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Abstract

Modern spectroscopic techniques enable the determination of the spacing between
rovibrational levels of H2 with a relative accuracy of approximately 10−11. At this
extreme level of precision, subtle quantum electrodynamics (QED) effects, such as the
electron self-interaction and vacuum polarization, are probed. A theoretical model aim-
ing to achieve similar accuracy must precisely describe not only these relatively small
QED effects but also the more significant contributions related to electron correla-
tion, coupling between electronic and nuclear motion, and relativistic effects. Although
the hydrogen molecule exhibits most of the phenomena found in larger molecules, it
is simple enough to meet the requirements mentioned above. In this article, we re-
port on enhancements to current capabilities of quantum mechanical calculations for
the hydrogen molecule. We present a method based on exponential functions that fully
captures electron correlation, or more broadly, interparticle correlation, enabling a com-
prehensive description of effects related to nuclear motion. Specifically, we solve the
four-particle Schrödinger equation without invoking commonly used approximations
such as the one-electron or the Born-Oppenheimer approximation. The only source
of nonrelativistic energy error comes from the finite size of the basis set. The explic-
itly correlated nonadiabatic wave function used here is then employed to determine
relativistic and QED effects. As a result, the dissociation energy for the lowest rovi-
brational levels in the electronic ground state of H2 has been obtained with a relative
accuracy of 7 · 10−10, while the frequencies of intervals between these levels have been
determined with sub-MHz accuracy, corresponding to a relative accuracy of 3 ·10−9. In
consequence, the discrepancies between the highest precision measurements and earlier
theoretical predictions have been resolved.
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1 Introduction

The hydrogen molecule has served as a fundamental benchmark for theoretical calculations

since the advent of quantum mechanics a hundred years ago. In 1927, Heitler and Lon-

don1 provided the first qualitative explanation of molecular binding based on quantum me-

chanical principles. A few years later, James and Coolidge2 reached an agreement with

the then-available experimental data using an explicitly correlated wave function. Early

calculations, including those by Kołos and Roothaan,3 were based on the clamped nuclei

approximation. Efforts to incorporate nuclear motion began with the evaluation of adia-

batic and nonadiabatic corrections, initiated by Kołos and Wolniewicz in the early 1960s.4–6

The most accurate calculations of these corrections to date have been performed within

the framework of nonadiabatic perturbation theory (NAPT),7 employing explicitly corre-

lated exponential wave functions and expanding the perturbational series up to second order

in the electron-to-nucleus mass ratio.8 The first direct nonadiabatic calculation of molec-

ular energy, bypassing the intermediate step of evaluating internuclear potentials, is also

attributed to Kołos and Wolniewicz, who used a product of their electronic wave function

and a harmonic oscillator nuclear function.9 A breakthrough in accurate direct nonadiabatic

calculations of the nonrelativistic component of the ground-state energy was achieved by

Adamowicz and coworkers,10 who employed explicitly correlated Gaussian (ECG) functions,

reaching the relative accuracy of 7 · 10−9. The accuracy was later improved to 3 · 10−11 by

Puchalski et al.,11 also using ECGs. Currently, the most precise direct nonadiabatic results

are obtained with exponential-type wave functions, yielding the nonrelativistic dissociation

energy with an accuracy of 10−8 cm−1, corresponding to the relative precision of 10−13.12

In parallel with studies on the coupling of nuclear and electronic motion, attempts

were made to estimate the contribution of relativistic effects to the energy of the hydrogen

molecule. In 1961, Kołos and Wolniewicz published a pioneering work4 that provided the

first estimation of these relativistic effects within the framework of the Born–Oppenheimer

(BO) approximation. Relativistic calculations were not pursued until 1993, when Wolniewicz
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presented ground-state relativistic energies augmented by approximate QED corrections.13

A significant advancement occurred in 2009 with the introduction of explicitly correlated

Gaussian (ECG) functions for evaluating relativistic matrix elements, which enabled accu-

rate determination of the dissociation energy, including the complete leading-order quantum

electrodynamic (QED) correction.14,15 The development of the so-called rECG functions,

incorporating the cusp 1 + r12/2 prefactor, facilitated efficient quadrature of nonstandard

two-center integrals16 and enabled evaluation of the higher-order QED correction potential.

Subsequent studies addressed finite nuclear mass relativistic corrections using NAPT, lead-

ing to the derivation of the relativistic recoil potential,17 followed by improvements in the

numerical accuracy of the QED correction components.18

A fully nonadiabatic treatment of the recoil effect in the relativistic correction for H2,

incorporating finite nuclear mass terms directly into the relativistic operators, was first rigor-

ously implemented in 2018.11,19 The complete expression for the leading nonadiabatic QED

correction was subsequently introduced in 2019.11 Nonetheless, the numerical evaluation of

both types of corrections remained confined to the ground rovibrational state.

