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The electric dipole polarizability of the lithium atom in the ground state is calculated including relativistic and
quantum electrodynamics corrections. The obtained result αE = 164.074 0(5) a.u. is in a good agreement with
the less accurate experimental value of 164.19(1.08) a.u. The small uncertainty of about 2ppm comes from
the approximate treatment of quantum electrodynamics corrections. Our theoretical result can be considered
as a benchmark for more general atomic structure methods and may serve as a reference value for the relative
measurement of polarizabilities of the other alkali-metal atoms.

PACS numbers: 31.15.ac, 31.30.J-

I. INTRODUCTION

The electric dipole polarizability αE characterizes the re-
sponse of the system to the homogenous external electric field.
It is related to various physical phenomena, such as van der
Waals interactions in ultra-cold collisions [1–3] and Bose-
Einstein condensation [4–7], binding positrons to atoms [8]
and atomic energy shifts from the ambient blackbody radia-
tion field in atomic clocks [9, 10].

Polarizabilities for alkali-metal atoms can be determined
experimentally with interferometric methods [11–15]. Recent
advances in cooling techniques have allowed one to obtain
the polarizability for the cesium ground state with 0.14% un-
certainty [16]. However, such accuracy is not accessible at
present for other alkali-metal systems. In contrast, the polar-
izability ratio for two different atoms can in some cases be
measured more accurately than for a single atom [14, 17, 18].
This allows an improvement in determining polarizabilities
from the ratio and the reference value. An appropriate candi-
date is the cesium atom [16]. However, the ratio measurement
cannot be performed precisely with lighter atomic systems as
yet. Another possibility is the accurate theoretical prediction
for one of the light alkali-metal atoms, which can be set as
the reference system. The most promising are calculations for
the lithium atom, which can be done very accurately within
nonrelativistic quantum electrodynamics (NRQED).

NRQED is based on expansion of quantum electrodynam-
ics in powers of the fine structure constant α. All the ef-
fects in NRQED expansion are expressed in terms of mean
values with the wave function. Numerical solution of the
Schrödinger equation can be obtained accurately for low-
lying states of three-electron atom with explicitly correlated
Hylleraas functions [19–22]. At the leading (nonrelativis-
tic) order, the ground state polarizability of the lithium atom
has already been calculated with high numerical precision as
α0 = 164.112(1) [23]. The result of comparable accuracy
α0 = 164.111 7 has also been obtained with explicitly cor-
related Gaussian (ECG) functions [24]. Calculations beyond

the leading order have never been performed so far, probably
due to high complexity. For relativistic corrections only esti-
mations exist, which lead to the total result αE = 164.11(3)
[25]. Other treatments based on the relativistic coupled-
cluster method [26] and on the relativistic many-body pertur-
bation theory [27] do not include electron correlations accu-
rately enough to compete with methods, which are based on
the NRQED approach and explicitly correlated functions.

In this paper we provide the following benchmark for α0 =
164.112 459(3), and also the reference value including the
relativistic correction and the estimation of the leading QED
effects αE = 164.074 0(5). The calculations are similar to
those performed previously for the ground state of the helium
atom [28], though significant modifications have to be intro-
duced for the more complex system, such as the lithium atom.
In order to improve the numerical precision of the relativis-
tic corrections, we have derived regularized representation for
operators of the Breit-Pauli Hamiltonian in higher orders of
perturbation theory. The accuracy of our result is limited only
by the approximate treatment of the Bethe logarithm term
[28], which has been verified in helium [29] to be well within
the 10% uncertainty assumed here. The higher order O(α6)
QED corrections can safely be neglected. Apart for the lead-
ing QED corrections we include also the leading finite nuclear
mass corrections. As a result our theoretical value for αE is
two orders of magnitude more accurate than the best previous
value in [25], and we recommend it as a reference for relative
measurement of static polarizabilities.

All quantities given in this work are reported in atomic
units.

II. THEORY

The nonrelativistic Hamiltonian for the lithium atom with
an infinitely heavy nucleus, and in the presence of an external
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electric field E is given by

H =
∑
a

p2
a

2
−
∑
a

Z

ra
+
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a>b

1
rab
−
∑
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E iria , (1)

where the summation convention is used for Cartesian co-
ordinates. With this Hamiltonian, the nonrelativistic electric
dipole polarizability α0 can be evaluated in second order per-
turbation theory according to the formula

α0 = −2
3

∑
a,b

〈φ0|ria
1

E0 −H0
rib|φ0〉, (2)

where φ0 and E0 are the ground state wave function and non-
relativistic energy respectively. H0 represents the Hamilto-
nian in (1) without the external field. The static polarizability
beyond the nonrelativistic approximation can be obtained by
modifying H0 by δH , which includes corrections due to the
finite mass of the nucleus, relativity and QED

δH = λHmp + α2Hrel + α3HQED, (3)

where λ = −µ/M is the ratio of the reduced electron mass to
the nucleus mass. Using δH one finds a perturbative formula
for the electric dipole polarizability

αE = α0 + δαE , (4)

where
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Components of δH are defined as (e.g. Ref.[30])
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The QED correction is given by
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where the Bethe logarithm ln k0 has the form

ln k0 ≡
〈∑

a ~pa (H0 − E0) ln
[
2 (H0 − E0)]

∑
b ~pb
〉
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and the P (1/r3
ab) is defined by

〈φ|P
(

1
r3

)
|ψ〉 = lim
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d3r φ∗(~r)

[
(10)
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r3

Θ(r − a) + 4π δ3(r) (γ + ln a)
]
ψ(~r).

