QED calculation of the 2p fine structure in Li-like ions
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Large-scale ab initio QED calculations are performed for the 2ps/5—2p;/2 fine-structure interval
of Li-like ions with nuclear charges Z = 5-92. Improved theoretical predictions are obtained by
combining together two complementary theoretical methods, namely, the approach that accounts for
all orders in the binding nuclear strength and the nonrelativistic QED approach that accounts for all
orders in the nonrelativistic electron-electron interaction. The resulting unified approach provides
theoretical predictions which are more accurate than the available experimental results across the

interval of the nuclear charges considered.

Three-electron atoms, namely, Li and Li-like ions, are
among the simplest many-electron systems. They can
be calculated ab initio within quantum electrodynamics
(QED) and measured with a very high precision. Inves-
tigations of such atoms enable precision tests of bound-
state QED of many-body systems and allow studies of
nuclear properties probed by atomic electrons [1]. The
spectacular experimental progress achieved during the
past decades in spectroscopy of Li-like atoms [2—-11] moti-
vated large efforts devoted to QED calculations of energy
levels in these systems.

There are presently two main ab initio methods that
systematically describe various atomic properties within
QED. The first method, described in Ref. [12], accounts
for all orders in the nuclear binding strength (i.e., the
parameter Za, where Z is the nuclear charge number
and « is the fine-structure constant) but expands in the
number of virtual photons exchanged between the elec-
trons (i.e., in the parameter 1/Z). Such calculations
were performed by a number of authors, most notably,
by the Notre-Dame [13-15] and the St. Petersburg [16-
22] group. This method yields very accurate results for
high-Z ions, providing one of the best tests of QED in
the strong-field regime [23]. In the low-Z region, how-
ever, the applicability of this method diminishes, since
the relative contribution of the electron correlation in-
creases as Z goes down and the convergence of the 1/7
expansion deteriorates.

For light atoms, the best results are obtained with the
second method, based on the nonrelativistic quantum
electrodynamics (NRQED) [24]. This method expands
the energy levels of a bound system in powers of a and
Za, but accounts for all orders in 1/Z. High-precision
NRQED calculations were performed for energy levels of
Li and Be* in Refs. [25-30]. For heavier systems, how-
ever, the accuracy of the NRQED results deteriorates as
Z increases, since the omitted higher-order effects be-
come enhanced by high powers of Z.

The fine structure (fs) of energy levels is particularly
favourable for theoretical calculations by the NRQED
method, offering numerous simplifications. For example,
only a few operators explicitly depending on the electron

spin contribute to the fs splitting at the leading order
of the NRQED expansion, ma* (where m is the elec-
tron mass). Furthermore, at the next-to-leading order
ma?®, the leading QED contribution comes only from the
anomalous magnetic moment of the electron. Owing to
these and other theoretical simplifications, the 2p fs in-
terval in Li and Be™T is presently calculated up to order
ma® [30, 31], while for other energy intervals of three-
electron systems the ma® effects remain uncalculated so
far.

In the present investigation we will combine the 1/Z-
expansion method and the NRQED approach and obtain
the most accurate theoretical predictions for the 2p3 ;-
2p1 /2 fs interval through the lithium isoelectronic atomic
sequence with Z > 5. To this end, we will match the
Zo expansion of numerical results obtained by the 1/Z-
expansion method and the 1/Z expansion of the NRQED
results. The main improvement will be achieved in the
region of medium nuclear charges, Z~8-20, in which
the both above-mentioned methods do not work well.

The relativistic units (A = ¢ = m = 1) will be used
throughout this paper, unless explicitly specified other-
wise.

I. 1/Z-EXPANSION QED

In the present work, theoretical contributions to the
energy of a Li-like atom are separated into three parts,
namely, the electron-structure part Fgirue, the radiative
QED correction FE,.q, and the nuclear recoil correction
EreC7

E= Estruc + Erad + Erec . (1)

We note that we distinguish between the QED effects
of the self-energy and vacuum-polarization type (termed
as the radiative QED effects, Fy.q) and the QED ef-
fects originating from the frequency-dependence of the
electron-electron interaction (termed as the electron-
structure QED effects and included into Fgtyuc)-

The 2p fs splitting of Li-like atoms is obtained as
a difference of energies of the 2p states with different



values of the total angular momentum, (1s)22ps3 /2 and
(15)?2p1 /2. In the following, we will denote by E;(v)
corrections to the ionization energy of the valence elec-
tron state v and by E;(fs) corrections to the fs split-
ting, E;(fs) = E;i(2ps/2) — Ei(2p1/2). We note that the
energy contributions involving interactions only between
the core electrons do not contribute neither to the ioniza-
tion energy or the fs interval, so they are not considered
in this work.

A. Electronic structure

The electronic-structure part of the energy is repre-
sented by an expansion in the number of virtual photons
exchanged between the electrons,

Estruc(v) = ED + Elphot + EQphot + E3phot + E24phot )

(2)

where Ep is the Dirac one-electron energy; FEiphot,
Eaphot, and Esphor are corrections due to the exchange
of one, two, and three virtual photons, respectively, and
E>4phot corresponds to the exchange by four and more
photons.

The Dirac ionization energy of the valence state v, for
the point nuclear model, is given by the well-known for-
mula

—1/2

1+<”U—IHUI+Z\;W>T -1,
(3)

where n,, and k, are the principal and the relativistic an-
gular quantum numbers of the state v, respectively. The
point-nucleus Dirac energy receives a correction from the
finite nuclear size (fns), which is very small for low-Z ions
but becomes increasingly important as Z increases. The
fns correction can be easily calculated numerically, by
solving the Dirac equation with a suitable nuclear bind-
ing potential.

The electron-structure corrections to the Dirac energy
arise through the electron-electron interaction. The rel-
ativistic operator of the electron-electron interaction de-
pends on the energy of the exchanged virtual photon w
and is given, in the Feynman gauge, by

ED (7}) =

ei|w\r12

onle) a1 —ana) T @

where a1 and « are vectors of Dirac matrices acting on
the coordinate &1 and x4, respectively, and z12 = |X12| =
|£1 — x2|. The electron-electron interaction operator in

J

the Coulomb gauge is

1 ei\w|a:12
Icow(w) =a | — —a1 - a3y
Z12 T12
(a1 . Vl) (ag . VQ) eilwlziz
5 (5)
w Z12

Despite the dependence of the electron-electron inter-
action operator I on the choice of the gauge, all terms of
the expansion (2) are gauge invariant, when calculated
rigorously within QED. In the present work, we perform
QED calculations of the corrections due to exchange by
one and two virtual photons, E1phet and Eaphot. The cor-
rections induced by an exchange of three or more photons
are calculated within the Breit approximation, which is
equivalent to choosing the Coulomb gauge in the photon
propagator and setting w — 0.