A more detailed account of the centennial history behind the effort to determine the

precise total energy of the hydrogen molecule can be found in the review [20]. A key aspect of

this theoretical research has been the ongoing interaction with experimental results. Over the

years, the fruitful interplay between theory and experiment has led to increased precision in

both fields. Of particular interest are measurable separations between energy levels, including

the dissociation energy. Thanks to the long lifetimes of rovibrational states, counted in

days,21 H2 is an attractive subject for highly precise spectroscopic measurements. The

highly accurate rovibrational ladder of energy levels and the infrared (IR) spectrum of the

hydrogen molecule are widely utilized across various disciplines, including astronomy,22–26

plasma physics,27 physical chemistry,28,29 and metrology.30,31

Throughout a century of research on the hydrogen molecule, the agreement between the-

ory and experiment has undergone continuous, albeit diminishing, fluctuations. For instance,
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just a decade ago, the theoretical predictions and measurements of the energy of rovibra-

tional transitions in H2 isotopologues agreed to within 10 MHz (≈ 0.000 33 cm−1).32–52 This

precision opened the possibility for testing QED effects on rotational transitions,53 setting

bounds on a hypothetical fifth force,54 and on the number of extra spatial dimensions.55,56

However, recent advancements in spectroscopic techniques have enabled measurements to

achieve an accuracy of the order of 10 kHz.57–73 As a result, discrepancies between theory

and experiment at the level of several megahertz have been revealed. It was suspected that

the incomplete treatment of relativistic and QED recoil effects could be the main reason for

these discrepancies.

In this article, we report the results of our calculations, which were performed using a

nonadiabatic exponential wave function. Such functions possess correct asymptotic proper-

ties, but are extremely rarely used in molecular calculations due to difficulties in evaluating

corresponding integrals. We have overcome these difficulties74,75 and developed a method

applicable to arbitrary rovibrational excitation levels of diatomic two-electron molecules,

like H2, HeH+, and their isotopologues.12,76–78 We also present results from using the direct

nonadiabatic method to estimate relativistic and QED corrections. With this approach, we

were able to bring the theoretical predictions back into agreement with the measurements

at a new sub-MHz level of accuracy.

2 Theoretical background

Our calculations are based on the nonrelativistic quantum electrodynamic (NRQED) theory,

which describes the energy of a bound rovibrational level of a light molecule as a function of

the fine-structure constant α. This energy can be expanded in powers of α and its logarithm

(atomic units are used throughout this section)

E(α) = mα2E(2) +mα4E(4) +mα4E
(4)
fs +mα5E(5) +mα6E(6) +mα7E(7) + . . . . (1)
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Subsequent terms of this expansion can be identified as the nonrelativistic energy, the rel-

ativistic correction, the finite nuclear size correction, the QED correction, and higher-order

corrections. An important feature of NRQED is that the coefficients E(n) of this expansion

can be expressed as expectation values of some effective Hamiltonians H(n) with the nonrel-

ativistic wave function Ψ. These expectation values can be evaluated using a fully four-body

wave function or, if this is infeasible, using approximations that involve the separation of

nuclear and electronic variables, as in e.g., NAPT. Obviously, the former approach, referred

to as the direct nonadiabatic method, is preferable because it fully accounts for the effects of

the finite nuclear mass.

2.1 The wave function

The wave function must reflect the rotational and electronic degrees of freedom present in

the ground electronic state (1Σ+
g ) of the hydrogen molecule. Ψ should also account for the

coupling between the rotational angular momentum of nuclei and orbital angular momentum

of electrons L⃗. This coupling results in the total spatial angular momentum, represented by

J⃗ . Considering these factors, we can construct the wave function Ψ as follows:

ΨJ,M =
∑
Λ

ΨJ,M
Λ , (2)

where J and M are the total rotational and magnetic quantum numbers, respectively. The

latter is the projection of J⃗ onto the laboratory frame’s Z axis. The summation index Λ

is an eigenvalue of the projection of L⃗ on the internuclear axis and runs over subsequent

electronic states Σg,Πg,∆g, . . . , which correspond to |Λ| = 0, 1, 2, . . . .

