dirac equation with a suitable nuclear bind-
ing potential.

The electron-structure corrections to the Dirac energy
arise through the electron-electron interaction. The rel-
ativistic operator of the electron-electron interaction de-
pends on the energy of the exchanged virtual photon ω
and is given, in the Feynman gauge, by

IFeyn(ω) = α
(
1−α1 ·α2

) ei|ω|x12

x12
, (4)

where α1 and α2 are vectors of Dirac matrices acting on
the coordinate x1 and x2, respectively, and x12 = |x12| =
|x1 − x2|. The electron-electron interaction operator in

the Coulomb gauge is

ICoul(ω) =α

[
1

x12
−α1 ·α2

ei|ω|x12

x12

+

(
α1 ·∇1

)(
α2 ·∇2

)
ω2

ei|ω|x12 − 1

x12

]
. (5)

Despite the dependence of the electron-electron inter-
action operator I on the choice of the gauge, all terms of
the expansion (2) are gauge invariant, when calculated
rigorously within QED. In the present work, we perform
QED calculations of the corrections due to exchange by
one and two virtual photons, E1phot and E2phot. The cor-
rections induced by an exchange of three or more photons
are calculated within the Breit approximation, which is
equivalent to choosing the Coulomb gauge in the photon
propagator and setting ω → 0.

In the following, we will extensively use the follow-
ing short-hand notations for the matrix elements of the
electron-electron interaction operator,

Iabcd(∆) ≡ 〈ab|I(∆)|cd〉 , (6)

Iabcd ≡ 〈ab|ICoul(0)|cd〉 . (7)

The leading electron-structure correction comes from
the exchange of one virtual photon between the electrons.
The correction due to one-photon exchange between a
valence electron v and a closed shell of electron states c
is given by

E1phot(v) =
∑
µc

∑
P

(−1)P IPvPcvc(∆Pcc)

≡
∑
µc

[
Ivcvc(0)− Icvvc(∆vc)

]
, (8)

where P is the permutation operator interchanging the
one-electron states, (PvPc) = (vc) or (cv), (−1)P is the
sign of the permutation, ∆ab = εa − εb is the difference
of one-electron energies, and the summation over µc runs
over the angular momentum projections of the core elec-
trons. The one-photon exchange correction is relatively
simple and can be calculated to very high numerical ac-
curacy.

The effects caused by the exchange of two photons
are much more complicated than the one-photon con-
tribution. First rigorous QED calculations of the two-
photon exchange correction started in 1990th and were
performed for He-like ions [32–35]. For Li-like ions, anal-
ogous calculations were accomplished in Refs. [15, 18–
20, 22]. In the present work, we extend the previous
calculations described in Refs. [18–20] to a greater nu-
merical accuracy and a larger interval of nuclear charges.

The correction induced by the two-photon exchange between a valence electron v and a closed shell of electron
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states c is given by [19]

E2phot(v) =
∑
µc

∑
P

(−1)P
∑
n1n2

′ i

2π

∫ ∞
−∞

dω

[
IPcPvn1n2(ω) In1n2cv(ω −∆Pcc)

(εPc − ω − uεn1
)(εPv + ω − uεn2

)
+
IPcn2n1v(ω) In1Pvcn2(ω −∆Pcc)

(εPc − ω − uεn1
)(εv − ω − uεn2

)

]

+
∑
PQ

(−1)P+Q
∑
n

′ IP2P3nQ3(∆P3Q3) IP1nQ1Q2(∆Q1P1)

εQ1 + εQ2 − εP1 − εn
+ Ered(v) , (9)

where P and Q are the permutation operators, u ≡ 1 − i0, and the prime on the sum symbol means that some
terms are excluded from the summation (the excluded terms are ascribed to the reducible part Ered and evaluated
separately, see Refs. [19, 20] for details). In Eq. (9), the first part on the right-hand side is the irreducible two-electron
contribution, the second part is the irreducible three-electron contribution (with ”1”, ”2”, and ”3” numerating the
three electrons, in arbitrary order), and the third part ∆Ered is the reducible contribution. The explicit expression
for ∆Ered can be found in Refs. [19, 20].

The two-photon exchange correction can be greatly simplified in the MBPT approximation, which assumes that (i)
the electron-electron interaction is taken in the Breit approximation, I(ω) → ICoul(0) and (ii) the summations are
performed over the positive-energy part of the Dirac spectrum. Within this approximation, the integration over ω is
performed by the Cauchy theorem and the crossed-photon and reducible contributions vanish, yielding the result

EMBPT
2phot (v) =

∑
µc

∑
P

(−1)P
∑
n1n2

′(+) IPcPvn1n2
In1n2cv

εc + εv − εn1 − εn2

+
∑
PQ

(−1)P+Q
∑
n

′(+) IP2P3nQ3 IP1nQ1Q2

εQ1 + εQ2 − εP1 − εn
, (10)

where the prime on the summation symbol means that terms with vanishing denominator are omitted and “(+)”
means that the summation is extended over the positive-energy part of the Dirac spectrum.

The three-photon exchange correction cannot be presently calculated rigorously within QED. In the present work
we evaluate it within the MBPT approximation, where it is represented as [21]

∆EMBPT
3ph (v) =

∑
µc

∑
P

(−1)P
∑
n1...n4

(+)
Ξ1

IPvPcn1n2 In1n2n3n4 In3n4vc

(εc + εv − εn1
− εn2

)(εc + εv − εn3
− εn4

)

+
∑
PQ

(−1)P+Q
∑

n1n2n3

(+)

Ξ1

[
2 IP2P3n1Q3 IP1n1n2n3

In2n3Q1Q2

(εQ1 + εQ2 − εP1 − εn1)(εQ1 + εQ2 − εn2 − εn3)

+
IP1P2n1n2 In2P3n3Q3 In1n3Q1Q2

(εP1 + εP2 − εn1
− εn2

)(εQ1 + εQ2 − εn1
− εn3

)
+

IP2P3n1n2 IP1n1n3Q2 In3n2Q1Q3

(εP2 + εP3 − εn1
− εn2

)(εQ1 + εQ3 − εn2
− εn3

)

]
,

(11)

where the operator Ξ1 acts on energy denominators ∆1,
∆2 as following

Ξ1
X

∆1 ∆2
=



X

∆1 ∆2
, if ∆1 6= 0 ,∆2 6= 0 ,

− X

2 ∆2
1

, if ∆1 6= 0 ,∆2 = 0 ,

− X

2 ∆2
2

, if ∆1 = 0 ,∆2 6= 0 ,

0 , if ∆1 = 0 ,∆2 = 0 .

(12)

The correction induced by the exchange of four and
more photons, E≥4phot, is too complicated to be calcu-
lated by perturbation theory. In the present work we
extract this correction from the NRQED results, which
account for all orders in 1/Z but only the leading order in
Zα; the corresponding calculation is described in Sec. II.

B. Radiative QED

The radiative QED contribution to the fs splitting is
represented as an expansion in the number of virtual pho-
tons exchanged between the electrons (with the expan-
sion parameter 1/Z),

Erad = EQEDhydr + EQEDscr1 + EQEDscr2 + EQEDscr3+ ,
(13)

where EQEDhydr is the hydrogenic QED correction,
EQEDscr1 is the screening QED correction with one
electron-electron interaction, EQEDscr2 is the screening
QED correction with two electron-electron interactions,
and EQEDscr3+ contains three and more electron-electron
interactions.

The one-electron QED contribution EQEDhydr is
presently well established, see, e.g., a recent review [36];
it will be taken from the literature in this work. The
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TABLE I. Comparison of different approximate methods with
the rigorous QED calculations [16, 17, 37] of the first-order
1/Z1 QED screening correction, in units α2(Zα)3.

Z amm MQED amm+MQED Full QED

12 −0.0658 −0.0362 −0.0618 −0.0616 (14)
16 −0.0664 −0.0341 −0.0601 −0.0590 (9)
18 −0.0667 −0.0330 −0.0592 −0.0579 (4)
20 −0.0671 −0.0319 −0.0582 −0.0566 (3)
30 −0.0699 −0.0253 −0.0529 −0.0501 (3)
32 −0.0706 −0.0238 −0.0517 −0.0486 (4)
40 −0.0741 −0.0173 −0.0465 −0.0422 (2)
50 −0.0803 −0.0075 −0.0387 −0.0325 (2)
54 −0.0835 −0.0029 −0.0350 −0.0281 (2)
60 −0.0893 0.0049 −0.0285 −0.0202 (2)
66 −0.0967 0.0142 −0.0209 −0.0113 (2)
70 −0.1028 0.0213 −0.0149 −0.0041 (1)
74 −0.1101 0.0294 −0.0080 0.0037 (2)
80 −0.1241 0.0439 0.0043 0.0182 (1)
83 −0.1329 0.0523 0.0115 0.0266 (1)
90 −0.1601 0.0761 0.0319 0.0501 (1)
92 −0.1702 0.0842 0.0389 0.0581 (1)
100 −0.2277 0.1240 0.0728 0.0974 (1)

first-order 1/Z1 screening QED correction EQEDscr1 was
calculated for Li-like ions in Refs. [14–17, 22, 37]; numer-
ical results for this correction will also be taken from the
literature.