In the following, we will extensively use the follow-
ing short-hand notations for the matrix elements of the
electron-electron interaction operator,

Iabcd(A) = <ab|I(A)|Cd> ) (6)
Tabed = {ab|lIcow(0)]cd) . (7)

The leading electron-structure correction comes from
the exchange of one virtual photon between the electrons.
The correction due to one-photon exchange between a
valence electron v and a closed shell of electron states c
is given by

ElPhOt(v) = Z Z(*I)PIPvPcvc(APcc)
pe P
=3 [Loewe(0) = Lovwe(Aue)| . (8)

where P is the permutation operator interchanging the
one-electron states, (PvPc) = (vc) or (cv), (—1)F is the
sign of the permutation, A, = ¢, — €3 is the difference
of one-electron energies, and the summation over p. runs
over the angular momentum projections of the core elec-
trons. The one-photon exchange correction is relatively
simple and can be calculated to very high numerical ac-
curacy.

The effects caused by the exchange of two photons
are much more complicated than the one-photon con-
tribution. First rigorous QED calculations of the two-
photon exchange correction started in 1990th and were
performed for He-like ions [32-35]. For Li-like ions, anal-
ogous calculations were accomplished in Refs. [15, 18-
20, 22]. In the present work, we extend the previous
calculations described in Refs. [18-20] to a greater nu-
merical accuracy and a larger interval of nuclear charges.

The correction induced by the two-photon exchange between a valence electron v and a closed shell of electron



states ¢ is given by [19]

jo Z Z / IpcpPoning (W) Lingew (W - APcc) IPCTLQ'IL]U((JJ) Iy, Poens, (w - APcc)
1 t
pho n1n2 (epe —w —uey, )(Epy + W —uEp,) (Epe —w — U, )(Ey —wW — UEL,)
11 A I A
n Z(_ P4Q Z P2r3n03(Ap303) Ip1ngig2(Agip1) + Brea(v), )
70 €Q1 T EQ2—€P1 —€n

where P and ) are the permutation operators, u = 1 — 90, and the prime on the sum symbol means that some
terms are excluded from the summation (the excluded terms are ascribed to the reducible part E,.q and evaluated
separately, see Refs. [19, 20] for details). In Eq. (9), the first part on the right-hand side is the irreducible two-electron
contribution, the second part is the irreducible three-electron contribution (with 717, 72”  and ”3” numerating the
three electrons, in arbitrary order), and the third part AFE,.q is the reducible contribution. The explicit expression
for AFyeq can be found in Refs. [19, 20].

The two-photon exchange correction can be greatly simplified in the MBPT approximation, which assumes that (i)
the electron-electron interaction is taken in the Breit approximation, I(w) — Icow(0) and (ii) the summations are
performed over the positive-energy part of the Dirac spectrum. Within this approximation, the integration over w is
performed by the Cauchy theorem and the crossed-photon and reducible contributions vanish, yielding the result

") Ipcpunyng Ininaco P+Q 1(+)
Z Z Z Ec T &y 1— an 1—2€n2 * Z Zn:

ning
where the prime on the summation symbol means that terms with vanishing denominator are omitted and “(+)”
means that the summation is extended over the positive-energy part of the Dirac spectrum.
The three-photon exchange correction cannot be presently calculated rigorously within QED. In the present work
we evaluate it within the MBPT approximation, where it is represented as [21]

A EMBPT Z )

3ph (’U) = Z Z(il)P
He P ni...Ng
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where the operator Z; acts on energy denominators Ay,
A, as following

B. Radiative QED

The radiative QED contribution to the fs splitting is
X represented as an expansion in the number of virtual pho-

AAL if A1 £0,A5 #0, tons exchanged between the electrons (with the expan-
'Y sion parameter 1/7),
X ——5, AT #0,A,=0
“YALA, 2)%1 (12) Erad = EQEDhydr + EQEDser1 + EQEDscr2 + FQEDscr3+ s
e if A;=0,A, #0, (13)
0, if A =0,A2=0. where Eqgphydr is the hydrogenic QED correction,

EqQEDscr1 is the screening QED correction with one
electron-electron interaction, Eqgrpscr2 is the screening

The correction induced by the exchange of four and
more photons, E>4phot, is too complicated to be calcu-
lated by perturbation theory. In the present work we
extract this correction from the NRQED results, which
account for all orders in 1/Z but only the leading order in
Z«; the corresponding calculation is described in Sec. II.

QED correction with two electron-electron interactions,
and Eqepscr3+ contains three and more electron-electron
interactions.

The one-electron QED contribution FEqQgphydr is
presently well established, see, e.g., a recent review [36];
it will be taken from the literature in this work. The



TABLE I. Comparison of different approximate methods with
the rigorous QED calculations [16, 17, 37] of the first-order
1/Z* QED screening correction, in units o?(Za)?.

Z amm MQED amm+MQED Full QED
12 —0.0658 —0.0362 —0.0618 —0.0616 (14)
16 —0.0664 —0.0341 —0.0601 —0.0590 (9)
18  —0.0667 —0.0330 —0.0592 —0.0579 (4)
20 —0.0671 —0.0319 —0.0582 —0.0566 (3)
30 —0.0699 —0.0253 —0.0529 —0.0501 (3)
32  —0.0706 —0.0238 —0.0517 —0.0486 (4)
40 —0.0741  —0.0173 —0.0465 —0.0422 (2)
50  —0.0803 —0.0075 —0.0387 —0.0325 (2)
54 —0.0835 —0.0029 —0.0350 —0.0281 (2)
60  —0.0893 0.0049 —0.0285 —0.0202 (2)
66  —0.0967 0.0142 —0.0209 —0.0113 (2)
70  —0.1028 0.0213 —0.0149 —0.0041 (1)
74  —0.1101 0.0294 —0.0080 0.0037 (2)
80 —0.1241 0.0439 0.0043 0.0182 (1)
83  —0.1329 0.0523 0.0115 0.0266 (1)
90 —0.1601 0.0761 0.0319 0.0501 (1)
92  —0.1702 0.0842 0.0389 0.0581 (1)
100 —0.2277 0.1240 0.0728 0.0974 (1)

first-order 1/Z L screening QED correction EQEDscr1 Was
calculated for Li-like ions in Refs. [14-17, 22, 37]; numer-
ical results for this correction will also be taken from the
literature.

We now concentrate on the second-order 1/Z?2 screen-
ing QED contribution Eqgpscr2. At present, it is not pos-
sible to calculate this correction rigorously to all orders
in Za. In this work, we will calculate it by an approx-
imate relativistic method which is exact to the leading
order in Za and accounts for the dominant part of the
higher-order Z« terms.