The functions ΨJ,M
Λ are represented as the linear combination

ΨJ,M
Λ =

∑
{k}

c{k} (1 + P12)ψ
J,M
{k},Λ (3)
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of four-particle basis functions

ψJ,M
{k},Λ = QΛ e

−αΛR−βΛ(ζ1+ζ2)Rk0 rk112 η
k2
1 ηk32 ζk41 ζk52 (4)

with elliptic-like coordinates ζ1 = r13 + r14, η1 = r13 − r14, ζ2 = r23 + r24, η2 = r23 − r24, and

R⃗ = r⃗34. From this point onward, indices 1 and 2 assigned to the distance between particles

r, and later also to the particle momentum p⃗ and mass m, will refer to the electrons, while

indices 3 and 4 will correspond to protons. The exponents ki are non-negative integers

collectively denoted as {k}. The basis function is symmetric with respect to the inversion

when k2 + k3 is even and antisymmetric when this sum is odd. The operator P12 permutes

electrons, while the factor QΛ determines the electronic angular momentum associated with

a given basis function. Explicit expressions for QΛ corresponding to the lowest angular

momentum values are provided below:

QΣ = YM
J for J ≥ 0 , (5)

QΠ =

√
2

J(J + 1)
ρiR

(
∇i

R YM
J

)
for J ≥ 1 , (6)

Q∆ =

√
4

(J − 1)J(J + 1)(J + 2)

× 1

2

(
ρiρ′j + ρjρ′i − δij⊥ ρ⃗ · ρ⃗

′
)

×R2
(
∇i

R∇
j
RY

M
J

)
for J ≥ 2 . (7)

In addition to a J-dependent normalization constant, the QΛ consists of the electronic and

the nuclear parts. The electronic part is constructed from combinations of the vectors ρ⃗ ≡ ρ⃗a

(a = 1 or 2), which correspond to the components of the electron-nucleus vectors r⃗a3 that are

perpendicular to the molecular axis. These components are defined as ρia = (δij − ninj) rja3,

where n⃗ = R⃗/R denotes the normalized internuclear vector. In this context, we utilize the

Einstein summation convention. The nuclear part, in turn, involves derivatives with respect

to nuclear coordinates of the solid harmonic YM
J (n⃗).
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The basis function described in Eq. (4) is referred to as the nonadiabatic James-Coolidge

(naJC) function. This name reflects its similarity to the classic two-electron function intro-

duced initially by James and Coolidge.2 Their inspiration came from Hylleraas’ function,

which was designed for the helium atom in 1929.79

The nonlinear (αΛ, βΛ) and linear c{k} parameters are determined variationally by solving

the four-body Schrödinger equation H(2)ΨJ,M = E(2)ΨJ,M with the nonrelativistic Hamilto-

nian

H(2) = T + V , (8)

T =
4∑

a=1

m

2ma

p2a , (9)

V =
1

r12
− 1

r13
− 1

r23
− 1

r14
− 1

r24
+

1

r34
. (10)

According to the notation introduced earlier, for H2, m1 = m2 = m is the electron mass,

and m3 = m4 = mp denotes the mass of the proton. A more detailed description of the

Ansatz and the results of nonrelativistic calculations performed using this wave function can

be found in Refs. 74 and 12. At this point, we merely note that the nonrelativistic energy

can be determined with an accuracy limited only by the uncertainties in physical constants,

such as the proton-to-electron mass ratio and the Rydberg constant.

The nonrelativistic wave function described above is utilized to calculate the expectation

values of operators present in the relativistic and QED HamiltoniansH(n). Relevant formulas

are provided in the following subsections.

2.2 Relativistic correction, E(4)

The relativistic correction is evaluated as an expectation value of the spin-independent Breit-

Pauli Hamiltonian H(4). It consists of the mass velocity term, the Breit orbit-orbit terms,
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and the Dirac delta terms

E(4) = −

〈
Ψ

∣∣∣∣∣
4∑

a=1

m3

8m3
a

p4a

∣∣∣∣∣Ψ
〉

− 1

2

〈
Ψ

∣∣∣∣∣
3∑

a=1

4∑
b=a+1

m2 sa,b
mamb

pia

(
δij

rab
+
riabr

j
ab

r3ab

)
pjb

∣∣∣∣∣Ψ
〉

− π
〈
Ψ
∣∣δ3(r12)∣∣Ψ〉+ π

2

(
1 +

m2

m2
p

)〈
Ψ

∣∣∣∣∣
2∑

a=1

4∑
b=3

δ3(rab)

∣∣∣∣∣Ψ
〉
. (11)

In the above, sa,b = 2 [δa,1 · δb,2 + δa,3 · δb,4]−1 provides a proper sign. To achieve the target of

sub-MHz accuracy, it is essential to consider another small relativistic effect arising from the

spatial distribution of the proton’s charge. The leading correction due to the finite nuclear

size, which is formally of the order of α4, is given by80

E
(4)
fs =

2π

3

〈
Ψ

∣∣∣∣∣∑
a,X

δ3(raX)

∣∣∣∣∣Ψ
〉

r2p

λ̄2
, (12)

where rp is the root mean square charge radius of the proton and λ̄ is the reduced electron

Compton wavelength. All the expectation values mentioned above were calculated using

the naJC wave function. Detailed information regarding the newly developed integration

methods, which are suitable for evaluating these expectation values, along with their regu-

larization and numerical convergence, can be found in Refs. 75 and 81. Preliminary results

for the lowest rotational levels of H2 are also shown therein.