We now concentrate on the second-order 1/Z2 screen-
ing QED contribution EQEDscr2. At present, it is not pos-
sible to calculate this correction rigorously to all orders
in Zα. In this work, we will calculate it by an approx-
imate relativistic method which is exact to the leading
order in Zα and accounts for the dominant part of the
higher-order Zα terms.

It is well-known [38] that, to the leading order in Zα,
the radiative QED effects in the fs splitting are described
by the electron anomalous magnetic moment (amm). In
the absence of external fields, the electron amm induces
the following two additions to the Dirac Hamiltonian of
a few-electron atom [38, 39],

Hamm,1 = κ
Zα

4
(−i)

∑
a

βa
αa · ra
r3a

, (14)

Hamm,2 = κ
α

4

∑
a<b

βa

(
i
αa · rab
r3ab

−Σa ·
αb × rab
r3ab

)
,

(15)

where a and b numerate the electrons in the atom, κ =
ge−2 = α/π+O(α2), ge is the g-factor of the free electron,
βa and αa are the Dirac matrices acting on ath electron,
and

Σ =

(
σ 0
0 σ

)
, (16)

with σ being a vector of Pauli matrices.
The effective amm Hamiltonian Hamm = Hamm,1 +

Hamm,2 yields a good description of the radiative QED ef-

fects for low-Z ions, but the accuracy deteriorates quickly
when Z increases. We will correct this with help of
the model QED (MQED) operator hMQED introduced in
Ref. [40]. In order to avoid double counting, we subtract
from hMQED the part already accounted for by the amm
Hamiltonian. Specifically, we make the replacement

1

2
〈ψj |Σ(εj) + Σ(εl)|ψl〉 →

1

2
〈ψj |Σ(εj) + Σ(εl)|ψl〉 − 〈ψj |Hamm,1|ψl〉 (17)

in the definition of the MQED operator (where Σ(ε) is the
self-energy operator), see Eq. (17) of Ref. [40]. We will
denote the amm-subtracted MQED operator by h′MQED.

In this work we will calculate the second-order QED
screening correction EQEDscr2 by using the standard
Rayleigh-Schrödinger perturbation theory to the second
order in the electron-electron interaction and to first or-
der in the effective Hamiltonian Hamm+MQED,

Hamm+MQED = Hamm,1 +Hamm,2 + h′MQED ≡ U +W .

(18)

The operators U andW introduced in the right-hand-side
of the above equation incorporate the one-electron part
(Hamm,1 + h′MQED) and the two-electron part (Hamm,2)
of the effective Hamiltonian, respectively.

Before calculating the second-order screening QED ef-
fect, we need to check the accuracy of the approximate
method we devised. We do this by applying this approx-
imation to the first-order screening QED correction and
comparing the obtained results with those delivered by
the rigorous QED calculations.

The 1/Z1 correction induced by the one-electron oper-
ator U is obtained as a first-order (in U) perturbation of
the one-photon exchange correction (8), which is (after
dropping the frequency-dependent terms)

E1phot,U = 2
∑
µc

∑
P

(−1)P (IPvPcδvc + IPvPcvδc) , (19)

where

|δa〉 =
∑
n

′ |n〉Una
εa − εn

, (20)

and Uab ≡ 〈a|U |b〉. The 1/Z1 correction induced by the
two-electron operator W is just

E1phot,W =
∑
µc

∑
P

(−1)PWPvPcvc , (21)

where Wabcd ≡ 〈ab|W |cd〉.
Table I presents results of our test calculations of the

first-order 1/Z1 QED screening correction performed by
three approximate methods and compares them with re-
sults obtained by the full QED treatment. The column
“amm” lists results obtained with the amm operator
Hamm, the column “MQED” displays results obtained
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with the standard MQED operator hMQED, whereas the
column “amm+MQED” shows results obtained with the
combined operator (18).

We observe that the approach based on the amm
Hamiltonian works well only in the low-Z region but fails
for high values of Z, not reproducing even the overall sign
of the effect. The standard MQED operator yields the

order of magnitude and the sign of the exact QED screen-
ing correction, but the quantitative agreement is not very
good. In contrast, the combined “amm+MQED” ap-
proach demonstrates a significantly improved agreement
with the rigorous QED treatment as compared to the
both other methods.

We now turn to the second-order 1/Z2 screening QED effect. The 1/Z2 correction induced by the one-electron
operator U can be derived as a first-order (in U) perturbation of the two-photon exchange correction in the MBPT
approximation, given by Eq. (10). It consists of 3 parts that are induced by perturbations of the wave functions
(“wf”), binding energies (“en”), and propagators (“ver”), respectively,

E2phot,U = E2phot,wf + E2phot,en + E2phot,ver . (22)

The corresponding parts are given by

E2phot,wf = 2
∑
µc

∑
P

(−1)P
∑
n1n2

′(+) IPvPcn1n2

(
In1n2δvc + In1n2vδc

)
εc + εv − εn1 − εn2

+ 2
∑
PQ

(−1)P+Q
∑
n

′(+) IP2P3nQ3

(
IδP1nQ1Q2 + IP1nδQ1Q2 + IP1nQ1δQ2

)
εQ1 + εQ2 − εP1 − εn

, (23)

E2phot,en = −(Uvv + Ucc)
∑
µc

∑
P

(−1)P
∑
n1n2

′(+) IPvPcn1n2 In1n2vc

(εc + εv − εn1
− εn2

)2

−
∑
PQ

(−1)P+Q (UQ1Q1 + UQ2Q2 − UP1P1)
∑
n

′(+) IP2P3nQ3 IP1nQ1Q2

(εQ1 + εQ2 − εP1 − εn)2
, (24)

E2phot,ver =
∑
µc

∑
P

(−1)P
∑

n1n2n3

(+)
Ξ2

IPvPcn1n2

εc + εv − εn1
− εn2

(
Un1n3 In3n2vc

εc + εv − εn3
− εn2

+
Un2n3 In1n3vc

εc + εv − εn1
− εn3

)
+
∑
PQ

(−1)P+Q
∑
n1n2

(+)
Ξ2

IP2P3n1Q3 Un1n2 IP1n2Q1Q2

(εQ1 + εQ2 − εP1 − εn1
)(εQ1 + εQ2 − εP1 − εn2

)
, (25)

where the operator Ξ2 acts on energy denominators ∆1, ∆2 as following:

Ξ2
X

∆1 ∆2
=



X

∆1 ∆2
, if ∆1 6= 0 ,∆2 6= 0 ,

− X

∆2
1

, if ∆1 6= 0 ,∆2 = 0 ,

− X

∆2
2

, if ∆1 = 0 ,∆2 6= 0 ,

0 , if ∆1 = 0 ,∆2 = 0 .

(26)

We note that similar formulas appeared in a slightly different context in Ref. [21] (cf. Eqs. (32)-(35) of that work).
The 1/Z2 correction induced by the two-electron operator W is given by

E2phot,W =
∑
µc

∑
P

(−1)P
∑
n1n2

′(+) IPvPcn1n2 Wn1n2vc +WPvPcn1n2 In1n2vc

εc + εv − εn1
− εn2

+
∑
PQ

(−1)P+Q
∑
n

′(+) IP2P3nQ3WP1nQ1Q2 +WP2P3nQ3 IP1nQ1Q2

εQ1 + εQ2 − εP1 − εn
. (27)

C. Nuclear recoil

The nuclear recoil contribution is represented in this
work as a sum of two parts,

Erec = E oneel
rec + E fewel

rec , (28)

where the first part is the one-electron (hydrogenic) con-
tribution and the second part is the few-body contribu-
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tion. The one-electron contribution is presently well es-
tablished, see, e.g., a recent review [36], and is taken from
the literature. The few-body recoil contribution will be
evaluated to the leading order in Zα within the NRQED
approach in next Section.