It is well-known [38] that, to the leading order in Za,
the radiative QED effects in the fs splitting are described
by the electron anomalous magnetic moment (amm). In
the absence of external fields, the electron amm induces
the following two additions to the Dirac Hamiltonian of
a few-electron atom [38, 39],

Zo . Qg Ty
Hamm,l =K T (_7/) ;Ba 7’2 5 (14)
Hommo = K — S 8. (z o, -grab Ly, >;T‘ab) 7
4 a<b rab Tab
(15)

where a and b numerate the electrons in the atom, k =
ge—2 = a/z+0(a?), g. is the g-factor of the free electron,
8. and a, are the Dirac matrices acting on ath electron,

and
z—(‘gg), (16)

with o being a vector of Pauli matrices.
The effective amm Hamiltonian Hamm = Hamm,1 +
Hymm 2 yields a good description of the radiative QED ef-

fects for low-Z ions, but the accuracy deteriorates quickly
when Z increases. We will correct this with help of
the model QED (MQED) operator hvqep introduced in
Ref. [40]. In order to avoid double counting, we subtract
from hyvqep the part already accounted for by the amm
Hamiltonian. Specifically, we make the replacement

S(512(e5) + S(enlin) -
S 512(e5) + S0k — (sl Hamma 1) (17)

in the definition of the MQED operator (where X(¢) is the
self-energy operator), see Eq. (17) of Ref. [40]. We will
denote the amm-subtracted MQED operator by hy;qpp-

In this work we will calculate the second-order QED
screening correction Fqgpserz by using the standard
Rayleigh-Schréodinger perturbation theory to the second
order in the electron-electron interaction and to first or-
der in the effective Hamiltonian Hymm+MQED,

Hamm—i—MQED == Hamm,l + Hamm,Q + hi\/IQED = U + W .
(18)

The operators U and W introduced in the right-hand-side
of the above equation incorporate the one-electron part
(Hamm,1 + h{\/IQED) and the two-electron part (Hamm,2)
of the effective Hamiltonian, respectively.

Before calculating the second-order screening QED ef-
fect, we need to check the accuracy of the approximate
method we devised. We do this by applying this approx-
imation to the first-order screening QED correction and
comparing the obtained results with those delivered by
the rigorous QED calculations.

The 1/Z*' correction induced by the one-electron oper-
ator U is obtained as a first-order (in U) perturbation of
the one-photon exchange correction (8), which is (after
dropping the frequency-dependent terms)

Elphot,U =2 Z Z(_l)P (IPvPc5vc + IPvPcv5c) P (19)
pe P

where
1 n) Unag
by = 3 11 Une (20)

and Uy, = (a|Ub). The 1/Z* correction induced by the
two-electron operator W is just

Elphot,W = Z Z(_I)PWPUPCUC ) (21)
e P

where Wapeq = {(ab|W|cd).

Table I presents results of our test calculations of the
first-order 1/Z' QED screening correction performed by
three approximate methods and compares them with re-
sults obtained by the full QED treatment. The column
“amm” lists results obtained with the amm operator
H.nm, the column “MQED” displays results obtained



with the standard MQED operator hyiqep, whereas the
column “amm+MQED” shows results obtained with the
combined operator (18).

We observe that the approach based on the amm
Hamiltonian works well only in the low-Z region but fails
for high values of Z, not reproducing even the overall sign

order of magnitude and the sign of the exact QED screen-
ing correction, but the quantitative agreement is not very
good. In contrast, the combined “amm-+MQED” ap-
proach demonstrates a significantly improved agreement
with the rigorous QED treatment as compared to the
both other methods.

of the effect. The standard MQED operator yields the
J

We now turn to the second-order 1/Z? screening QED effect. The 1/Z? correction induced by the one-electron
operator U can be derived as a first-order (in U) perturbation of the two-photon exchange correction in the MBPT
approximation, given by Eq. (10). It consists of 3 parts that are induced by perturbations of the wave functions
(“wf”), binding energies (“en”), and propagators (“ver”), respectively,

E2phot,U = E2phot,wf + EQphot,cn + EQphot,vcr . (22)

The corresponding parts are given by

E2phot,wf =2 Z Z(_l)P
pe P

L9 Z(_l)p+Q Z’H) Ip2p3no3 (IsP1n@102 + IP1ns@1Q2 + IP1n01502)
PO €Q1t+€Q2—€pP1 —€n

(+) IP’L)PC’anLQ (Inlngévc + Inlngvﬁc)
Ec + Ey — gnl

D

— &
nina n2

; (23)

n

"(+)  Ipyp I, n.
Eaphoven = ~(Un + Use) 303 (1) 37 hetomm e
pe P ning ¢ v ™ "2
Ipop3ngs IPinQiQ2

>
(g1 +eg2 —ep1 —en)?’

n

- Z(—l)P+Q (Ug1g1 + Ug2q2 — Upip1)
PQ

B \P (+) - Ipypenin

E2phot,ver - %; zp:( 1) n%;ns =2 Eect+ Ev — 67111 2— Eny <

DICTED DS
PQ

ning
where the operator Z, acts on energy denominators Ap, As as following:

U’ngng Inln_gvc
€e+ €y —

Un1n3 Ingngvc
EctEy —

)

; (25)

Eng — €ngy €ny — Eng

Ip2pP3n,Q3 Uniny IP1n,Q10Q2

€Q1+€eg2—¢epi —¢en,)(€Q1 +EQ2 —€P1 — Eny)

Aq Ay
X
A2
X
A2’
0,

VAL A0, A0 #£0,

X

_ B if A1 £0,A, =0,
A A,

(26)
i AL =0,A0 #0,

A, =0,A =0.

We note that similar formulas appeared in a slightly different context in Ref. [21] (¢f. Egs. (32)-(35) of that work).
The 1/Z? correction induced by the two-electron operator W is given by

Ethot,W = Z Z(_l)P
pe P ning
+ Z(_l)PJrQ Z
PQ n

Wnlnz'uc + WPUPCanLQ In1n2vc
Ect &y —Eny

Z/(+) IPvPcnlng
—en,
"(+) Ip2p3ng3 WrPinQ12 + Wr2pP3n03 IP1nQ102
€Q1t€Q2—€pP1 —€En

(

where the first part is the one-electron (hydrogenic) con-
tribution and the second part is the few-body contribu-

C. Nuclear recoil

The nuclear recoil contribution is represented in this
work as a sum of two parts,

E. _ Eoneel
rec —

rec

+ Efewel ,

rec

(28)



tion. The one-electron contribution is presently well es-
tablished, see, e.g., a recent review [36], and is taken from
the literature. The few-body recoil contribution will be
evaluated to the leading order in Z«a within the NRQED
approach in next Section.

II. NON-RELATIVISTIC QED

In the nonrelativistic quantum electrodynamics
(NRQED) framework, the fs splitting of light atoms
is represented by an expansion in powers of the fine-
structure constant o and the electron-to-nucleus mass
ratio m/M [29, 30],
g0 4

m
ENRrQED = at i gWl 4 G0 4

(29)

Here, the first superscript of the expansion terms &(%7)
indicates the order in «, whereas the second superscript
shows the order in m/M. Each term of the NRQED
expansion is represented as an expectation value of
some effective Hamiltonian on the nonrelativistic atomic
wave function and thus accounts for the nonrelativistic
electron-electron interaction (i.e., the parameter 1/2) to
all orders.

The leading term of the NRQED expansion of the fs
interval is given by the difference of the expectation val-
ues of the spin-dependent Breit Hamiltonian, £*9 =
<H(4’0)>J:3/2 — <H(470)>J:1/2. The spin-dependent part of
the Breit Hamiltonian is (in atomic units)

- ﬁa) ’ (30)

where a and b numerate electrons in the atom, 7, = 7, —
T, Pg 18 the electron momentum, and §, is the electron-
spin operator.

The spin-dependent ma* recoil correction for a state
with the total angular momentum J is given by (in
atomic units)

4

where H®Y is the recoil operator of order ma?,

=2 (- Zpa) . (32

HZD —

and P is the nuclear momentum.

