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The hydrogen molecule can be used for determination of physical constants, including

the proton charge radius, and for improved tests of the hypothetical long range force

between hadrons, which require a sufficiently accurate knowledge of the molecular

levels. In this work we perform the first step toward a significant improvement in

theoretical predictions of H2 and solve the nonrelativistic Schrödinger equation to

the unprecedented accuracy of 10−12. We hope that it will inspire a parallel progress

in the spectroscopy of the molecular hydrogen.
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I. INTRODUCTION

The spectroscopy of simple atomic systems like hydrogen1,2, hydrogenic ions3, muonic

hydrogen4, muonium, and positronium has been used to determine fundamental physical

constants and to test the quantum electrodynamic theory. Although experiments for more

complicated atomic systems like helium or lithium can be as accurate as for hydrogen, the

precision of theoretical predictions, at the moment, is not sufficient to determine physical

constants, such as the fine structure constant α, the Rydberg constant (Ry), or the absolute

value of the nuclear charge radius. In contrast, the hydrogen molecule, thanks to its sim-

plicity, has already been used for the most accurate determination of the deuteron magnetic

moment from NMR measurements5, and for the studies of the unknown hypothetical fifth

force at the atomic scale6. The precision achieved recently for transition frequencies, of an

order of 10−4 cm−1, has been verified by a series of measurements, which resulted in strong

bounds on the fifth force. We will argue in this work that it is possible to achieve 10−6 cm−1

accuracy for energy levels of the hydrogen molecule, which not only will improve tests of

quantum electrodynamic theory and will put stronger bounds on the fifth force, but also

will allow a resolution of the proton charge radius puzzle which stands as a violation of the

Standard Model of fundamental interactions7.

The improvement in theoretical predictions for the hydrogen molecule can be achieved by

the calculation of the yet unknown higher order α4 Ry quantum electrodynamic correction

and by a more accurate solution of the nonrelativistic Schrödinger equation. This second

improvement is performed in this work, while the calculation of QED effects is in progress.

The solution of the Schrödinger equation for the hydrogen molecule has been pursued al-

most since the beginning of the quantum mechanic theory. Over time, there have been many

contributions to the development of methods that would ensure increased precision of theo-

retical predictions. Heitler and London8, James and Coolidge9, Ko los and Wolniewicz10, and

many others have made their marks on the history of research on H2. Every breakthrough

in the precision of theoretical predictions has been related to the progress in computational

techniques. Fig. 1 illustrates the progress made over many decades in the precision of the

theoretical determination of the nonrelativistic dissociation energy D0 for H2.

Not always the results of calculations have been in agreement with the measured values,

which has questioned the validity of the theoretical approach. For example, in 1964 Ko los
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FIG. 1. The accuracy of theoretical predictions of the nonrelativistic dissociation energy D0 of H2

versus time, with the linear fit on the logarithmic scale.

and Wolniewicz11 solved variationally the nonadiabatic Schrödinger equation for the hydro-

gen molecule. The calculated dissociation energy appeared to be higher than the measured

one12, which was in contradiction with the variational principle. Six years later, Stwalley13

measured D0 again with the accuracy increased to a few tenths of reciprocal centimeter

and obtained a value higher than previously by 5 cm−1, in agreement with the Ko los and

Wolniewicz result14.

Further progress in theoretical predictions was related to the calculations of the lead-

ing relativistic corrections and to approximate treatment of QED effects15–18. Later on,

due to rapid development of computer power, the methods based on exponentially cor-

related Gaussian (ECG) functions have been developed both in the Born-Oppenheimer

approximation19–22 and in the direct nonadiabatic approach23,24. Very recently, we have in-

troduced a nonadiabatic perturbation theory (NAPT), which allowed the accuracy of about

10−3 cm−1 to be achieved for all the rovibrational levels of H2 and isotopomers25. How-

ever, the complexity of NAPT in the higher order of electron-nucleus mass ratio26 makes

further improvements in accuracy quite complicated. For this reason, we propose another
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approach to the direct solution of the Schrödinger equation resorting to the special integra-

tion technique for explicitly correlated exponential functions and we present its first results

in this work. Over fifty years after the pioneering work of Ko los and Wolniewicz27 employing

nonadiabatic exponential wave function, we approach the problem of solving the four-body

Schrödinger equation. Our new formulation aims at the precision level of 10−7 cm−1 for D0.