II. NON-RELATIVISTIC QED

In the nonrelativistic quantum electrodynamics
(NRQED) framework, the fs splitting of light atoms
is represented by an expansion in powers of the fine-
structure constant α and the electron-to-nucleus mass
ratio m/M [29, 30],

ENRQED =α4
[
E(4,0) +

m

M
E(4,1) + α E(5,0) + . . .

]
.

(29)

Here, the first superscript of the expansion terms E(i,j)
indicates the order in α, whereas the second superscript
shows the order in m/M . Each term of the NRQED
expansion is represented as an expectation value of
some effective Hamiltonian on the nonrelativistic atomic
wave function and thus accounts for the nonrelativistic
electron-electron interaction (i.e., the parameter 1/Z) to
all orders.

The leading term of the NRQED expansion of the fs
interval is given by the difference of the expectation val-
ues of the spin-dependent Breit Hamiltonian, E(4,0) =
〈H(4,0)〉J=3/2−〈H(4,0)〉J=1/2. The spin-dependent part of
the Breit Hamiltonian is (in atomic units)

H(4,0) =
∑
a

Z

2 r3a
~sa · ~ra × ~pa

+
∑
a 6=b

1

2 r3ab
~sa · ~rab ×

(
2~pb − ~pa

)
, (30)

where a and b numerate electrons in the atom, ~rab = ~ra−
~rb, ~pa is the electron momentum, and ~sa is the electron-
spin operator.

The spin-dependent mα4 recoil correction for a state
with the total angular momentum J is given by (in
atomic units)

E(4,1)J =
〈
H(4,0) 1

(E −H)′
H(2,1)

〉
J

+
〈∑

ab

Z

r3a
~sa · ~ra × ~pb

〉
J
, (31)

where H(2,1) is the recoil operator of order mα2,

H(2,1) =
1

2
~P 2 =

1

2

(
−
∑
a

~pa

)2
, (32)

and ~P is the nuclear momentum.

The leading QED contribution to the fs interval is in-
duced by the Hamiltonian H(5,0), E(5,0) = 〈H(5,0)〉J=3/2−
〈H(5,0)〉J=1/2, where (in atomic units)

H(5,0) =
∑
a

Z

2π r3a
~sa · ~ra × ~pa

+
∑
a6=b

1

2π r3ab
~sa · ~rab ×

(
~pb − ~pa

)
. (33)

In the present work we calculate the corrections E(4,0),
E(5,0), and E(4,1) for the series of nuclear charges Z =
3–13. The computational scheme and numerical details
are described in Ref. [29, 30]. Our numerical results are
presented in Table II.

In order to combine the NRQED results with those
obtained within the 1/Z-exansion method in Sec. I, we
represent the numerical results listed in Table II in the
form of the 1/Z expansion,

E(4,0) = Z4
∞∑
i=0

Ci,4
Zi

, (34)

E(5,0) = Z4
∞∑
i=0

Di,5

Zi
, (35)

E(4,1) = Z4
∞∑
i=0

Ri,4
Zi

. (36)

Here and in what follows, we adopt the following nota-
tions for the expansion coefficients Ci,j , Di,j , Ri,j : the
first index i corresponds to the order in 1/Z, whereas the
second index j indicates the order in α.

The first coefficients of the expansions are known ana-
lytically,

C0,4 =
1

32
, D0,5 =

1

32π
, (37)

R0,4 = − 1

32
+

28

39
(
3 ln

3

2
− 2
)
, (38)

where C0,4 comes from the Zα expansion of the Dirac en-
ergy (3), D0,5 comes from the one-loop self-energy (see,
e.g., Eq. (38) of Ref. [41]), whereas the R0,4 coefficient
was derived in Ref. [42]. The coefficients C1,4 and C2,4

will be numerically evaluated in the next Section, by cal-
culating the one-photon and two-photon exchange correc-
tions and fitting their Z → 0 and α→ 0 limit. The other
coefficients in Eqs. (34)-(36) are approximately obtained
by fitting the numerical results from Table II.

III. CALCULATIONAL DETAILS AND
RESULTS

A. Electronic structure

Table III presents results of our numerical calculations
of individual electron-structure contributions. The col-
umn labeled “Dirac” shows the Dirac one-electron ener-
gies ED. The uncertainties of ED, appearing for high-Z
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TABLE II. Numerical results for the α4, α5, and α4(m/M) corrections to the fine structure of the 2P state of Li-like ions.

E(i,j) are defined by Eq. (29).

Z E(4,0)/Z4 E(5,0)/Z4 E(4,1)/Z4

3 0.000 353 014 9 (1) 0.000 169 064 948 (1) −0.001 074 97 (2)
4 0.002 190 425 2 (5) 0.000 865 489 89 (10) −0.003 891 58 (4)
5 0.004 653 760 1 (3) 0.001 713 290 95 (7) −0.007 034 07 (2)
6 0.007 054 738 0 (2) 0.002 505 289 60 (3) −0.010 032 02 (2)
7 0.009 196 952 5 (7) 0.003 195 699 19 (15) −0.012 717 88 (4)
8 0.011 057 748 2 (1) 0.003 786 733 68 (2) −0.015 068 04 (1)
9 0.012 664 475 3 (1) 0.004 292 004 93 (4) −0.017 111 05 (1)
10 0.014 054 569 0 (1) 0.004 725 993 9 (2) −0.018 888 65 (2)
11 0.015 263 384 0 (1) 0.005 101 316 3 (3) −0.020 441 55 (1)
12 0.016 321 112 5 (1) 0.005 428 312 6 (2) −0.021 805 51 (1)
13 0.017 252 626 (3) 0.005 715 289 (8) −0.023 010 5 (5)

ions, are due to the finite nuclear size effect. The Zα
expansion of the Dirac fs splitting follows from Eq. (3),

ED = (Zα)4
[
C0,4 + (Zα)2 C0,6 + (Zα)4 C0,8 + . . .

]
,

(39)

where C0,4 = 1/32, C0,6 = 5/256, etc.
The next column labeled “1-ph” contains results for

the one-photon exchange correction. Its calculation is
relatively straightforward and can be preformed up to
arbitrary numerical accuracy. The Zα expansion of the
one-photon exchange correction for the fs splitting is of
the form

E1phot = α(Zα)3
[
C1,4 + (Zα)2 C1,6 + (Zα)4 C1,8 + . . .

]
.

(40)

While our numerical calculation accounts for all orders
in Zα, we also determine values of the first two expan-
sion coefficients by fitting our all-order results, obtaining
C1,4 = −0.218 109 12 and C1,6 = −0.194 777.

The two-photon exchange correction is calculated in
the present work rigorously within QED, by the method
described in the previous investigations [19, 20]. The
Dirac spectrum is represented by using the dual kinetic
balance (DKB) method [43] with N = 85 B-spline basis
functions. The partial-wave expansion was extended up
to |κmax| = 20, with the remaining tail of the expansion
estimated by a least-square fitting in 1/|κ|. The direct
numerical calculations were performed for Z > 13.

In order to obtain results for the two-photon exchange
correction in the low-Z region, we fit our numerical values
to the form of the Zα expansion,

E2phot =α2 (Zα)2
[
C2,4 + (Zα)2 C2,6 + . . .

]
. (41)

The leading expansion coefficient C2,4 is evaluated sepa-
rately, by two different methods. First, we obtain it by
fitting the 1/Z expansion of the mα4 NRQED results ob-
tained in Sec. II. Second, we get it by fitting the Z → 0
and α → 0 limit of the two-photon exchange correction
in the MBPT approximation (10). Both methods yield

consisting results, but the second is more accurate. We
therefore fix the coefficient as C2,4 = 0.497 88. With the
leading coefficient C2,4 fixed in this way, the higher-order
coefficients are obtained by fitting our numerical all-order
results. In particular, we obtain the next-order coefficient
as C2,6 = 0.75.

Our numerical results for the two-photon exchange cor-
rection are presented in Table III. For convenience, we
separate them into two parts. The first, dominant part
is delivered by the MBPT approximation, see Eq. (10).
The second, much smaller part is the deviation of the
full QED result from the MBPT value. For Z > 13, the
listed QED values are obtained by a direct calculation.
For Z ≤ 13, the listed values are obtained by fitting.

The three-photon exchange correction is evaluated
within the MBPT approximation, according to Eq. (11).
The scheme of the calculation mainly follows that of
Ref. [21]. However, Ref. [21] included the Breit inter-
action up to first order only, whereas here we include in
addition the exchange by two and three Breit photons.
The reason is that the inclusion of the second-order Breit
exchange significantly improves the agreement between
MBPT and QED for the two-photon exchange correction
to the fs splitting.