The leading QED contribution to the fs interval is in-
duced by the Hamiltonian H®:0) £6:0) = (H (5, 0)>J:3/2 -

(H50)

J=1/2, where (in atomic umts)

Z . L
H<5»O>ZZ2M3 S P X

a

+ Z o 3 ga Tab X (pb pa) . (33)
a#b

In the present work we calculate the corrections £*+9)
E£G:0) and &Y for the series of nuclear charges Z =
3-13. The computational scheme and numerical details
are described in Ref. [29, 30]. Our numerical results are
presented in Table II.

In order to combine the NRQED results with those
obtained within the 1/Z-exansion method in Sec. I, we
represent the numerical results listed in Table II in the
form of the 1/Z expansion,

£ =23 G (34)
i=0
Z“Z s (35)
g1

= z* Z 74 . (36)
=0

Here and in what follows, we adopt the following nota-
tions for the expansion coefficients C; ;, D; j, R; ;: the
first index ¢ corresponds to the order in 1/7, whereas the
second index j indicates the order in a.

The first coefficients of the expansions are known ana-
lytically,

1 1
Cos=—, Dos=—7!,
047 39 0,5 3271'

3 ln -2), (38)

(37)

1

Ro4 = 33 T30 (
where Cy 4 comes from the Zo expansion of the Dirac en-
ergy (3), Do s comes from the one-loop self-energy (see,
e.g., Eq. (38) of Ref. [41]), whereas the Ry 4 coefficient
was derived in Ref. [42]. The coefficients Cy 4 and Cs 4
will be numerically evaluated in the next Section, by cal-
culating the one-photon and two-photon exchange correc-
tions and fitting their Z — 0 and o« — 0 limit. The other
coefficients in Eqgs. (34)-(36) are approximately obtained
by fitting the numerical results from Table II.

III. CALCULATIONAL DETAILS AND
RESULTS

A. Electronic structure

Table III presents results of our numerical calculations
of individual electron-structure contributions. The col-
umn labeled “Dirac” shows the Dirac one-electron ener-
gies Ep. The uncertainties of Ep, appearing for high-Z



TABLE II. Numerical results for the o, o®, and a*(m/M) corrections to the fine structure of the 2P state of Li-like ions.

£6:9) are defined by Eq. (29).

7 5(4,0)/24 5(5,0)/24 8(4,1)/Z4

3 0.0003530149(1) 0.000 169 064 948 (1) —0.00107497 (2)
4 0.0021904252 (5) 0.000 865489 89 (10) —0.003891 58 (4)
5 0.0046537601 (3) 0.001 71329095 (7) —0.007034 07 (2)
6 00070547380 (2) 0.002 505 289 60 (3) ~0.01003202 (2)
7 0.009196 9525 (7) 0.003195699 19 (15) —0.01271788 (4)
8 0.0110577482 (1) 0.003 786 733 68 (2) —0.01506804 (1)
9 0.012664 4753 (1) 0.004292004 93 (4) —0.01711105(1)
10 0.014054 5690 (1) 0.004 7259939 (2) —0.01888865 (2)
11 0.0152633840 (1) 0.005 101 3163 (3) ~0.02044155 (1)
12 0.016 3211125 (1) 0.005 428 3126 (2) —0.02180551 (1)
13 0.017252626 (3) 0.005 715289 (8) —0.0230105 (5)

ions, are due to the finite nuclear size effect. The Za
expansion of the Dirac fs splitting follows from Eq. (3),

ED = (ZO[)4 [C{)A + (Za)2 CO,G + (ZO[)4 C()’g +.. ] s
(39)

where Cy 4 = 1/32, Cy 6 = 5/256, etc.

The next column labeled “1-ph” contains results for
the one-photon exchange correction. Its calculation is
relatively straightforward and can be preformed up to
arbitrary numerical accuracy. The Za expansion of the
one-photon exchange correction for the fs splitting is of
the form

Elphot = a(Za)3 [0174 + (Za)2 01,6 + (Zoz)4 01,8 + .. ] .

(40)

While our numerical calculation accounts for all orders
in Za, we also determine values of the first two expan-
sion coefficients by fitting our all-order results, obtaining
Ch,4=-0.21810912 and C 6 = —0.194 777.

The two-photon exchange correction is calculated in
the present work rigorously within QED, by the method
described in the previous investigations [19, 20]. The
Dirac spectrum is represented by using the dual kinetic
balance (DKB) method [43] with N = 85 B-spline basis
functions. The partial-wave expansion was extended up
t0 |Kmax| = 20, with the remaining tail of the expansion
estimated by a least-square fitting in 1/|x|. The direct
numerical calculations were performed for Z > 13.

In order to obtain results for the two-photon exchange
correction in the low-Z region, we fit our numerical values
to the form of the Za expansion,

Ethot = 062 (ZOZ)2 02,4 + (ZO[)2 02,6 + ... (41)
The leading expansion coefficient C5 4 is evaluated sepa-
rately, by two different methods. First, we obtain it by
fitting the 1/Z expansion of the ma* NRQED results ob-
tained in Sec. II. Second, we get it by fitting the Z — 0
and o — 0 limit of the two-photon exchange correction
in the MBPT approximation (10). Both methods yield

consisting results, but the second is more accurate. We
therefore fix the coefficient as Cz 4 = 0.497 88. With the
leading coefficient Cs 4 fixed in this way, the higher-order
coeflicients are obtained by fitting our numerical all-order
results. In particular, we obtain the next-order coefficient
as 02,6 =0.75.

Our numerical results for the two-photon exchange cor-
rection are presented in Table III. For convenience, we
separate them into two parts. The first, dominant part
is delivered by the MBPT approximation, see Eq. (10).
The second, much smaller part is the deviation of the
full QED result from the MBPT value. For Z > 13, the
listed QED values are obtained by a direct calculation.
For Z < 13, the listed values are obtained by fitting.

The three-photon exchange correction is evaluated
within the MBPT approximation, according to Eq. (11).
The scheme of the calculation mainly follows that of
Ref. [21]. However, Ref. [21] included the Breit inter-
action up to first order only, whereas here we include in
addition the exchange by two and three Breit photons.
The reason is that the inclusion of the second-order Breit
exchange significantly improves the agreement between
MBPT and QED for the two-photon exchange correction
to the fs splitting.

The summations over the Dirac spectrum in the three-
photon exchange correction was performed by using the
DKB method [43] with B-spline basis functions. The
number of B-splines in the basis was N = 50 for the
three-electron part and IV = 40 for the two-electron part.
The extrapolation of the double partial wave expansion
was performed as described in Ref. [21], with the number
of partial waves [; = 8 for the first summation and Iy =
12 for the second summation.

Direct numerical calculations of the three-photon ex-
change correction were performed for Z > 20. For lower
values of Z, the accuracy of the numerical evaluation
gradually deteriorates, so we obtain results for this cor-
rection by fitting. Specifically, we fit our numerical re-
sults to the form of the Za-expansion

Esphot =0 (Za) [Csa+ (Za)* Css+ ..., (42)



with the leading coefficient C'3 4 = —0.3681 obtained by
fitting the 1/Z expansion of the NRQED results in Sec. II.
We obtain the next-order coefficient (in the MBPT ap-
proximation) as Cs ¢ = —1.4.