In Eq. (11), the nucleus-nucleus Dirac delta interaction is omitted due to its negligible

value. Contributions from the coupling between the nuclear spin and rotation, as well as be-

tween nuclear spins, are small because they depend quadratically on the electron-to-nucleus

mass ratio. These effects are usually undetectable in infrared spectroscopy. Nonetheless,

they were measured by Ramsey in 1971,82 which allowed us, using the four-body Gaussian

wave function, to determine the quadrupole moment of the deuteron to an accuracy bet-

ter than for any other element of the periodic table.30 In this work, the energy levels are

averaged over the nuclear spin orientations; therefore, no hyperfine coupling is considered.
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2.3 QED correction, E(5)

The next term of the α-expansion (1) is the leading spin-independent quantum electrody-

namic correction represented by the following expression, including terms up to the first

order in the electron-to-nucleus mass ratio11

E(5) = − 2

3 π

m2

µ2
D ln k0 (13)

− 7

6 π

〈
Ψ

∣∣∣∣ 1r312
∣∣∣∣Ψ〉− 7

6 π

2∑
a=1

4∑
b=3

m

mb

〈
Ψ

∣∣∣∣ 1r3ab
∣∣∣∣Ψ〉

+
4

3

2∑
a=1

4∑
b=3

{
19

30
− 2 lnα +

m

mp

(
31

6
− 1

2
lnα

)}〈
Ψ
∣∣δ3(rab)∣∣Ψ〉

+

(
164

15
+

14

3
lnα

) 〈
Ψ
∣∣δ3(r12)∣∣Ψ〉 .

The atomic reduced mass, defined as µ = mpm/ (mp +m), is used in this context. Eq. (13)

consists of five terms. The first term contains the so-called Bethe logarithm

ln k0 =
1

D

〈
Ψ

∣∣∣∣∣
(

2∑
a=1

p⃗a

)
(H − E) ln [2(H − E)]

(
2∑

a=1

p⃗a

)∣∣∣∣∣Ψ
〉
, (14)

where

D = 2π
2∑

a=1

4∑
b=3

〈
Ψ
∣∣δ3(rab)∣∣Ψ〉 . (15)

The next two expressions represent the electron-electron and electron-nucleus Araki-Sucher

terms, respectively. These expectation values are defined as〈
Ψ

∣∣∣∣ 1r3
∣∣∣∣Ψ〉 = lim

ϵ→0

[〈
Ψ

∣∣∣∣θ(r − ϵ)

r3

∣∣∣∣Ψ〉+ 4π(γ + ln ϵ)
〈
Ψ
∣∣δ3(r)∣∣Ψ〉] , (16)

where the symbol γ denotes the Euler-Mascheroni constant, and θ is the Heaviside function.

Finally, there are two terms in Eq. (13) that involve electron-electron and electron-nucleus

Dirac deltas. Currently, only these two numerically dominant terms have been evaluated us-

ing the four-body naJC wave function. The remaining three terms of Eq. (13) were estimated

within the framework of the BO approximation, which significantly influenced the overall
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error budget. The Bethe logarithm and the electron-electron Araki-Sucher BO potentials

were taken from Ref. 18, while the electron-nucleus Araki-Sucher potential is from Ref. 83.

2.4 Higher-order QED correction, E(6)

The higher-order QED contribution, denoted as E(6,0), is calculated within the BO approx-

imation, using the wave function Ψ(r⃗, R⃗) = ϕ(r⃗)χ(R⃗). The energy E(6,0) is expressed in

terms of two internuclear potentials: the Breit-Pauli potential E (4,0)(R) and the higher-order

relativistic potential E (6,0)(R), which are defined as follows16

E (4,0)(R) =
〈
ϕ
∣∣H(4,0)

∣∣ϕ〉
el
, (17)

E (6,0)(R) =
〈
ϕ
∣∣H(6,0)

∣∣ϕ〉
el

+

〈
ϕ

∣∣∣∣H(4,0) 1

(Eel −Hel)′
H(4,0)

∣∣∣∣ϕ〉
el

. (18)

The HamiltoniansH(4,0) andH(6,0) are the leading and higher-order relativistic Hamiltonians,

respectively, both in the nonrecoil limit indicated by 0 in the superscript. This limit entails

neglecting all terms that depend on nuclear mass. The expectation value symbol ⟨. . . ⟩el

means integration over electronic variables only. Hel ≡ H(2,0) and Hn represent the electronic

and nuclear components of the nonrelativistic Hamiltonian H(2), respectively. The explicit

formulas for E (6,0)(R) are too extensive to be presented here—they can be found in Ref. 16.