The summations over the Dirac spectrum in the three-
photon exchange correction was performed by using the
DKB method [43] with B-spline basis functions. The
number of B-splines in the basis was N = 50 for the
three-electron part and N = 40 for the two-electron part.
The extrapolation of the double partial wave expansion
was performed as described in Ref. [21], with the number
of partial waves l1 = 8 for the first summation and l2 =
12 for the second summation.

Direct numerical calculations of the three-photon ex-
change correction were performed for Z ≥ 20. For lower
values of Z, the accuracy of the numerical evaluation
gradually deteriorates, so we obtain results for this cor-
rection by fitting. Specifically, we fit our numerical re-
sults to the form of the Zα-expansion

E3phot =α3 (Zα)
[
C3,4 + (Zα)2 C3,6 + . . .

]
, (42)
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with the leading coefficient C3,4 = −0.3681 obtained by
fitting the 1/Z expansion of the NRQED results in Sec. II.
We obtain the next-order coefficient (in the MBPT ap-
proximation) as C3,6 = −1.4.

Numerical results for the three-photon exchange cor-
rection are presented in Table III, in the column labeled
“3-ph”. The uncertainty of this correction comes mainly
from unknown QED effects beyond the MBPT approx-
imation. We estimate it by taking the relative value of
the QED-MBPT difference for the two-photon exchange
correction and multiplying it by the extension factor of
4.

The correction induced by the exchange of four and
more photons E≥4phot is obtained from the NRQED cal-
culations described in Sec. II. Direct NRQED calcula-
tions were performed for Z ≤ 13. For these nuclear
charges, we obtain E≥4phot by subtracting the first terms
of the 1/Z expansion from the mα4 NRQED contribution
listed in Table II,

E≥4phot = α4E(4,0) − (Zα)4
[
C0,4 +

C1,4

Z
+
C2,4

Z2
+
C3,4

Z3

]
.

(43)

We note that numerical uncertainties of the coefficients
C2,4 and C3,4 do not contribute to the uncertainty of the
total electron-structure contribution for Z ≤ 13, since
the same coefficients used in Eqs. (41), (42) and (43)
cancel each other when the sum of these equations is
evaluated. For Z > 13, we obtain E≥4phot by fitting

the 1/Z expansion of numerical results for E(4,0) listed in
Table II.

Our results for E≥4phot are presented in Table III, in
the column labeled “≥4-ph”. The indicated numerical
uncertainty takes into account uncalculated QED effects
of order mα6 and higher and the uncertainty of the fit
for Z > 13. The uncalculated effects are estimated by
taking the relative value of the deviation of the full QED
results for the two-photon exchange correction from the
mα4 contribution induced by the coefficient C2,4, and
multiplying it by a conservative factor of 2.

Table III summarizes our total numerical values of the
electron-structure contribution to the 2p3/2-2p1/2 fs split-
ting in Li-like ions and compares them with results ob-
tained by other methods. We observe that for Z ≤ 6, our
results essentially coincide with the mα4 NRQED values.
The reason is that the 1/Z expansion, used in the present
work for calculating the higher-order QED effects, breaks
down for low Z, with individual 1/Z-expansion terms
cancelling each other to a great extent. For larger values
of Z, the convergence of the 1/Z expansion improves;
the higher-order QED effects also become increasingly
more important, moving our results further away from
the NRQED values.

For Z ≥ 10, we compare our results with the previous
ab initio QED calculation by Kozhedub et al. [22]. The
agreement between the calculations is excellent, but our
results are more accurate, most notably in the low-Z re-

gion, due to a more complete inclusion of many-photon
exchange effects.

B. Radiative QED

We now turn to the radiative QED part, which is
represented by a sum of several terms, as given by
Eq. (13). The first term on the right-hand-side of
Eq. (13), EQEDhydr, is due to one-electron QED effects.
They were recently reviewed in Ref. [36], so we obtain
EQEDhydr from data tabulated in that work, adding to-
gether the one-loop and two-loop QED effects. The Zα
expansion of this contribution is

EQEDhydr = α(Zα)4
[
D0,5

+ (Zα)2 ln(Zα)Dlog
0,7 + (Zα)2D0,7 + . . .

]
,

(44)

where D0,5 = 1/32π, Dlog
0,7 = 1/16π [41]. The other terms

on the right-hand-side of Eq. (13) are due to the electron-
electron interaction; they are referred to as the screening
QED corrections.

The first-order 1/Z screening QED correction EQEDscr1

was calculated for Li-like ions in a series of investigations
[14–17, 22, 37]. The data reported in these studies are
not fully sufficient for our present needs, because of a
limited number of nuclear charges for which results are
presented. In the present work we use a more complete
tabulation from Ref. [44], originally calculated for He-like
ions. We convert these results from He-like ions to Li-
like ions, using the fact that the following exact relation
exists between the 1/Z screening QED corrections for
Li-like and He-like ions (see Eq. (70) of Ref. [44]),

E(1s)22p1/2 =
1

2
E(1s 2p1/2)0 +

3

2
E(1s 2p1/2)1 , (45)

E(1s)22p3/2 =
3

4
E(1s 2p3/2)1 +

5

4
E(1s 2p3/2)2 . (46)

Specifically, for nuclear charges Z ≥ 20, we interpolate
the numerical data presented in Ref. [44]. Values for Z <
20 were obtained by fitting numerical data for Z ≥ 20 to
the Zα-expansion form

EQEDscr1 = α2(Zα)3
[
D1,5

+ (Zα)2 ln(Zα)Dlog
1,7 + (Zα)2D1,7 + . . .

]
,

(47)

using the accurate value for the leading coefficient D1,5 =
−0.065 060, obtained in Sec. II from fitting the NRQED
results for the E(5,0) correction. Numerical results for
EQEDscr1 are listed in the column “1/Z” of Table IV.

The column “1/Z2” of Table IV presents numerical
results for the second-order 1/Z2 screening QED correc-
tion, EQEDscr2, obtained by the amm+MQED approach
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described in Sec. I B. The Dirac spectrum is represented
by using the DKB method [43] with N = 85 B-spline
basis functions. The angular integration in radial matrix
elements of the amm operators was carried out according
to formulas presented in Appendix A. The Zα expansion
of EQEDscr2 is

EQEDscr2 = α3(Zα)2D2,5 + . . . , (48)

where D2,5 = 0.1377 is obtained in Sec. II from fitting

the variational NRQED results for the E(5,0) correction.
The uncertainty ascribed to this correction in Table IV
estimates the error of the approximation. It was evalu-
ated by taking the difference of the amm+MQED and
full-QED results for the 1/Z screening correction, scal-
ing it by the ratio D2,5/(Z D1,5), and multiplying it by
a conservative factor of 2.

The higher-order screening QED correction EQEDscr3+

was obtained from the NRQED calculations described in
Sec. II. For Z ≤ 13, we obtain E≥4phot by subtracting the
first terms of the 1/Z expansion from the mα5 NRQED
contribution listed in Table II,

EQEDscr3+ = α5E(5,0) − α(Zα)4
[
D0,5 +

D1,5

Z
+
D2,5

Z2

]
.

(49)

For Z > 13, we evaluate EQEDscr3+ by fitting the 1/Z ex-

pansion of numerical results for E(5,0) listed in Table II.
Our results for EQEDscr3+ are listed in Table III, in the
column labeled “1/Z3+”. The indicated numerical uncer-
tainty takes into account uncalculated QED effects. We
estimate these effects by taking the relative value of the
deviation of the full QED results for the 1/Z screening
correction from the mα5 contribution induced by the co-
efficient D1,5, and multiplying it by a conservative factor
of 2.

C. Nuclear recoil

The one-electron nuclear recoil correction Eoneel
rec was

calculated rigorously within QED to all orders in Zα in
Refs. [45, 46]. In this work we take numerical results for
Eoneel

rec from the recent tabulation presented in Ref. [36].
The few-body recoil correction Efewel

rec is obtained from
the NRQED calculations described in Sec. II. Specifi-
cally, we calculate Efewel

rec from E(4,1) as

Efewel
rec = α4 m

M

(
E(4,1) +

Z4

32

)
, (50)

where the second term in braces subtracts the one-
electron contribution already taken into account by
Eoneel

rec . For Z ≤ 13, we use the values of E(4,1) listed
in Table II, whereas for larger Z, we get results by fit-
ting the 1/Z expansion of E(4,1). The uncertainty of the
few-body recoil contribution was estimated by taking the
relative value of the deviation of the one-electron QED
recoil correction from the leading-order mα4 term and
multiplying it by a conservative factor of 2.