Numerical results for the three-photon exchange cor-
rection are presented in Table III, in the column labeled
“3-ph”. The uncertainty of this correction comes mainly
from unknown QED effects beyond the MBPT approx-
imation. We estimate it by taking the relative value of
the QED-MBPT difference for the two-photon exchange
correction and multiplying it by the extension factor of
4.

The correction induced by the exchange of four and
more photons E>4phot is obtained from the NRQED cal-
culations described in Sec. II. Direct NRQED calcula-
tions were performed for Z < 13. For these nuclear
charges, we obtain E'>4pnot by subtracting the first terms
of the 1/Z expansion from the ma* NRQED contribution
listed in Table II,

Cia  Cou  Csy
Z + 72 * Z3
(43)

Esaphot = oW — (Za)* | Cp 4 +

We note that numerical uncertainties of the coefficients
(5,4 and ('3 4 do not contribute to the uncertainty of the
total electron-structure contribution for Z < 13, since
the same coefficients used in Eqgs. (41), (42) and (43)
cancel each other when the sum of these equations is
evaluated. For Z > 13, we obtain E>spnot by fitting
the 1/Z expansion of numerical results for £+ listed in
Table II.

Our results for E>4pnot are presented in Table III, in
the column labeled “>4-ph”. The indicated numerical
uncertainty takes into account uncalculated QED effects
of order ma® and higher and the uncertainty of the fit
for Z > 13. The uncalculated effects are estimated by
taking the relative value of the deviation of the full QED
results for the two-photon exchange correction from the
ma* contribution induced by the coefficient Cy 4, and
multiplying it by a conservative factor of 2.

Table IIT summarizes our total numerical values of the
electron-structure contribution to the 2p3/5-2p1 /7 fs split-
ting in Li-like ions and compares them with results ob-
tained by other methods. We observe that for Z < 6, our
results essentially coincide with the ma* NRQED values.
The reason is that the 1/Z expansion, used in the present
work for calculating the higher-order QED effects, breaks
down for low Z, with individual 1/Z-expansion terms
cancelling each other to a great extent. For larger values
of Z, the convergence of the 1/Z expansion improves;
the higher-order QED effects also become increasingly
more important, moving our results further away from
the NRQED values.

For Z > 10, we compare our results with the previous
ab initio QED calculation by Kozhedub et al. [22]. The
agreement between the calculations is excellent, but our
results are more accurate, most notably in the low-Z re-

gion, due to a more complete inclusion of many-photon
exchange effects.

B. Radiative QED

We now turn to the radiative QED part, which is
represented by a sum of several terms, as given by
Eq. (13). The first term on the right-hand-side of
Eq. (13), EQEDhydr, is due to one-electron QED effects.
They were recently reviewed in Ref. [36], so we obtain
EqEDhydr from data tabulated in that work, adding to-
gether the one-loop and two-loop QED effects. The Za
expansion of this contribution is

EQrphydr = a(Za)* [Do,s

+(Za)*In(Za) D% + (Za)® Do g + .. ] :
(44)

where Dy 5 = 1/32r, D(lfg = 1/16x [41]. The other terms
on the right-hand-side of Eq. (13) are due to the electron-
electron interaction; they are referred to as the screening
QED corrections.

The first-order 1/Z screening QED correction Eqrpscr1
was calculated for Li-like ions in a series of investigations
[14-17, 22, 37]. The data reported in these studies are
not fully sufficient for our present needs, because of a
limited number of nuclear charges for which results are
presented. In the present work we use a more complete
tabulation from Ref. [44], originally calculated for He-like
ions. We convert these results from He-like ions to Li-
like ions, using the fact that the following exact relation
exists between the 1/Z screening QED corrections for
Li-like and He-like ions (see Eq. (70) of Ref. [44]),

1 3

E(15)22P1/2 9 Es 2p1/2)0 T b} Es 2p1/2)1 (45)
3 5

E(18)22P3/2 2 Es 2pss2)1 + 4 Es 2p3/2)2 (46)

Specifically, for nuclear charges Z > 20, we interpolate
the numerical data presented in Ref. [44]. Values for Z <
20 were obtained by fitting numerical data for Z > 20 to
the Za-expansion form

EqQEpsar1 = o*(Za)® | Dy 5

+(Za)*In(Za) D% + (Za)> Dy s + .. ] ,
(47)

using the accurate value for the leading coeflicient D 5 =
—0.065 060, obtained in Sec. II from fitting the NRQED
results for the £5:9 correction. Numerical results for
EqQEDser1 are listed in the column “1/Z” of Table IV.
The column “1/Z%” of Table IV presents numerical
results for the second-order 1/Z2 screening QED correc-
tion, EQEDscr2, obtained by the amm+MQED approach



described in Sec. I B. The Dirac spectrum is represented
by using the DKB method [43] with N = 85 B-spline
basis functions. The angular integration in radial matrix
elements of the amm operators was carried out according
to formulas presented in Appendix A. The Za expansion
of EQEDscr2 is

EQEDsCr2 = aB(Za)Q D2)5 + ceey (48)

where D5 = 0.1377 is obtained in Sec. II from fitting
the variational NRQED results for the £5:9) correction.
The uncertainty ascribed to this correction in Table IV
estimates the error of the approximation. It was evalu-
ated by taking the difference of the amm+MQED and
full-QED results for the 1/Z screening correction, scal-
ing it by the ratio Dy 5/(Z D15), and multiplying it by
a conservative factor of 2.

The higher-order screening QED correction Eqgpscr3+
was obtained from the NRQED calculations described in
Sec. II. For Z < 13, we obtain E>4pnhot by subtracting the
first terms of the 1/Z expansion from the ma® NRQED
contribution listed in Table II,

D5 D5
Z VA
(49)

For Z > 13, we evaluate Eqrpscrs+ by fitting the 1/Z ex-
pansion of numerical results for F(:9 listed in Table II.
Our results for Eqgpscrs+ are listed in Table III, in the
column labeled “1/Z3%”. The indicated numerical uncer-
tainty takes into account uncalculated QED effects. We
estimate these effects by taking the relative value of the
deviation of the full QED results for the 1/Z screening
correction from the ma?® contribution induced by the co-
efficient D; 5, and multiplying it by a conservative factor
of 2.

Eqepsers+ = a’E®0 —a(Za)? | Dy 5 +

C. Nuclear recoil

The one-electron nuclear recoil correction E22¢¢! was

calculated rigorously within QED to all orders in Za in
Refs. [45, 46]. In this work we take numerical results for

E¢neel from the recent tabulation presented in Ref. [36].

The few-body recoil correction E€¥e! is obtained from

the NRQED calculations described in Sec. II. Specifi-
cally, we calculate EfY! from £(*1) as
ewe. m Z4
Elf'ec 1_ 4 i <5(4,1) + 32> , (50)

where the second term in braces subtracts the one-
electron contribution already taken into account by
Eoreel For Z < 13, we use the values of £ listed
in Table II, whereas for larger Z, we get results by fit-
ting the 1/Z expansion of £*1). The uncertainty of the
few-body recoil contribution was estimated by taking the
relative value of the deviation of the one-electron QED
recoil correction from the leading-order ma* term and

multiplying it by a conservative factor of 2.