The total correction is obtained by integration over the nuclear variables

E(6,0) =
〈
χvJ

∣∣E (6,0)(R)
∣∣χvJ

〉
+

〈
χvJ

∣∣∣∣∣E (4,0)(R)
1

(E
(2,0)
vJ −Hn)′

E (4,0)(R)

∣∣∣∣∣χvJ

〉
, (19)

where χ is the nuclear wave function obtained by solving the radial Schrödinger equation.

More details on how to evaluate this correction can be found in the original article.16
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2.5 Estimation of E(7)

The E(7) term is a particularly problematic correction because its complete form is still

unknown. It is therefore estimated by a dominating term inferred from the atomic hydrogen

theory80

E(7) ≈ π

〈
Ψ

∣∣∣∣∣
2∑

a=1

4∑
b=3

δ3(rab)

∣∣∣∣∣Ψ
〉{

1

π

[
A60 + A61 lnα−2

+ A62 ln2 α−2
]
+

1

π2
B50 +

1

π3
C40

}
. (20)

This approximation adds another significant contribution to the error budget.

2.6 Atomic limits

This section provides a comprehensive list of atomic thresholds relevant to the subsequent

terms of Eq. (1). These atomic limits can be used in the calculation of the dissociation

energy Dv,J = 2E(H)− E(H2) for a specific rovibrational level (v, J).

E(2)(H) = − µ

2m
, (21)

E(4)(H) = − µ3

8m3

[
1 + 3

m

mp

+
m2

m2
p

]
, (22)

E
(4)
fs (H) =

2µ3

3m3

r2p

λ̄2
, (23)

E(5)(H) = − 4

3 π

µ

m

(
ln kH0 + ln

µ

m

)
+

7

6 π

m

mp

4 ln 2

+
4

3 π

µ3

m3

[
19

30
− 2 lnα +

m

mp

(
31

6
− 1

2
lnα

)]
, (24)

E(6)(H) = − 1

16
+

(
427

96
− 2 ln 2

)
+

(
−9 ζ(3)

4 π2
− 2179

648 π2
+

3 ln 2

2
− 10

27

)
(25)

E(7)(H) =
µ3

m3

[
1

π

(
A60 + A61 lnα−2 + A62 ln2 α−2

)
+

1

π2
B50 +

1

π3
C40

]
. (26)

ζ is the Riemann zeta function. The atomic Bethe logarithm is defined as follows

ln kH0 =
1

2
⟨p⃗ (H − E) ln [2(H − E)] p⃗⟩ (27)
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with the atomic nonrelativistic Hamiltonian H = p2/2 − 1/r. The numerical value of the

hydrogenic Bethe logarithm is know to a high accuracy,84 ln kH0 = 2.984 128 555 765 498. In

the present work, Eqs. (21)-(23) were employed in molecular calculations performed using

the nonadiabatic wave function. The Bethe logarithm, in turn, was evaluated in BO ap-

proximation, which means that the first term in Eqs. (13) and (24) are modified by taking

the infinite nuclear mass limit. The expression E(6)(H) represents the atomic limit in the

BO approximation, too. Three distinct components of Eq. (25) arise from the Dirac theory,

one-loop, and two-loop QED corrections, respectively. Finally, the factor µ3/m3 in E(7)(H)

reflects the usage of the Dirac delta calculated with the fully nonadiabatic molecular wave

function.

3 Results

Numerical calculations were performed using the CODATA 2022 recommended physical con-

stants.80 Specifically, the following constants were used: the proton-to-electron mass ratio,

mp/m = 1836.152 673 426(32), the inverse fine structure constant, 1/α = 137.035 999 177(21),

the Rydberg constant, R∞ = 109 737.315 681 57(12) cm−1, the proton charge radius, rp =

0.84075(64) fm, the reduced electron Compton wavelength, λ̄ = 386.159 267 44(12) fm, and

the speed of light in vacuum, c = 299 792 458 ms−1. To convert our numerical results from

atomic units to wavenumbers we multiply the E(n) by 2R∞ αn−2, while conversion to MHz

requires multiplication by 2 · 10−4 R∞ c αn−2.