D. Total fine structure

Table VI summarizes results of our calculations of
the 2p3/2 – 2p1/2 fine-structure interval in Li-like ions
with nuclear chargers Z = 5 – 92. The column labeled
“〈r2〉1/2” contains values for the root-mean-square nu-
clear charges radii used in the calculation, taken from
Ref. [47]. The next column specifies the isotope for which
the calculation is performed. The nuclear masses were
taken from Ref. [48].

The next three columns display the theoretical results
for the electron-structure contribution, the one-electron
QED effects, and the recoil correction, respectively. The
one-electron QED part was taken from the tabulation
[36]; the other contributions are evaluated as described
in previous Sections.

Results collected in Table VI indicate that for light
ions, the dominant theoretical uncertainty comes from
the electron-structure effects, more specifically, from the
numerical uncertainty of the two-photon QED correction
and the residual three-photon QED effects. In the high-Z
region, comparable uncertainties arise from various con-
tributions, including the one-electron QED effects, QED
screening, and nuclear charge radii.

IV. DISCUSSION

Table V presents a comparison of our theoretical pre-
dictions with previous theoretical and experimental re-
sults. For Z ≤ 10, we compare our results with the-
oretical values by Wang et al. [49]. Their calculation
accounted for the electron-correlation effects within the
Breit-Pauli approximation and added the relativistic and
QED effects as delivered by the hydrogenic approxima-
tion with an effective nuclear charge. Their approach is
reasonably adequate for very low Z. As Z increases, we
observe a steadily growing deviation between their values
and our results.

For Z ≥ 10, we compare our results with the two most
complete ab initio QED calculations, by Kozhedub et
al. [22] and by Sapirstein and Cheng [15]. In these stud-
ies, results were reported for the 2p3/2–2s and 2p1/2–2s
transition energies; we combine them together to get re-
sults for the 2p3/2–2p1/2 interval. Doing this, we assume
the uncertainties of the two transitions to be correlated.
Specifically, we take the largest of the uncertainties re-
ported for the two intervals, rather than adding them
quadratically.

The calculations by Kozhedub et al. and by Sapirstein
and Cheng provided accurate theoretical predictions for
medium- and high-Z ions. For lower-Z ions, however,
the relative accuracy of their results diminished, due to a
large cancelation of various effects between the 2p3/2 and
the 2p1/2 states. We observe very good agreement with
predictions by Kozhedub et al. for all nuclear charges
reported in that work, well within their error bars. The
agreement with the calculation by Sapirstein and Cheng
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is good for high values of Z but moderate in the interval
Z = 20 – 30, which might be due to residual electron-
correlation effects not accounted for in their work. Our
results are significantly more accurate than those of the
both previous studies, partly due to a more complete in-
clusion of many-photon electron-correlation effects and
partly due to usage of the advantages offered by the
2p3/2 – 2p1/2 interval as compared to the 2pj – 2s inter-
vals.

The comparison of our theoretical predictions with the
available experimental results is summarized in Table V
and shows good agreement in most cases. In several oc-
casions (notably, for Z = 15, 39, 82) deviations of about
two experimental uncertainties are observed. The rea-
sons behind them are probably on the experimental side,
since different calculations agree well with each other on
the level of the experimental uncertainties.

Generally, the theoretical predictions for the 2p3/2 –
2p1/2 interval are found to be more accurate than the
existing experimental results. The only exception in the
range of nuclear charges covered in this work is boron
(Z = 5), where the uncertainty of the experimental result
[50] matches the theoretical accuracy. Even more accu-
rate measurements are available for Li and Be+ [10, 11].
Unfortunately, our present approach is not useful for
these lightest atoms, since it is relies on the 1/Z expan-

sion for description of QED effects of order mα6 and
higher, which fails at very low Z.

In summary, we performed ab initio QED calculations
of the 2p fine-structure interval in Li-like ions with nu-
clear charges Z = 5 – 92. In order to improve the theo-
retical accuracy, we combined together two complemen-
tary theoretical methods, namely, the 1/Z-expansion ap-
proach, which accounts for all orders in the parameter Zα
but expands in 1/Z, and the NRQED approach, which
accounts for all orders in 1/Z but expands in Zα. In the
result, we obtain the currently most accurate theoreti-
cal predictions for a wide range of nuclear charges. For
Z ≥ 20, our theoretical predictions have the fractional ac-
curacy of better than 10−5, providing an opportunity for
high-precision tests of the interplay of QED and electron-
correlation effects.
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Appendix A: Radial integrations in matrix elements of amm operators

In this section we present formulas for the matrix elements of the amm operators [given by Eqs. (14) and (15)]
with the Dirac wave functions, after angular integrations. The matrix element of the one-electron amm operator is
evaluated as

〈a|Hamm,1|b〉 = −Zακ
4

δκaκb
δµaµb

∫ ∞
0

r2dr
1

r2
[
ga(r) fb(r) + fa(r) gb(r)

]
, (A1)

where gn(r) and fn(r) are the upper and the lower radial components of the wave function of the electron state n,
defined as in Ref. [66]; κn and µn are the relativistic angular-momentum quantum number and the angular-momentum
projection, correspondingly.

The matrix element of the two-electron amm operator can be written in the form, analogous to that for the matrix
element of the electron-electron interaction operator (cf. Eq. (38) in Ref. [66]),

〈ab|Hamm,2|cd〉 =
ακ

4

∑
L

JL(abcd)Ramm,2
L (abcd) , (A2)

where JL(abcd) is the standard function incorporating the dependence of a two-body operator on the angular-

momentum projections (see Eq. (39) of Ref. [66]) and Ramm,2
L is the radial integral evaluated as

Ramm,2
L (abcd) = (−1)L (2L+ 1)

∫ ∞
0

r21dr1

[√
L+ 1

2L+ 1
CL(κb, κd)

1

rL+2
1

Xac,LL+1(r1)

∫ r1

0

r22dr2 r
L
2 Wbd(r2)

+

√
L

2L+ 1
CL(κb, κd)

1

rL+1
1

Wbd(r1)

∫ r1

0

r22dr2 r
L−1
2 Xac,LL−1(r2)

+

L∑
l=L−1

√
6(l + 1)

{
1 1 1
L l l + 1

}
1

rl+2
1

Yac,Ll+1(r1)

∫ r1

0

r22dr2 r
l
2 Zbd,Ll(r2)
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TABLE III. The electron structure corrections to the 2p3/2–2p1/2 fine structure splitting, in eV.

Z Dirac 1-ph. 2-ph. 3-ph. ≥4-ph. Sum Other
MBPT QED methods

5 0.028 325 −0.039 553 0.018 070 0.000 002 (1) −0.002 681 (1) 0.000 050 0.004 214 (2) 0.004 215a

6 0.058 757 −0.068 384 0.026 043 0.000 004 (2) −0.003 224 (2) 0.000 057 0.013 253 (3) 0.013 249a

7 0.108 901 −0.108 658 0.035 483 0.000 007 (3) −0.003 771 (3) 0.000 062 0.032 023 (5) 0.031 998a

8 0.185 873 −0.162 311 0.046 398 0.000 012 (5) −0.004 323 (5) 0.000 065 (1) 0.065 714 (7) 0.065 63a

9 0.297 902 −0.231 290 0.058 798 0.000 018 (7) −0.004 880 (6) 0.000 067 (1) 0.120 615 (9) 0.120 40a

10 0.454 338 −0.317 558 0.072 695 0.000 027 (9) −0.005 444 (8) 0.000 069 (1) 0.204 128 (12) 0.203 66a

0.204 1 (6)b

15 2.309 735 −1.078 183 0.165 127 0.000 128 (3) −0.008 373 (26) 0.000 074 (3) 1.388 51 (3) 1.388 4 (3)b

20 7.343 045 −2.577 266 0.297 502 0.000 347 (6) −0.011 556 (54) 0.000 076 (5) 5.052 15 (5) 5.052 4 (3)b

26 21.169 98 −5.738 39 0.513 50 0.000 94 (1) −0.015 84 (12) 0.000 08 (1) 15.930 26 (12) 15.930 9 (3)b

28 28.580 10 −7.204 91 0.600 50 0.001 24 (1) −0.017 41 (14) 0.000 08 (1) 21.959 59 (14) 21.960 5 (3)b

30 37.813 57 −8.912 13 0.695 52 0.001 62 (1) −0.019 07 (18) 0.000 08 (1) 29.579 58 (18) 29.579 6 (3)b

36 79.495 27 −15.703 91 1.032 61 0.003 19 (2) −0.024 61 (30) 0.000 08 (2) 64.802 6 (3) 64.803 3 (5)b