D. Total fine structure

Table VI summarizes results of our calculations of
the 2ps/5—2p1/p fine-structure interval in Li-like ions
with nuclear chargers Z = 5-92. The column labeled
“(r2)1/2 contains values for the root-mean-square nu-
clear charges radii used in the calculation, taken from
Ref. [47]. The next column specifies the isotope for which
the calculation is performed. The nuclear masses were
taken from Ref. [48].

The next three columns display the theoretical results
for the electron-structure contribution, the one-electron
QED effects, and the recoil correction, respectively. The
one-electron QED part was taken from the tabulation
[36]; the other contributions are evaluated as described
in previous Sections.

Results collected in Table VI indicate that for light
ions, the dominant theoretical uncertainty comes from
the electron-structure effects, more specifically, from the
numerical uncertainty of the two-photon QED correction
and the residual three-photon QED effects. In the high-Z
region, comparable uncertainties arise from various con-
tributions, including the one-electron QED effects, QED
screening, and nuclear charge radii.

IV. DISCUSSION

Table V presents a comparison of our theoretical pre-
dictions with previous theoretical and experimental re-
sults. For Z < 10, we compare our results with the-
oretical values by Wang et al. [49]. Their calculation
accounted for the electron-correlation effects within the
Breit-Pauli approximation and added the relativistic and
QED effects as delivered by the hydrogenic approxima-
tion with an effective nuclear charge. Their approach is
reasonably adequate for very low Z. As Z increases, we
observe a steadily growing deviation between their values
and our results.

For Z > 10, we compare our results with the two most
complete ab initio QED calculations, by Kozhedub et
al. [22] and by Sapirstein and Cheng [15]. In these stud-
ies, results were reported for the 2p3/5—2s and 2p;/o—2s
transition energies; we combine them together to get re-
sults for the 2p3/o—2p; /5 interval. Doing this, we assume
the uncertainties of the two transitions to be correlated.
Specifically, we take the largest of the uncertainties re-
ported for the two intervals, rather than adding them
quadratically.

The calculations by Kozhedub et al. and by Sapirstein
and Cheng provided accurate theoretical predictions for
medium- and high-Z ions. For lower-Z ions, however,
the relative accuracy of their results diminished, due to a
large cancelation of various effects between the 2ps /5 and
the 2p, /, states. We observe very good agreement with
predictions by Kozhedub et al. for all nuclear charges
reported in that work, well within their error bars. The
agreement with the calculation by Sapirstein and Cheng



is good for high values of Z but moderate in the interval
Z = 20-30, which might be due to residual electron-
correlation effects not accounted for in their work. Our
results are significantly more accurate than those of the
both previous studies, partly due to a more complete in-
clusion of many-photon electron-correlation effects and
partly due to usage of the advantages offered by the
2p3/2 —2p1/2 interval as compared to the 2p; —2s inter-
vals.

The comparison of our theoretical predictions with the
available experimental results is summarized in Table V
and shows good agreement in most cases. In several oc-
casions (notably, for Z = 15, 39, 82) deviations of about
two experimental uncertainties are observed. The rea-
sons behind them are probably on the experimental side,
since different calculations agree well with each other on
the level of the experimental uncertainties.

Generally, the theoretical predictions for the 2ps,,—
2py /2 interval are found to be more accurate than the
existing experimental results. The only exception in the
range of nuclear charges covered in this work is boron
(Z = 5), where the uncertainty of the experimental result
[50] matches the theoretical accuracy. Even more accu-
rate measurements are available for Li and Be™ [10, 11].
Unfortunately, our present approach is not useful for
these lightest atoms, since it is relies on the 1/Z expan-

J
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sion for description of QED effects of order ma® and
higher, which fails at very low Z.

In summary, we performed ab initio QED calculations
of the 2p fine-structure interval in Li-like ions with nu-
clear charges Z = 5-92. In order to improve the theo-
retical accuracy, we combined together two complemen-
tary theoretical methods, namely, the 1/Z-expansion ap-
proach, which accounts for all orders in the parameter Za
but expands in 1/7, and the NRQED approach, which
accounts for all orders in 1/Z but expands in Z«. In the
result, we obtain the currently most accurate theoreti-
cal predictions for a wide range of nuclear charges. For
Z > 20, our theoretical predictions have the fractional ac-
curacy of better than 10~°, providing an opportunity for
high-precision tests of the interplay of QED and electron-
correlation effects.
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Appendix A: Radial integrations in matrix elements of amm operators

In this section we present formulas for the matrix elements of the amm operators [given by Eqs. (14) and (15)]
with the Dirac wave functions, after angular integrations. The matrix element of the one-electron amm operator is

evaluated as

Zak

<a|Hamm,1|b> = - 1

Okcorn, Optapin /000 7“2d7"%2 [ga(r) fo(r) + fa(r) gb(r)} ,

(A1)

where g, (r) and f,(r) are the upper and the lower radial components of the wave function of the electron state n,
defined as in Ref. [66]; &, and p,, are the relativistic angular-momentum quantum number and the angular-momentum

projection, correspondingly.

The matrix element of the two-electron amm operator can be written in the form, analogous to that for the matrix
element of the electron-electron interaction operator (¢f. Eq. (38) in Ref. [66]),

(ab| Hymum 2|cd) = % >~ Ji(abed) Ry™ (abed)
L

(A2)

where Jp(abed) is the standard function incorporating the dependence of a two-body operator on the angular-

RY™™ 2 (abed) = (—1)L (2L + 1) / r2dry
0

amm,2

momentum projections (see Eq. (39) of Ref. [66]) and R

UﬂC (k /{)LX ( )/Tlrzdr rlw, (r2)
oL + 1 L\Rb, Rd 1"1L+2 ac,LL+1(T1 o 2aT2 Ty bd\T2

is the radial integral evaluated as

L 1 T1 B
+ oL +1 CL(/{I); fid) F Wbd(rl) /0 ngrg ,,,%z 1 Xae,LL_l(TQ)

L

11 1

I=L-1

1 rl
+ 6(l + 1) { L1l 1l+1 } ’I"llﬁ Yac,Ll+1(T1) A 71ng2 ’I’é Zbd,Ll(TQ)



TABLE III. The electron structure corrections to the 2ps,5—2p; /2 fine structure splitting, in eV.