II. THEORY

The main purpose of this work is to solve accurately the stationary Schrödinger equation

ĤΨ = EΨ for a diatomic molecule with the nuclei of charge ZA and ZB and finite masses

MA and MB

Ĥ =− 1

2MA

∇2
A −

1

2MB

∇2
B −

1

2me

∇2
1 −

1

2me

∇2
2

+
ZA ZB
rAB

+
1

r12
− ZA
r1A
− ZA
r2A
− ZB
r1B
− ZB
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, (1)

using the variational approach. The trial wave function

Ψ(~r1, ~r2, ~RA, ~RB) =
K∑
k=1

ck Ŝ ψ{k}(~r1, ~r2, ~RA, ~RB) (2)

is expanded in properly symmetrized (Ŝ), four-particle basis of exponential functions

ψ{k} = exp [−α rAB − β (ζ1 + ζ2)]r
k0
AB r

k1
12 η

k2
1 ηk32 ζk41 ζk52 , (3)

where ζi = riA + riB and ηi = riA − riB are the coordinates closely related to the prolate

spheroidal coordinates of i-th electron, rij are the interparticle distances, α and β are non-

linear variational parameters, and ki are non-negative integers collectively denoted as {k}.

For its resemblance to the electronic James-Coolidge function, we call this basis function the

nonadiabatic James-Coolidge (naJC) function.

Application of the naJC function for evaluation of the matrix elements leads to a cer-

tain class of integrals. Efficient evaluation of these integrals has become feasible since the

discovery of the analytic formulas28,29 and the differential equation30,31 which is satisfied by

the master integral

g =

∫
d3ρ1
4π

∫
d3ρ2
4 π

∫
d3ρ3
4 π

e−w1 ρ1−w2 ρ2−w3 ρ3−u1 ρ23−u2 ρ31−u3 ρ12

ρ23 ρ31 ρ12 ρ1 ρ2 ρ3
. (4)

4



This differential equation has the form:

σ
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+

1

2

∂σ

∂a
g + Pa = 0 , (5)

where a is ui or wi, and where
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2
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The inhomogeneous term Pa is a combination of several logarithmic functions31. Equa-

tion (5) enables the analytic evaluation of all necessary integrals. For example, when using

the naJC basis, the master integral g takes the following form∫
d3rAB d

3r1B d
3r2B

(4π)3
e−t rAB−u (r1A+r1B)−w (r2A+r2B)

rAB r12 r1A r1B r2A r2B
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1

4uw
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. (7)

The integrals with additional positive powers of interparticle distances are obtained by

differentiation of g with respect to the corresponding nonlinear parameter, which in turn

can be expressed in terms of straightforward algebraic recursion relations. These relations

are too long to be written explicitly here, but all of them can be derived using Eq. (5).

III. NUMERICAL RESULTS

Results of our calculations for H2 are presented in Tab. I in the form a sequence of energies

resulting from increasing length (K) of expansion (2). The selection of K was made on the

basis of the saturation of consecutive ’shells’ limited by
∑5

k=1 ki ≤ Ω with k0 fixed at 30.

The observed regular convergence, obeying the inverse power low (∼K−4), permits a firm

extrapolation to the complete basis set as well as an estimation of uncertainty. The final

value agrees well with the previous estimation of −1.164 025 030 84(6) a.u. obtained by

Bubin et al.24 but has a significantly smaller uncertainty.
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TABLE I. Convergence of the Schrödinger equation eigenvalue E (in a.u.) and of the corresponding

dissociation energy D0 (in cm−1) for H2 with the size of the basis set.