40 122.466 49 −21.871 21 1.305 26 0.004 73 (3) −0.028 87 (42) 0.000 08 (2) 101.876 5 (4) 101.878 4 (11)b

47 238.588 48 (1) −36.594 23 1.890 10 0.008 81 (4) −0.037 70 (70) 0.000 08 (3) 203.855 5 (7) 203.856 6 (16)b

50 308.853 99 (1) −44.725 25 2.188 88 0.011 19 (4) −0.042 12 (86) 0.000 08 (4) 266.286 8 (9) 266.288 1 (21)b

54 426.722 24 (3) −57.580 77 2.639 24 0.015 11 (5) −0.048 7 (11) 0.000 08 (4) 371.747 2 (11) 371.748 7 (29)b

60 667.503 4 (1) −81.929 1 3.443 8 0.022 9 (1) −0.060 5 (16) 0.000 1 (1) 588.980 6 (16) 588.983 4 (41)b

70 1302.156 8 (4) −139.881 9 5.224 0 0.042 1 (1) −0.086 5 (28) 0.000 1 (1) 1167.455 (3) 1167.461 (11)b

80 2367.736 6 (16) −228.290 4 7.783 3 0.071 4 (2) −0.124 4 (46) 0.000 1 (1) 2147.177 (5) 2147.188 (14)b

83 2804.106 0 (23) −262.859 7 8.761 3 0.082 3 (2) −0.139 0 (52) 0.000 1 (1) 2549.951 (6) 2549.961 (16)b

90 4103.324 (12) −362.755 8 11.560 8 0.110 8 (2) −0.181 7 (70) 0.000 1 (2) 3752.058 (14) 3752.127 (41)b

92 4561.237 4 (47) −397.245 0 12.523 2 0.119 8 (3) −0.196 6 (75) 0.000 1 (2) 4176.439 (9) 4176.457 (51)b

a NRQED, this work; b Kozhedub et al. [22].

TABLE IV. The screened QED corrections to the 2p3/2–2p1/2 fine structure splitting, in eV.

Z 1/Z1 1/Z2 1/Z3+ Sum NRQED Kozhedub et al. [22]

5 −0.000 084 6 (1) 0.000 035 6 (2) −0.000 004 8 (2) −0.000 053 8 (3) −0.000 054
6 −0.000 145 4 (2) 0.000 050 9 (5) −0.000 005 8 (3) −0.000 100 3 (6) −0.000 102
7 −0.000 229 5 (4) 0.000 068 6 (8) −0.000 006 8 (4) −0.000 168 (1) −0.000 171
8 −0.000 340 3 (7) 0.000 088 7 (13) −0.000 007 8 (5) −0.000 259 (2) −0.000 267
9 −0.000 481 1 (12) 0.000 111 2 (20) −0.000 008 8 (7) −0.000 379 (2) −0.000 392
10 −0.000 655 1 (20) 0.000 136 0 (29) −0.000 009 8 (9) −0.000 529 (4) −0.000 552 −0.000 5 (2)
12 −0.001 114 2 (43) 0.000 191 6 (54) −0.000 011 8 (15) −0.000 935 (7) −0.000 991 −0.000 9 (3)
15 −0.002 120 (11) 0.000 289 (12) −0.000 015 (3) −0.001 85 (2) −0.001 8 (4)
18 −0.003 558 (22) 0.000 399 (22) −0.000 018 (4) −0.003 18 (3) −0.003 2 (5)
20 −0.004 790 (27) 0.000 478 (29) −0.000 020 (5) −0.004 33 (4) −0.004 3 (5)
26 −0.009 83 (15) 0.000 731 (69) −0.000 026 (10) −0.009 1 (2) −0.009 2 (8)
30 −0.014 30 (8) 0.000 90 (11) −0.000 030 (14) −0.013 4 (2) −0.013 6 (11)
32 −0.016 85 (13) 0.000 98 (14) −0.000 032 (16) −0.015 9 (2) −0.016 0 (12)
40 −0.028 56 (14) 0.001 22 (31) −0.000 040 (28) −0.027 4 (4) −0.027 9 (18)
47 −0.039 21 (26) 0.001 25 (55) −0.000 047 (42) −0.038 0 (7) −0.038 7 (24)
50 −0.043 02 (29) 0.001 18 (69) −0.000 050 (50) −0.041 9 (9) −0.042 8 (27)
54 −0.046 78 (38) 0.000 99 (89) −0.000 054 (61) −0.045 9 (10) −0.047 0 (32)
60 −0.046 21 (45) 0.000 5 (13) −0.000 060 (82) −0.045 8 (14) −0.048 0 (42)
66 −0.034 39 (64) −0.000 4 (19) −0.000 07 (11) −0.035 (2) −0.037 (5)
70 −0.014 83 (47) −0.001 2 (24) −0.000 07 (13) −0.016 (2) −0.020 (7)
74 0.015 98 (86) −0.002 1 (29) −0.000 07 (16) 0.014 (3) 0.010 (8)
80 0.098 74 (58) −0.003 3 (40) −0.000 08 (20) 0.095 (4) 0.086 (11)
82 0.138 13 (63) −0.003 5 (44) −0.000 08 (22) 0.135 (4) 0.122 (12)
90 0.386 16 (82) −0.002 0 (66) −0.000 09 (32) 0.384 (7) 0.359 (17)
92 0.478 80 (91) −0.000 3 (73) −0.000 09 (35) 0.478 (7) 0.446 (19)
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TABLE V. Comparison of different theoretical predictions and experimental results for the 2p3/2–2p1/2 fine-structure interval

in Li-like ions, in cm−1 or eV as indicated, 1 eV = 8065.543 937 cm−1.

Z This work Wang 1993 [49] Kozhedub 2010 [22] Sapirstein 2011 [15] Experiment Ref.

in cm−1:
5 34.075 (13) 34.04 34.100 (14) [50]
6 107.166 (23) 107.06 107.3 (3) [51, 52]
7 258.931 (37) 258.7 259 (1) [52]
8 531.323 (55) 530.9 531 (1) [52]
9 975.206 (77) 974.5 976 (2) [52]
10 1 650.39 (10) 1649.2 1653 (3) 1653 (8) 1649 (2) [52]
11 2 625.73 (10) 2631 (5) [52]
12 3 979.15 (13) 3984 (8) 3975 (3) [52]
13 5 797.76 (16) 5796 (5) [52]
14 8 177.95 (21) 8177 (4) [52]
15 11 225.38 (25) 11224 (4) 11219 (8) 11253 (15) [52]
16 15 055.24 (30) 15054 (1) [53]
17 19 792.36 (35) 19770 (15) [52]
18 25 571.24 (42) 25572 (5) 25560 (8) 25572 (10) [52]
20 40 841.36 (55) 40843 (6) 40828 (8) 40850 (10) [52]
21 50 651.62 (70) 50627 (8)
22 62 141.83 (95) 62146 (10) [52]
24 90 914.5 (15) 90912 (12) [54]
25 108 598.5 (16) 108634 (40) [52]
26 128 769.8 (17) 128774 (7) 128750 (8) 128774 (16) [55]
28 177 502.2 (17) 177508 (8) 177474 (8) 177524 (20) [56]
29 206 557.7 (17) 206549 (33) [57]

Z This work Kozhedub 2010 [22] Sapirstein 2011 [15] Experiment Ref.

in eV:
30 29.643 27 (23) 29.643 6 (12) 29.641 (1) 29.646 4 (47) [58]
32 39.142 30 (30) 39.14 39.141 7 (53) [57]
34 50.799 46 (38) 50.790 (23) [59]
36 64.936 53 (43) 64.936 7 (17) 64.93 64.955 (37) [60, 61]
39 91.565 77 (53) 91.595 (15) [62]
40 102.080 50 (58) 102.081 7 (23) 102.08
42 125.879 40 (70) 125.88 125.841 (73) [59]
47 204.238 9 (11) 204.238 8 (36) 204.26 204.229 (31) [63]
50 266.772 5 (14) 266.772 1 (46) 266.77
52 316.135 1 (16) 316.134 (5) 316.11
54 372.395 0 (19) 372.39 372.354 (53) [4, 64]
60 589.928 5 (30) 589.929 (6) 589.93 (1)
64 784.028 3 (41) 784.01 (1)
66 898.712 1 (48) 898.73 (1)
70 1 169.031 3 (49) 1 169.03 (2)
74 1 502.715 0 (65) 1 502.66 (3)
79 2 027.756 9 (93) 2 027.78 (3)
80 2 149.404 (10) 2 149.41 (4)
82 2 411.403 (11) 2 411.41 (4) 2 411.61 (12) [5, 9]
83 2 552.326 (11) 2 552.32 (5)
90 3 754.525 (22) 3 754.51 (7)
92 4 178.830 (22) 4 178.81 (8) 4 178.73 (21) [6, 65]

+

L+1∑
l=L

√
6l

{
1 1 1
L l l − 1

}
1

rl+1
1

Zbd,Ll(r1)

∫ r1

0

r22dr2 r
l−1
2 Yac,Ll−1(r2) + . . . (ac)↔ (bd) . . .