Corresponding terms in equation (5) can be systematically or-
dered as

δαE = λA(0,1) + α2A(2,0) + α3A(3,0) + . . . , (11)

where A(m,n) are the expansion coefficients of αm λn.

III. DETAILS OF CALCULATIONS

The spatial part of the non-relativistic ground state wave
function of lithium φ0 is build as a linear combination of S-
type Hylleraas functions

φ = e−w1 r1−w2 r2−w3 r3rn1
23 r

n2
31 r

n3
12 r

n4
1 rn5

2 rn6
3 , (12)

with non-negative integers ni satisfying the condition

6∑
i=1

ni ≤ Ω , (13)

for a maximum shell Ω in the range from 7 up to 10. The
whole basis set is divided into five sectors, each one with its
own set of variational parameters wi [20]. To avoid numer-
ical instabilities, within each sector we drop the terms with
n4 > n5 (or n4 < n5) and for n4 = n5 drop terms with
n1 > n2 (or n1 < n2). For each Ω, the nonrelativistic en-
ergy was optimized with respect to the free parameters wi.
Details of the variational method with the Hylleraas basis can
be found in our previous paper on the lithium ground state
[21], and more accurate results are in Ref. [32]. Recently,
Wang et al. have published a work on large-scale Hylleraas
calculations with modified sector decomposition with 26 520
basis elements generated with Ω = 15 [33]. Their results
confirms Hylleraas method as outstanding in applications for
low-lying states of lithium atom with an uncertainty as small
as 5× 10−15.

The first and second order perturbation correction to the
wave function present in the formulas in (2) and (5) can be
denoted as

|φi1〉 =
∑
a

1
E0 −H0

ria|φ0〉, (14)

|φ2〉 =
∑
a

1
(E0 −H0)′

ria|φi1〉. (15)

The function (14) is represented in the basis of P -type Hyller-
aas basis functions as

φia = riae
−w1 r1−w2 r2−w3 r3rn1

23 r
n2
31 r

n3
12 r

n4
1 rn5

2 rn6
3 . (16)

The first order correction φi1 is represented in two blocks of
functions, which are relevant to core and external electrons,
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respectively. Each block contains functions up to the shell
Ω + 1, and is divided into two sectors. Then, the parameters
wi have been optimized to achieve the best upper-bound value
of α0. For second order correction φ2 we have used S-type
functions limited by the (Ω + 1)-shell, which are divided into
five sectors with the same prescription like in the construction
of the wave function φ0.

Numerical results are presented in Table I. Our value for
α0 is almost three orders of magnitude more accurate than
previously published in [23]. A possible explanation of such
an improvement is the careful optimization of the nonlinear
parameters wi. With accurate result for α0 and the first or-
der correction to the wave function φi1 we are able to include
small effects, thus refining theoretical predictions of αE . The

TABLE I: Nonrelativistic energies and electric dipole polarizabili-
ties. Hyll.- Hylleraas basis, ECG - explicitly correlated Gaussians
calculations respectively.

Ω E0 α0

7 -7.478 060 311 577 67 164.112 426 9
8 -7.478 060 322 075 18 164.112 443 0
9 -7.478 060 323 864 52 164.112 458 3
10 -7.478 060 323 902 25 164.112 458 8
∞ 164.112 459(3)

Ref.[31] - ECG. -7.478 060 323 81
Ref.[32] - Hyll. -7.478 060 323 910 2(2)
Ref.[33] - Hyll. -7.478 060 323 910 143 7(45)
Ref.[24] - ECG. 164.111 7
Ref.[23] - Hyll. 164.112(1)

objective of the calculations are finite mass, leading relativis-
tic and QED corrections to δαE using equation (5), which can

be rewritten in to the following form

−3
2
δαE = 2 〈φ0|δH|φ2〉+ 〈φi1|(δH − 〈δH〉)|φi1〉 .

(17)

It involves the evaluation of different mean values. We pre-
sented details of the first order calculations 〈φ0|δH|φ0〉 ≡
〈δH〉 in our former paper [22], and the most accurate results
have been published in [34]. The only exception is the value of
the Bethe logarithm defined in (9), which has been published
by Yan et al. [35].