In accordance with Eq. (1), the total energy of a rovibrational level is calculated as the

sum of the nonrelativistic energy and successive corrections of increasing order in α, as out-

lined in the previous Section. The convergence of individual relativistic expectation values,

evaluated within the framework of the direct nonadiabatic approach, is demonstrated in

the Supporting Information tables. Expectation values involving the electron-nucleus Dirac

delta, which appear in corrections E(4)
fs , E(5), and E(7), can also be inferred from this data.

Analyzing this convergence provides a foundation for estimating the uncertainties associated
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with individual corrections and the total energy. Furthermore, the results presented in these

tables may serve as a benchmark for other calculation methods.

3.1 Dissociation energy

Table 1 provides the final results of the dissociation energy Dv,J for the lowest vibrational

(v = 0, 1, 2) and rotational (J = 0, . . . , 4) quantum numbers. In addition to the total disso-

ciation energy, the table includes all components of Dv,J that pertain to subsequent terms

E(n) of the α-expansion. Evaluating these components requires referencing the correspond-

ing atomic limits E(n)(H), which are discussed in Sec. 2.6. The numerical values of E(n)(H)

are considered exact, meaning they do not affect the uncertainty of Dv,J .

As mentioned in the previous Section, there are three components of the leading QED cor-

rection, E(5), that were determined within the BO approximation. To enhance the precision

of this correction’s final value, we utilized the precise values of these components obtained

for the ground level (0, 0) from the direct nonadiabatic calculations with the naECG wave

function.11 For all levels (v, J), we applied a uniform shift to these three components based

on the difference between the nonadiabatic value and the value obtained from the BO ap-

proximation. Thus, the shifted contribution to the dissociation energy from the component

Q can be expressed as QBO
v,J − QBO

0,0 + QnaECG
0,0 . The total shift from all three components is

approximately −1.1 · 10−5 cm−1. Because this is a uniform shift applied to all energy levels,

it does not alter the spacing between them.

The uncertainties related to E(2) and E(4) are purely numerical; they arise from the finite

size of the naJC basis set and have a negligible influence on the overall error budget. The

most considerable contributions to the uncertainty of Dv,J come from E(5) and E(7) terms.

In the first case, the primary source of error is the omission of finite mass effects in the

three aforementioned components. Their uncertainties were estimated as
(
QBO

v,J −QBO
0,0

)
/µn,

where µn = mp/2 is the nuclear reduced mass. In the latter case, the error comes from the

incompleteness of the expression for E(7). In summary, the uncertainties associated with

Dv,J are less than 3.3 · 10−5 cm−1(≈ 1 MHz).
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Table 1: Theoretically predicted dissociation energy Dv,J for the five lowest rotational levels
in the vibrational states v = 0, 1, 2 of H2 [cm−1]. Components of Dv,J related to subsequent
terms E(n) of the α-expansion (1) are also included.

Component D0,0 D1,0 D2,0

E(2) 36 118.797 744 716 0(40) 31 957.633 674 200(20) 28 031.795 253 030(20)
E(4) −0.531 217 263(61) −0.554 783 333(62) −0.572 886 764(67)

E
(4)
fs −0.000 030 900(33) −0.000 027 745(30) −0.000 024 797(27)

E(5) −0.194 910 21(15) −0.173 629(10) −0.153 814(20)
E(6) −0.002 057 7(66) −0.001 866 4(60) −0.001 686 8(54)
E(7) 0.000 101(25) 0.000 090(23) 0.000 081(20)
Total 36 118.069 630(26) 31 956.903 458(26) 28 031.066 922(29)

Component D0,1 D1,1 D2,1

E(2) 36 000.312 484 230(10) 31 845.060 614 420(10) 27 925.004 807 940(20)
E(4) −0.533 800 04(31) −0.557 145 56(38) −0.575 027 13(41)

E
(4)
fs −0.000 030 749(33) −0.000 027 603(30) −0.000 024 664(27)

E(5) −0.193 889 06(52) −0.172 669(11) −0.152 912(20)
E(6) −0.002 048 8(66) −0.001 858 1(60) −0.001 678 9(54)
E(7) 0.000 100(25) 0.000 090(22) 0.000 080(20)
Total 35 999.582 816(26) 31 844.329 004(25) 27 924.275 245(29)

Component D0,2 D1,2 D2,2

E(2) 35 764.429 230 800(10) 31 620.965 513 400(10) 27 712.440 655 800(20)
E(4) −0.538 907 76(38) −0.561 814 01(38) −0.579 253 86(41)

E
(4)
fs −0.000 030 451(33) −0.000 027 322(29) −0.000 024 399(26)