11

A Dirac 1-ph. 2-ph. 3-ph. >4-ph. Sum Other
MBPT QED methods

5 0.028 325 —0.039553  0.018070 0.000002 (1) —0.002681 (1) 0.000 050 0.004 214 (2) 0.004 215

6 0.058 757 —0.068 384 0.026043 0.000004 (2) —0.003224 (2) 0.000 057 0.013 253 (3) 0.013 249

7 0.108 901 —0.108658  0.035483  0.000007 (3) —0.003771(3) 0.000 062 0.032023 (5) 0.031 998

8 0.185873 —0.162311 0.046398 0.000012(5) —0.004323(5) 0.000065 (1) 0.065714 (7) 0.065 63

9 0.297902 —0.231290  0.058 798 0.000018 (7) —0.004880 (6) 0.000067 (1) 0.120615 (9) 0.12040°

10 0.454 338 —0.317558  0.072695 0.000027(9) —0.005444 (8) 0.000069 (1) 0.204128(12)  0.203 66

0.2041 (6)°

15 2.309 735 —1.078183  0.165127 0.000128(3) —0.008373(26) 0.000074(3)  1.38851(3)  1.3884(3)"

20 7.343045 —2.577266  0.297502 0.000347(6) —0.011556(54) 0.000076 (5) 5.05215 (5) 5.0524 (3)°

26 21.16998 —5.738 39 0.51350  0.00094 (1) —0.01584(12) 0.00008 (1) 15.93026 (12)  15.9309(3)°

28 28.580 10 —7.20491 0.60050  0.00124(1) —0.01741(14) 0.00008 (1) 21.95959 (14)  21.9605 (3)°

30 37.81357 ~8.91213  0.69552  0.00162(1) —0.01907(18)  0.00008(1)  29.57958(18) 29.5796(3)"

36 79.495 27 —15.70391 1.03261 0.00319(2) —0.02461 (30) 0.00008 (2) 64.8026 (3) 64.8033 (5)°

40 122.466 49 —21.87121 1.30526  0.00473(3) —0.02887 (42) 0.00008 (2) 101.8765 (4) 101.8784 (11)°

47 238.58848 (1) —36.594 23 1.89010  0.00881(4) —0.03770(70) 0.00008 (3)  203.8555 (7) 203.856 6 (16)°

50 308.85399 (1) —44.72525 2.18888  0.01119(4) —0.04212(86) 0.00008 (4) 266.286 8 (9) 266.2881 (21)°

54 426.72224(3) —57.58077  2.63924  0.01511(5) —0.0487(11)  0.00008 (4) 371.7472(11) 371.7487(29)"

60 667.5034 (1) —81.9291 3.4438 0.0229(1) —0.0605 (16) 0.0001 (1) 588.9806 (16) 588.9834 (4 )b

70 1302.1568 (4) —139.8819 5.2240 0.0421 (1) —0.086 5 (28) 0.0001(1) 1167.455(3) 1167.461 (11)°

80  2367.7366 (16) —228.2904 7.7833 0.0714(2) —0.1244 (46) 0.0001(1) 2147.177(5) 2147.188 (14)°

83 2804.1060(23) —262.8597 8.7613  0.0823(2)  —0.1390(52)  0.0001(1) 2549.951(6)  2549.961 (16)

90 4103.324 (12) —362.7558 11.5608 0.1108(2) —0.1817(70) 0.0001(2) 3752.058 (14)  3752.127 (41)°

92  4561.2374(47) —397.2450 12.5232 0.1198(3) —0.196 6 (75) 0.0001(2) 4176.439 (9) 4176.457 (51)°

“ NRQED, this work; ® Kozhedub et al. [22].
TABLE IV. The screened QED corrections to the 2ps/o—2p; /2 fine structure splitting, in eV.

A 1/7* /2?2 1/Z3%+% Sum NRQED Kozhedub et al. [22]

5 —0.0000846 (1) 0.0000356 (2) —0.000004 8 (2) —0.000053 8 (3) —0.000 054

6 —0.000 1454 (2) 0.0000509 (5) —0.000005 8 (3) —0.000100 3 (6) —0.000102

7 —0.0002295 (4) 0.000 0686 (8) —0.000006 8 (4) —0.000168 (1 —0.000171

8 —0.0003403(7) 0.0000887(13)  —0.000007 8 (5) —0.000259 (2 —0.000267

9 —0.0004811(12) 0.0001112(20)  —0.0000088(7)  —0.000379 (2 —0.000 392

10 —0.0006551 (20) 0.0001360(29)  —0.000009 8 (9) —0.000529 (4 —0.000 552 —0.0005 (2)

12 —0.0011142 (43) 0.0001916(54)  —0.0000118(15 —0.000935 (7 —0.000991 —0.0009 (3)

15 —0.002120(11) 0.000289 (12) —0.000015 (3) —0.00185 (2) —0.0018 (4)

18  —0.003 558 (22) 0.000 399 (22) —0.000018 (4) —0.003 18 (3) —0.0032 (5)

20 —0.004790 (27) 0.000478(29)  —0.000020 (5) —0.004 33 (4) —0.0043 (5)

26 —0.00983(15) 0.000 731 (69) —0.000026 (10) —0.0091 (2) —0.0092 (8)

30 —0.01430(8) 0.00090 (11) —0.000030 (14)  —0.0134(2) —0.0136 (11)

32 —0.01685(13) 0.00098 (14) —0.000032 (16) —0.0159(2) —0.016 0 (12)

40  —0.02856 (14) 0.00122(31) —0.000 040 (28) —0.0274 (4) —0.0279 (18)

47  —0.03921 (26) 0.001 25 (55) —0.000047 (42) —0.0380(7) —0.0387(24)

50 —0.04302(29) 0.001 18 (69) —0.000 050 (50) —0.0419(9) —0.042 8 (27)

54 —0.04678(38) 0.00099 (89) —0.000054 (61)  —0.0459 (10) —0.0470 (32)

60 —0.046 21 (45) 0.0005 (13) —0.000 060 (82) —0.045 8 (14) —0.048 0 (42)

66 —0.03439 (64) —0.0004 (19) —0.00007 (11) —0.035 (2) —0.037 (5)

70  —0.01483 (47) —0.0012 (24) —0.00007 (13) —0.016 (2) —0.020 (7)

74 0.01598 (86) —0.0021 (29) —0.00007 (16) 0.014 (3) 0.010(8)

80  0.09874(58) —0.003 3 (40) —0.000 08 (20) 0.095 (4) 0.086 (11)

82 0.138 13 (63) —0.0035 (44) —0.00008 (22) 0.135(4) 0.122(12)

90  0.38616(82) —0.0020 (66) —0.00009 (32) 0.384(7) 0.359 (17)

92 0.478 80 (91) —0.0003(73) —0.00009 (35) 0.478 (7) 0.446 (19)
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TABLE V. Comparison of different theoretical predictions and experimental results for the 2ps/2—2p, /2 fine-structure interval