Direct use of formulas (8) and (9) leads to a slow numer-
ical convergence. This is observed for operators sensitive to
short-distance inaccuracies of the wave function like p4

a and
the Dirac-δ. The solution is to regularize matrix elements
of these operators, following Drachman‘s recipes [36], in the
higher order perturbation formulas. In the paper we provide
the set of formulas for the leading relativistic correction to α0.
The following operators have been used in the regularization
of the Breit-Pauli Hamiltonian [22]∑

a

[p4
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∑
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a p

2
b , (18)
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Below, we present formulas for the components of δαE in (5)
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∑
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ab r

i
c|φi1〉 , (26)

(27)

and numerical results are collected in Tables II and III. For Dirac-δ operators we also present non-regularized results. The
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accuracy of such the mean values is at least one order of mag-
nitude lower compared to regularized expressions. The en-
hancement seems to be even more remarkable for two elec-
tron operators. Although, the calculations with regularized
forms are much more complicated, the effort is justified in the
case of lithium. It significantly reduces the uncertainty of the
total result presented in Table IV. This is different in com-
parison to the helium atom, where regularized methods are
not mandatory due to much higher numerical precision of the
wave function [28, 29].

TABLE II: Mean values 〈φ0|A|φ2〉, a - denotes results for Dirac-δ
obtained with plain evaluation.

Ω p 4
a δ(ra) δ(rab) pi

ar
−1
ab (δij+ pi

a p
i
b r−3

ab

ri
abr

j
abr
−2
ab )pj

b

8 -8 246.207 -153.250 37 -11.590 551 5 -19.945 53 -19.579 376 -82.534
9 -8 246.438 -153.251 61 -11.590 426 8 -19.947 81 -19.579 378 -82.485
10 -8 246.375 -153.249 66 -11.590 430 4 -19.948 13 -19.579 404 -82.445
11 -8 246.278 -153.247 61 -11.590 444 9 -19.948 37 -19.579 346 -82.600

11 -153.241 24a -11.587 700 3a

TABLE III: Mean values 〈φi
1|A − 〈A〉|φi

1〉, a - denotes results for
Dirac-δ obtained with plain evaluation.

Ω p 4
a δ(ra) δ(rab) pi

ar
−1
ab (δij+ pi

a p
i
b r−3

ab

ri
abr

j
abr
−2
ab )pj

b

8 -28 732.39 -561.641 21 -41.097 594 -224.650 40 -152.105 776 9 -19.63
9 -28 732.70 -561.635 21 -41.097 513 -224.659 71 -152.105 735 8 -18.30
10 -28 733.04 -561.634 93 -41.097 454 -224.662 60 -152.105 738 3 -17.60
11 -28 733.21 -561.635 57 -41.097 423 -224.663 45 -152.105 725 8 -17.34

11 -561.643 85a -41.090 327a

IV. FINAL RESULTS

The obtained αE improves the accuracy of theoretical pre-
dictions [25], since it takes into account the leading relativistic
and QED effects. It is in accordance with the result calcu-
lated within the relativistic many-body theory [27], which is
less precise due to inexact treatment of electron correlations.
Moreover, it is also in a good agreement with experimental
values [11, 12, 39], although at present they are much less
accurate. The uncertainty of our result comes from the ap-
proximate treatment of the correction related to the Bethe log-
arithm. To estimate this effect, we use the value for a free
atom, ln k0(21S) = 5.178 28(1) [35], thus neglect the depen-
dence of the Bethe logarithm on the electric field, and assume
an uncertainty of 10%, which corresponds to a 5×10−4 abso-
lute uncertainty of the final result. The higher order QED cor-
rections are at present negligible. The dominating part, known
from the one-loop self-energy in hydrogenic systems

HHQED = Z2

[
427
96
− 2 ln(2)

]∑
a

δ3(ra) , (28)

gives about a 6.3×10−5 correction to the polarizability, which
is much smaller than uncertainty of the Bethe logarithmic con-
tribution.

TABLE IV: The final value, numerical coefficients and contribu-
tions related to the fine structure constant α expansion of the elec-
tric dipole polarizability αE for 7Li. Mass of the nucleus M(7Li) =
7.016 003 425 6(45) [37]. Comparison to theoretical and experimen-
tal data is presented. Exceptα3 coefficientA(3,0), other uncertainties
are numerical origin.

order A(m,n) contribution

1 164.112 459(3) 164.112 46
α2 −995.06(2) −0.052 99
α3 11 700.(1200) 0.004 5(5)
λ −127.509 64(12) 0.009 97
Total 164.074 0(5)

Th. Ref.[26] 163.74
Th. Ref.[27] 164.08
Th. Ref.[25] 164.11(3)
Ex. Ref.[12] 164.0(3.4)
Ex. Ref.[11, 39] 164.19(1.08)

V. SUMMARY

We have calculated the electric dipole polarizability αE
of the lithium ground state, on the basis of the NRQED ap-
proach, using explicitely correlated Hylleraas functions. Our
value, the most accurate to date, is in agreement with previ-
ous ones and can be considered as a benchmark for the rel-
ativistic coupled-cluster and relativistic many-body perturba-
tion theory methods. The experimental accuracy is not yet
good enough to verify our theoretical predictions, with one
exception. The relative measurement of polarizabilities be-
tween two states of the same atom, like for 7Li, αE(21S) −
αE(21P ) = 37.146(17) by Hunter et al. [38] can reach com-
petitive accuracy. For the comparison with this experimental
value the polarizability αE of the 21P state has to be calcu-
lated including relativistic and QED corrections, and this has
not yet been done.
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