Ω K E D0

10 36642 −1.164 025 030 821 4 36 118.797 732 57

11 53599 −1.164 025 030 870 9 36 118.797 743 43

12 76601 −1.164 025 030 880 4 36 118.797 745 52

13 106764 −1.164 025 030 882 5 36 118.797 745 97

∞ ∞ −1.164 025 030 884(1) 36 118.797 746 3(2)

Further increase in the accuracy of eigenvalue of the four-body Schrödinger equation is

feasible, but the problem we face is the lack of the efficient parallel code in multiprecision

arithmetics for the LDLT matrix decomposition with pivoting, which results in a long com-

putation time. However, current uncertainties in the electron-proton (proton-deuteron) mass

ratio and in the Rydberg constant are much more significant than those due to numerical

uncertainties. For example, the CODATA 201432 electron-proton mass ratio has a relative

uncertainty of 9.5 ·10−11, which affects the eigenvalue of H2 at the level of 4.3 ·10−12 a.u. and

the corresponding dissociation energy at 8.5 · 10−7 cm−1. Similarly, the current uncertainty

in the Rydberg constant affects the conversion of D0 value from a.u. to reciprocal centime-

ters at the level of 2.1 · 10−7 cm−1. This situation indicates that one cannot exclude the

possibility to determine the electron-proton mass ratio from future high precision studies of

H2.

IV. CONCLUSIONS

The approach based on explicitly correlated exponential functions and the obtained re-

sults pave the way to a significant progress in the theory of the hydrogen molecule. Not only

the ground but also all the rovibrational levels can be obtained with a similar approach. From

the experience with James-Coolidge functions in the Born-Oppenheimer approximation33,

we know that they work very well up to the distances as large as 12 a.u., therefore they can

be used also for all excited states. Nevertheless, we see the possibility of using exponential
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functions with arbitrary nonlinear parameters, for a more efficient representation of the total

wave function. In fact, the main problem we face for excited states, is the increased size of

the basis which can be solved by tuning values of all nonlinear parameters in exponential

functions and using a double or triple basis with different parameters.

Considering the leading relativistic corrections, they can be expressed in terms of an

expectation value with the nonrelativistic wave function, so their evaluation does not pose

a significant problem, and they have already been calculated in the BO approximation.

The leading quantum electrodynamic effects are more complicated due to Bethe logarithm

contribution which involves the logarithm of the nonrelativistic Hamiltonian. Its calcula-

tion beyond the BO approximation might be problematic. However, much more challeng-

ing is the calculation of the higher order α4 Ry contribution, which apart from hydrogen,

was calculated only for He atom. The dominant component of the α4 Ry—the radiative

correction—was calculated in Ref. 21 to be 16 · 10−4 cm−1, whereas its remaining part was

estimated as 8 ·10−4 cm−1. Another estimate of the non-radiative contribution, made on the

basis of an assumption that it is equal to 2α2 multiplied by the known leading relativistic

correction to D0 (≈ 0.5 cm−1), leads to a much smaller value of 5 · 10−5 cm−1. Because of

this discrepancy, a more accurate estimation of the α4 Ry correction and its uncertainty can

be obtained only by explicit calculations. In order to achieve the 10−6 accuracy, it would

probably be necessary to approximately evaluate also the α5 Ry correction as it is enhanced

by the presence of lnα−2 factors.

At the level of accuracy of 10−6 cm−1, the proton charge radius, which contributes about

1.2 ·10−4 cm−1 to the dissociation energy of H2, can be determined with 0.5% precision, pro-

vided that equally accurate measurement is performed. This certainly will resolve the proton

charge radius discrepancy, which is at the level of 4%, and will open a new era in precision

quantum chemistry. Regarding the tests of hypothetical forces, which are beyond those

in the Standard Model, the atomic scale is the natural region for the long range hadronic

interactions. Moreover, it has recently been shown that vibrational levels of the hydrogen

molecule34 are particularly sensitive to the interactions beyond the Coulomb repulsion be-

tween nuclei. So any deviation between hopefully improved theoretical predictions and the

experiment may signal a new physics.
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