in Li-like ions, in cm™! or eV as indicated, 1 eV = 8065.543937 cm™*

Z This work Wang 1993 [49] Kozhedub 2010 [22]  Sapirstein 2011 [15] Experiment Ref.
in cm™!:
5 34.075 (13) 34.04 34.100(14)  [50]
6 107.166 (23) 107.06 107.3(3) [51, 52
7 258.931 (37) 258.7 259 (1) [52]
8 531.323 (55) 530.9 531 (1) [52]
9 975.206 (77) 974.5 976 (2) [52]
10 1650.39 (10) 1649.2 1653 (3) 1653 (8) 1649 (2) [52]
11 2625.73 (10) 2631 (5) [52]
12 3979.15 (13) 3984 (8) 3975 (3) [52]
13 5797.76 (16) 5796 (5) [52]
14 8177.95 (21) 8177 (4) [52]
15 11225.38 (25) 11224 (4) 11219 (8) 11253 (15) [52]
16 15055.24 (30) 15054 (1) [53]
17 19792.36 (35) 19770 (15) [52]
18 95 571.24 (42) 25572 (5) 25560 (8) 25572 (10) [52]
20 40841.36 (55) 40843 (6) 40828 (8) 40850 (10) [52]
21 50 651.62 (70) 50627 (8)
22 62141.83 (95) 62146 (10) [52]
24 90914.5 (15) 90912 (12) [54]
25 108598.5 (16) 108634 (40) [52]
26 128769.8 (17) 128774 (7) 128750 (8) 128774 (16) [55]
28 177502.2 (17) 177508 (8) 177474 (8) 177524 (20) [56]
29 206 557.7 (17) 206549 (33) [57]
Z This work Kozhedub 2010 [22] Sapirstein 2011 [15] Experiment Ref.
in eV:
30 20.643 27 (23 20.6436 (12) 29.641 (1) 29.646 4 (47) 58]
32 39.142 30 (30 39.14 39.1417 (53) [57]
34 50.799 46 (38 50.790 (23) [59]
36 64.936 53 (43 64.936 7 (17) 64.93 64.955 (37) [60, 61]
39 91.565 77 (53 91.595 (15) [62]
40 102.080 50 (58 102.081 7 (23) 102.08
42 125.879 40 (70 125.88 125.841 (73) [59]
47 204.2389 (11) 204.238 8 (36) 204.26 204.229 (31) [63]
50 266.7725 (14) 266.7721 (46) 266.77
52 316.1351 (16) 316.134 (5) 316.11
54 372.3950(19) 372.39 372.354 (53) [4, 64]
60 580.928 5 (30) 589.929 (6) 580.93 (1)
64 784.028 3 (41) 784.01 (1)
66 898.7121 (48) 898.73 (1)
70 1169.031 3 (49) 1169.03 (2)
74 1502.7150 (65) 1502.66 (3)
79 2027.7569 (93) 2027.78 (3)
80 2149.404 (10) 2149.41 (4)
82 2411.403 (11) 2411.41 (4) 2411.61 (12) [5, 9]
83 2552.326 (11) 2552.32 (5)
90 3754.525 (22) 3754.51 (7)
92 4178.830 (22) 4178.81(8) 4178.73 (21) (6, 65]
L+1 1 1 o)
+ Z Vel { Il }rl“ Z,,d,u(rl)/ r2dryrht Yo pio1(re) 4+ ... (ac) < (bd) ... |, (A3)
1 0
where {...} denotes the 6j-symbol and
Xac,ll’ (T) = ga(r) fc(r) S (_"fm "ia) + fa (T) gc(r) S ("‘507 _ﬁa) > (A4)



Yac,ll’ (T)

Wae(r)

= ga(r‘) 96(7") Sll’(’iw “a) — fa(r) fC(r) Sll’(_”m
Zac,ll’ (T) = ga(r) fc(r) Sll’ (_ﬁca ’ia) -
= 9a(r) ge(r) + fa(r) fe(r).

—Kaq) (A5)
fa (T) gc(r) S (K/Ca _’ia) ) (AG)
(A7)

Furthermore, the standard angular coefficients Sy;» and C; are defined by Eqgs. (A7)-(A10) of Ref. [66].
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TABLE VI: Individual effects and total theoretical predictions for the

2p3/2-2p1/2 fine-structure interval in Li-like ions.
In the case when an entry is given with two

= 8065.543937 cm™'.

Units are eV, 1 eV

uncertainties, the first one is the estimation of the theoretical error and
the second is due to the nuclear charge radius. In the case when one
uncertainty is given, it is the estimation of the theoretical error and the
uncertainty due to the nuclear radius is negligible.

Z Tsotope (r?)'/? [fm] Structure QED,1-el QED,scr Recoil Total

5 !B 2.406 (29) 0.0042137(16) 0.0000652  —0.0000538(3) —0.0000003 0.004224 8 (17)
6 12 2.4702 (22) 0.0132532(28) 0.0001350  —0.0001003(6) —0.0000009 0.013286 9 (29)
7 N 2.5582 (70) 0.0320233 (45) 0.0002495 —0.0001677(10) —0.0000018 0.032103 4 (46)
8 15 2.6991 (52) 0.0657136 (67) 0.0004246 (1) —0.0002594 (16) —0.0000031 0.065 8757 (68)
9 F 2.8976 (25) 0.1206152(93) 0.0006784 (1) —0.0003787 (24) —0.0000048 0.1209101 (96)
10 °Ne  3.0055(21) 0.204128(12)  0.0010311(1) —0.0005290(36) —0.0000076 0.204 622 (13)
11 Na  2.9936(21) 0.324768 (11)  0.001505 ~0.000713(5)  —0.000010 0.325 549 (12)
12 Mg 3.0570(16) 0.492176 (14)  0.002126 -0.000934(7)  —0.000015 0.493 351 (16)
13 %7Al 3.0610 (31) 0.717127(18) 0.002919 —0.001195 (9) —0.000020 0.718 831 (20)
14 286 3.1224 (24) 1.011548(22)  0.003913 (1) —0.001498(12) —0.000027 1.013 936 (26)
15 3lp 3.1889 (19) 1.388508 (26)  0.005140(1)  —0.001846 (16)  —0.000033 1.391 770 (31)
16 %S 3.2611 (18) 1.862263 (31)  0.006632(1)  —0.002240(20)  —0.000043 1.866 612 (37)
17 3C1 3.365(19) 2.448253(36)  0.008422(2) —0.002683(25) —0.000052 2.453 940 (44)
18 “0Ar  3.4274(26) 3163116 (41)  0.010548(3) —0.003177(31)  —0.000058 3.170429 (52)
19 ¥K 3.4349 (19) 4.024704(46)  0.013047(4)  —0.003723(38)  —0.000076 4.033952 (59)
20 10Ca  3.4776 (19) 5.052148 (54)  0.015959(5)  —0.004331(40) —0.000093 5.063 683 (68)
21 458c  3.5459 (25) 6.265777(63)  0.019324(6) —0.004998 (59)  —0.000103 6.280 001 (87)
22 ST 3.5921(17) 7.687235(72)  0.023186(9) —0.005697(92) —0.000118 7.70460 (12)
23 Sly 3.6002 (22) 0.330469 (83)  0.027587(11) —0.00648(12)  —0.000135 9.36044 (15)
24 %2Cr  3.6452 (42) 11.24684 (11)  0.032574(14) —0.00730(15)  —0.000160 11.271 96 (18)
95 S5Mn  3.7057(22)  13.43466(10)  0.038194(18) —0.00818(16)  —0.000180 13.46450 (19)
2 Fe  3.7377(16)  15.93026(12)  0.044492(23) —0.00912(17)  —0.000210 15.965 42 (21)
27 ®Co  3.7875(21)  18.76195(13)  0.051517(29) —0.01012(16)  —0.000235 18.803 11 (21)
28 SSNi  3.7757(20)  21.95959(14)  0.059320(36) —0.01117(15)  —0.000280 92.007 46 (21)
29 %3Cu 3.8823(15) 25.55452 (16) 0.067951 (44) —0.01229(14) —0.000300 (1) 25.609 89 (22)
30 %zZn  3.9283(15)  29.57958(18)  0.07746(5)  —0.01343(14)  —0.00034 29.643 27 (23)
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