E(5) −0.191 863 6(15) −0.170 765(12) −0.151 123(21)
E(6) −0.002 031 2(65) −0.001 841 5(59) −0.001 663 3(53)
E(7) 0.000 099(25) 0.000 089(22) 0.000 079(20)
Total 35 763.696 497(26) 31 620.231 155(26) 27 711.708 670(29)

Component D0,3 D1,3 D2,3

E(2) 35 413.288 018 990(10) 31 287.416 511 940(20) 27 396.103 055 210(20)
E(4) −0.546 427 54(38) −0.568 680 46(38) −0.585 462 71(41)

E
(4)
fs −0.000 030 009(32) −0.000 026 906(29) −0.000 024 007(26)

E(5) −0.188 866 8(30) −0.167 948(13) −0.148 477(22)
E(6) −0.002 005 2(64) −0.001 816 9(58) −0.001 640 1(53)
E(7) 0.000 098(24) 0.000 088(22) 0.000 078(20)
Total 35 412.550 787(25) 31 286.678 128(26) 27 395.367 529(30)

Component D0,4 D1,4 D2,4

E(2) 34 950.015 238 450(20) 30 847.433 710 540(20) 26 978.912 007 530(20)
E(4) −0.556 197 44(35) −0.577 589 17(37) −0.593 503 70(40)

E
(4)
fs −0.000 029 431(32) −0.000 026 362(28) −0.000 023 495(25)

E(5) −0.184 946 0(49) −0.164 264(15) −0.145 018(24)
E(6) −0.001 971 1(63) −0.001 784 8(57) −0.001 609 8(52)
E(7) 0.000 096(24) 0.000 086(21) 0.000 076(19)
Total 34 949.272 190(25) 30 846.690 132(26) 26 978.171 929(31)
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3.2 Rovibrational transition energy

Establishing reliable uncertainty for a transition frequency ν is challenging due to the partial

error cancellation between two rovibrational levels. The overall uncertainty u is calculated

as the root-mean-square of the individual uncertainties u(n), which arise from the terms

ν(n) = ∆E(n) in the α-expansion. To determine the u(n) values, we have applied distinct

approaches depending on how each ν(n) term was evaluated. For ν(n) obtained with the

direct nonadiabatic approach (as ν(2) and ν(4)), the uncertainty was estimated as a maximum

uncertainty of both levels. In contrast, for ν(n) calculated using the BO approximation (as

ν(5) and ν(6)), the uncertainty was estimated by the formula ν(n)/µn. This scaling accounts

for the missing finite nuclear mass effects. Since the complete ν(7) is currently unknown, and

its dominant term from the atomic hydrogen theory only provides an estimate, we assumed a

conservative error margin of 25% for this contribution. The uncertainty of ν(4)fs is determined

by that of the proton charge radius and is relatively small compared to the main error

components.

Having determined the uncertainties, we are now in a position to compare our results with

experimental values — a crucial step in validating the accuracy and reliability of the theoreti-

cal model. Among the numerous rovibrational intervals measured for H2, only nine are known

with sub-MHz precision. These measurements, taken within the last two years,69–71,73,85

encompass both purely rotational transitions and those belonging to the fundamental vi-

brational band as well as the first overtone band. Table 2 presents a compilation of these

experimental frequencies alongside their theoretical counterparts. Each panel in the table is

dedicated to a specific transition line and includes all components that contribute to the final

theoretical frequency, along with their individual error bars. The bottom row of each panel

displays the difference between the theoretical and experimental frequencies, accompanied

by the combined uncertainty, σ. We observe agreement for all nine lines, with the largest

difference being 1.4 σ for the Q1(1) line. Figure 1 illustrates these differences relative to

the ±1 MHz band, clearly demonstrating that the theoretical predictions and spectroscopic

15



measurements are in sub-MHz agreement. In some cases, the experimental results are an

order of magnitude more accurate than the theoretical predictions, which highlights the need

for further development of computational methods, particularly for ν(7).