]
, (A3)

where {. . .} denotes the 6j-symbol and

Xac,ll′(r) = ga(r) fc(r)Sll′(−κc, κa) + fa(r) gc(r)Sll′(κc,−κa) , (A4)
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Yac,ll′(r) = ga(r) gc(r)Sll′(κc, κa)− fa(r) fc(r)Sll′(−κc,−κa) , (A5)

Zac,ll′(r) = ga(r) fc(r)Sll′(−κc, κa)− fa(r) gc(r)Sll′(κc,−κa) , (A6)

Wac(r) = ga(r) gc(r) + fa(r) fc(r) . (A7)

Furthermore, the standard angular coefficients Sll′ and Cl are defined by Eqs. (A7)-(A10) of Ref. [66].
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S. Schippers, S. Böhm, C. Brandau, F. Sprenger, A. S.
Terekhov, A. Müller, and A. Wolf, Phys. Rev. Lett. 100,
033001 (2008).

[9] X. Zhang, N. Nakamura, C. Chen, M. Andersson, Y. Liu,
and S. Ohtani, Phys. Rev. A 78, 032504 (2008).

[10] R. C. Brown, S. Wu, J. V. Porto, C. J. Sansonetti, C. E.
Simien, S. M. Brewer, J. N. Tan, and J. D. Gillaspy,
Phys. Rev. A 87, 032504 (2013).
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TABLE VI: Individual effects and total theoretical predictions for the
2p3/2–2p1/2 fine-structure interval in Li-like ions. Units are eV, 1 eV

= 8065.543 937 cm−1. In the case when an entry is given with two
uncertainties, the first one is the estimation of the theoretical error and
the second is due to the nuclear charge radius. In the case when one
uncertainty is given, it is the estimation of the theoretical error and the
uncertainty due to the nuclear radius is negligible.

Z Isotope 〈r2〉1/2 [fm] Structure QED,1-el QED,scr Recoil Total

5 11B 2.406 (29) 0.004 213 7 (16) 0.000 065 2 −0.000 053 8 (3) −0.000 0003 0.004 224 8 (17)
6 12C 2.4702 (22) 0.013 253 2 (28) 0.000 135 0 −0.000 100 3 (6) −0.000 0009 0.013 286 9 (29)
7 14N 2.5582 (70) 0.032 023 3 (45) 0.000 249 5 −0.000 167 7 (10) −0.000 0018 0.032 103 4 (46)
8 160 2.6991 (52) 0.065 713 6 (67) 0.000 424 6 (1) −0.000 259 4 (16) −0.000 0031 0.065 875 7 (68)
9 19F 2.8976 (25) 0.120 615 2 (93) 0.000 678 4 (1) −0.000 378 7 (24) −0.000 0048 0.120 910 1 (96)
10 20Ne 3.0055 (21) 0.204 128 (12) 0.001 031 1 (1) −0.000 529 0 (36) −0.000 0076 0.204 622 (13)
11 23Na 2.9936 (21) 0.324 768 (11) 0.001 505 −0.000 713 (5) −0.000 010 0.325 549 (12)
12 24Mg 3.0570 (16) 0.492 176 (14) 0.002 126 −0.000 934 (7) −0.000 015 0.493 351 (16)
13 27Al 3.0610 (31) 0.717 127 (18) 0.002 919 −0.001 195 (9) −0.000 020 0.718 831 (20)
14 28Si 3.1224 (24) 1.011 548 (22) 0.003 913 (1) −0.001 498 (12) −0.000 027 1.013 936 (26)
15 31P 3.1889 (19) 1.388 508 (26) 0.005 140 (1) −0.001 846 (16) −0.000 033 1.391 770 (31)
16 32S 3.2611 (18) 1.862 263 (31) 0.006 632 (1) −0.002 240 (20) −0.000 043 1.866 612 (37)
17 35Cl 3.365 (19) 2.448 253 (36) 0.008 422 (2) −0.002 683 (25) −0.000 052 2.453 940 (44)
18 40Ar 3.4274 (26) 3.163 116 (41) 0.010 548 (3) −0.003 177 (31) −0.000 058 3.170 429 (52)
19 39K 3.4349 (19) 4.024 704 (46) 0.013 047 (4) −0.003 723 (38) −0.000 076 4.033 952 (59)
20 40Ca 3.4776 (19) 5.052 148 (54) 0.015 959 (5) −0.004 331 (40) −0.000 093 5.063 683 (68)
21 45Sc 3.5459 (25) 6.265 777 (63) 0.019 324 (6) −0.004 998 (59) −0.000 103 6.280 001 (87)
22 48Ti 3.5921 (17) 7.687 235 (72) 0.023 186 (9) −0.005 697 (92) −0.000 118 7.704 60 (12)
23 51V 3.6002 (22) 9.339 469 (83) 0.027 587 (11) −0.006 48 (12) −0.000 135 9.360 44 (15)
24 52Cr 3.6452 (42) 11.246 84 (11) 0.032 574 (14) −0.007 30 (15) −0.000 160 11.271 96 (18)
25 55Mn 3.7057 (22) 13.434 66 (10) 0.038 194 (18) −0.008 18 (16) −0.000 180 13.464 50 (19)
26 56Fe 3.7377 (16) 15.930 26 (12) 0.044 492 (23) −0.009 12 (17) −0.000 210 15.965 42 (21)
27 59Co 3.7875 (21) 18.761 95 (13) 0.051 517 (29) −0.010 12 (16) −0.000 235 18.803 11 (21)
28 58Ni 3.7757 (20) 21.959 59 (14) 0.059 320 (36) −0.011 17 (15) −0.000 280 22.007 46 (21)
29 63Cu 3.8823 (15) 25.554 52 (16) 0.067 951 (44) −0.012 29 (14) −0.000 300 (1) 25.609 89 (22)
30 64Zn 3.9283 (15) 29.579 58 (18) 0.077 46 (5) −0.013 43 (14) −0.000 34 29.643 27 (23)
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31 69Ga 3.9973 (17) 34.069 17 (20) 0.087 90 (7) −0.014 64 (16) −0.000 37 34.142 06 (26)
32 74Ge 4.0742 (12) 39.059 27 (21) 0.099 32 (8) −0.015 90 (19) −0.000 39 39.142 30 (30)
33 75As 4.0968 (20) 44.587 54 (24) 0.111 78 (10) −0.017 24 (22) −0.000 44 44.681 63 (34)
34 80Se 4.1400 (18) 50.693 19 (26) 0.125 32 (12) −0.018 57 (25) −0.000 47 50.799 46 (38)
35 79Br 4.1629 (21) 57.417 02 (25) 0.140 00 (9) −0.019 98 (27) −0.000 54 57.536 49 (38)
36 84Kr 4.1884 (22) 64.802 64 (31) 0.155 86 (11) −0.021 40 (29) −0.000 58 (1) 64.936 53 (43)
37 85Rb 4.2036 (24) 72.893 76 (33) 0.172 97 (13) −0.022 87 (30) −0.000 64 (1) 73.043 22 (46)
38 88Sr 4.2240 (18) 81.737 18 (36) 0.191 38 (15) −0.024 36 (31) −0.000 69 (1) 81.903 50 (49)
39 89Y 4.2430 (21) 91.381 29 (39) 0.211 12 (18) −0.025 87 (32) −0.000 77 (1) 91.565 77 (53)
40 90Zr 4.2694 (10) 101.876 49 (42) 0.232 25 (21) −0.027 39 (34) −0.000 85 (1) 102.080 50 (58)
41 93Nb 4.3240 (17) 113.275 21 (45) 0.254 82 (24) −0.028 97 (37) −0.000 91 (2) 113.500 14 (63)
42 98Mo 4.4091 (18) 125.632 01 (49) 0.278 87 (28) −0.030 52 (41) −0.000 96 (2) 125.879 40 (70)
43 98Tc 4.424 (44) 139.003 39 (50)(4) 0.304 45 (32) −0.032 07 (45) −0.001 07 (2) 139.274 71 (74)(4)
44 102Ru 4.4809 (18) 153.449 50 (58) 0.331 60 (36) −0.033 60 (49) −0.001 14 (3) 153.746 36 (84)
45 103Rh 4.4945 (23) 169.030 26 (61) 0.360 35 (42) −0.035 12 (53) −0.001 24 (3) 169.354 24 (91)
46 106Pd 4.5318 (29) 185.810 18 (66)(1) 0.390 74 (48) −0.036 59 (57) −0.001 33 (4) 186.163 00 (99)(1)
47 107Ag 4.5454 (31) 203.855 55 (70)(1) 0.422 80 (54) −0.038 01 (61) −0.001 45 (4) 204.238 9 (11)
48 112Cd 4.5944 (24) 223.235 19 (75)(1) 0.456 56 (62) −0.039 38 (65) −0.001 52 (5) 223.650 9 (12)
49 115In 4.6156 (26) 244.020 82 (81)(1) 0.492 05 (70) −0.040 67 (69) −0.001 62 (6) 244.470 6 (13)
50 120Sn 4.6519 (21) 266.286 79 (86)(1) 0.529 28 (79) −0.041 89 (75) −0.001 70 (6) 266.772 5 (14)
51 121Sb 4.6802 (26) 290.110 47 (92)(1) 0.568 27 (89) −0.043 08 (80) −0.001 84 (7) 290.633 8 (15)
52 130Te 4.7423 (25) 315.572 13 (98)(2) 0.609 0 (10) −0.044 14 (85) −0.001 87 (8) 316.135 1 (16)
53 127I 4.7500 (81) 342.755 5 (10) 0.651 5 (11) −0.045 08 (91) −0.002 08 (10) 343.359 9 (18)
54 132Xe 4.7859 (48) 371.747 2 (11) 0.695 8 (12) −0.045 85 (98) −0.002 18 (11) 372.395 0 (19)
55 133Cs 4.8041 (46) 402.637 5 (12) 0.741 8 (14) −0.046 4 (10) −0.002 35 (12) 403.330 5 (21)
56 138Ba 4.8378 (46) 435.520 0 (13) 0.789 6 (16) −0.046 8 (11) −0.002 45 (14) 436.260 3 (23)
57 139La 4.8550 (49) 470.492 2 (13)(1) 0.839 0 (17) −0.047 0 (12) −0.002 64 (15) 471.281 7 (25)(1)
58 140Ce 4.8771 (18) 507.655 5 (14) 0.890 1 (19) −0.046 9 (13) −0.002 84 (18) 508.495 9 (27)
59 141Pr 4.8919 (50) 547.115 2 (15)(1) 0.942 8 (21) −0.046 5 (13) −0.003 05 (20) 548.008 4 (29)(1)
60 142Nd 4.9123 (25) 588.980 6 (16)(1) 0.997 0 (21) −0.045 8 (14) −0.003 30 (23) 589.928 5 (30)(1)
61 145Pm 4.962 (50) 633.365 4 (17)(8) 1.052 7 (23) −0.045 1 (15) −0.003 46 (25) 634.369 5 (32)(8)
62 152Sm 5.0819 (60) 680.387 2 (18)(1) 1.109 7 (25) −0.044 0 (16) −0.003 56 (28) 681.449 4 (35)(1)
63 153Eu 5.1115 (62) 730.171 6 (19)(2) 1.167 9 (28) −0.042 4 (17) −0.003 81 (31) 731.293 3 (38)(2)
64 158Gd 5.1569 (43) 782.845 4 (20)(2) 1.227 3 (31) −0.040 4 (18) −0.003 98 (34) 784.028 3 (41)(2)
65 159Tb 5.06 (15) 838.545 6 (21)(43) 1.287 7 (34) −0.037 9 (19) −0.004 3 (4) 839.791 1 (44)(43)
66 162Dy 5.207 (17) 897.402 5 (23)(6) 1.348 9 (37) −0.034 9 (20) −0.004 5 (4) 898.712 1 (48)(6)
67 165Ho 5.202 (31) 959.570 4 (24)(12) 1.410 8 (41) −0.031 2 (21) −0.004 7 (5) 960.945 2 (52)(12)
68 166Er 5.2516 (31) 1025.194 8 (25)(2) 1.473 1 (44) −0.026 9 (22) −0.005 0 (5) 1 026.635 9 (56)(2)
69 169Tm 5.2256 (35) 1094.437 3 (27)(3) 1.535 6 (49) −0.021 9 (23) −0.005 3 (6) 1 095.945 7 (60)(3)
70 174Yb 5.3108 (60) 1167.454 8 (28)(4) 1.598 1 (31) −0.016 1 (24) −0.005 6 (6) 1 169.031 3 (49)(4)
71 175Lu 5.370 (30) 1244.423 2 (29)(21) 1.660 3 (34) −0.010 0 (26) −0.005 9 (7) 1 246.067 7 (52)(21)
72 180Hf 5.3470 (32) 1325.525 1 (31)(5) 1.721 9 (37) −0.003 0 (27) −0.006 1 (8) 1 327.237 9 (56)(5)
73 181Ta 5.3507 (34) 1410.941 1 (33)(5) 1.782 5 (41) 0.004 9 (29) −0.006 5 (9) 1 412.722 0 (60)(5)
74 184W 5.3658 (23) 1500.866 3 (34)(6) 1.841 7 (45) 0.013 8 (30) −0.006 9 (10) 1 502.715 0 (65)(6)
75 187Re 5.370 (17) 1595.505 7 (36)(21) 1.899 2 (49) 0.024 2 (32) −0.007 2 (11) 1 597.421 8 (69)(21)
76 192Os 5.4126 (15) 1695.066 7 (38)(8) 1.954 4 (53) 0.035 7 (33) −0.007 5 (12) 1 697.049 2 (74)(8)
77 193Ir 5.40 (11) 1799.781 (4)(16) 2.006 8 (58) 0.048 5 (35) −0.008 0 (14) 1 801.828 (8)(16)
78 196Pt 5.4307 (27) 1909.870 6 (42)(11) 2.056 0 (64) 0.062 6 (37) −0.008 7 (14) 1 911.980 5 (86)(11)
79 197Au 5.4371 (38) 2025.586 5 (44)(14) 2.101 2 (70) 0.078 2 (38) −0.009 0 (17) 2 027.756 9 (92)(14)
80 202Hg 5.4648 (33) 2147.176 7 (46)(16) 2.141 8 (76) 0.095 4 (40) −0.009 7 (17) 2 149.404 1 (99)(16)
81 205Tl 5.4759 (26) 2274.914 3 (48)(17) 2.177 1 (83) 0.114 0 (43) −0.009 8 (20) 2 277.196 (11)(2)
82 208Pb 5.5012 (13) 2409.073 3 (50)(19) 2.206 3 (90) 0.134 5 (45) −0.010 9 (20) 2 411.403 (11)(2)
83 209Bi 5.5211 (26) 2549.951 0 (52)(23) 2.228 6 (76) 0.157 2 (47) −0.010 9 (25) 2 552.326 (11)(2)
84 209Po 5.527 (18) 2697.858 7 (55)(71) 2.242 8 (84) 0.182 1 (51) −0.011 6 (28) 2 700.272 (12)(7)
85 210At 5.539 (55) 2853.114 (6)(24) 2.248 1 (92) 0.209 1 (55) −0.012 3 (32) 2 855.559 (13)(24)
86 222Rn 5.691 (20) 3016.003 (6)(11) 2.243 (10) 0.238 (6) −0.012 (3) 3 018.472 (14)(11)
87 223Fr 5.695 (18) 3186.992 (6)(11) 2.227 (11) 0.270 (6) −0.013 (4) 3 189.476 (15)(11)
88 226Ra 5.721 (29) 3366.393 (6)(19) 2.199 (12) 0.305 (6) −0.014 (4) 3 368.883 (16)(19)
89 227Ac 5.670 (57) 3554.660 (7)(42) 2.156 (14) 0.343 (6) −0.014 (5) 3 557.145 (17)(42)
90 232Th 5.785 (12) 3752.058 (7)(12) 2.098 (15) 0.384 (7) −0.016 (4) 3 754.525 (19)(12)
91 231Pa 5.700 (57) 3959.276 (7)(56) 2.023 (17) 0.430 (7) −0.016 (6) 3 961.712 (21)(56)
92 238U 5.8571 (33) 4176.439 (8)(5) 1.928 (18) 0.478 (7) −0.016 (6) 4 178.830 (21)(5)
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