Table 2: Comparison of theoretically predicted transition frequencies (in MHz) for H2 with
nine experimental results that were measured with sub-MHz accuracy. The components
ν(n) = ∆E(n) of the theoretical frequency, corresponding to subsequent terms of the α-
expansion (1), are also included. CODATA 2022 recommended physical constants were
used.80

Component S0(0) : (0, 2) → (0, 0) S0(1) : (0, 3) → (0, 1) Q1(1) : (1, 1) → (0, 1)

ν(2) 10 623 700.7825(3) 17 598 550.7339(4) 124 571 317.1657(4)
ν(4) 230.555(11) 378.562(11) 699.881(11)
ν(5) −91.335(47) −150.565(77) −636.16(33)
ν(6) −0.793(3) −1.308(4) −5.719(18)
ν(7) 0.040(10) 0.070(17) 0.310(78)

ν
(4)
fs −0.01346(2) −0.02219(3) −0.0943(1)

Theory 10 623 839.229(49) 17 598 777.469(80) 124 571 375.38(34)
Experiment 10 623 839.09(39)a 17 598 777.46(75)a 124 571 374.73(31)b

Difference 0.14(39) 0.01(75) 0.65(46)
Component S1(0) : (1, 2) → (0, 0) Q2(1) : (2, 1) → (0, 1) Q2(2) : (2, 2) → (0, 2)

ν(2) 134 841 618.0297(4) 242 091 633.7378(5) 241 392 544.6686(5)
ν(4) 917.267(11) 1235.957(12) 1209.546(12)
ν(5) −723.86(37) −1228.46(63) −1221.38(63)
ν(6) −6.482(21) −11.089(36) −11.031(35)
ν(7) 0.340(85) 0.59(15) 0.59(15)

ν
(4)
fs −0.1072(2) −0.1824(3) −0.1814(3)

Theory 134 841 805.19(38) 242 091 630.55(65) 241 392 522.22(65)
Experiment 134 841 805.102(15)c 242 091 630.140(9)d 241 392 522.00(34)a

Difference 0.09(38) 0.41(65) 0.22(73)
Component Q2(3) : (2, 3) → (0, 3) S2(0) : (2, 2) → (0, 0) S2(1) : (2, 3) → (0, 1)

ν(2) 240 349 158.6533(5) 252 016 245.4511(5) 257 947 709.3872(5)
ν(4) 1170.245(12) 1440.101(12) 1548.807(12)
ν(5) −1210.85(62) −1312.71(68) −1361.42(70)
ν(6) −10.945(35) −11.824(38) −12.253(39)
ν(7) 0.59(15) 0.63(16) 0.66(17)

ν
(4)
fs −0.1799(3) −0.1949(3) −0.2021(3)

Theory 240 349 107.52(64) 252 016 361.45(69) 257 947 884.98(72)
Experiment 240 349 107.15(71)a 252 016 361.164(8)e 257 947 884.597(30)a

Difference 0.36(96) 0.28(69) 0.39(72)
aFleurbaey et al., 2023;69 bLamperti et al., 2023;70 cStankiewicz et al., 2025;73 dDiouf et al., 2024;85

eCozijn et al., 2023;71
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Figure 1: Differences between theoretically predicted and experimental line positions shown
against the ±1 MHz error band (in blue) and the theoretical error band (in green). The
error bars around the dots come from the experiment.

Unlike earlier calculations86 that estimated the relativistic and quantum electrodynamic

corrections using the Born-Oppenheimer approximation, the current direct nonadiabatic re-

sults include the finite nuclear mass effects in both the relativistic and QED corrections.

For frequencies in the first overtone the difference between current and previous calcula-

tions reaches 3 MHz, in the fundamental band it is approximately 1.5 MHz, and for purely

rotational transitions it is about 0.1 MHz. The small third value demonstrates effective

cancellation of recoil effects within a single oscillation band. The change in the total recoil

effect is primarily due to relativistic and the leading QED components of the frequency.

In addition to the nine transition frequencies listed in Table 2, other energy gaps of

interest for future measurements can be evaluated by calculating the difference of dissociation

energies from Table 1. An upper bound for the uncertainty associated with these transitions

can be inferred from Table 2: 0.1 MHz for rotational transitions, 0.4 MHz for the fundamental

band, and 0.8 MHz for the first overtone. The energies for both the levels and transitions

will be included in the new release of the publicly accessible H2Spectre program.86
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4 Conclusion

We have shown that the relative uncertainty of the theoretically predicted rovibrational

intervals in H2 is about three parts per billion. This indicates that the calculated vibra-

tional transition frequencies have an uncertainty at the tenth significant figure. The results

obtained demonstrate that finite nuclear mass effects significantly impact not only nonrela-

tivistic energy but also relativistic and QED corrections. By incorporating these effects, the

theoretical predictions matched the experimental results with sub-MHz accuracy.

Attaining the current level of experimental accuracy is essential for testing QED within

molecular systems, as well as for interpreting any discrepancies in terms of hypothetical

unknown forces. There are only a few instances of physical systems where such a level of

agreement between molecular or atomic spectroscopy and first-principles calculations has

been achieved. Examples include the transitions in hydrogen87,88 and helium atoms,89 as

well as those in the hydrogen molecular ion.90

Further advancements will require a fully nonadiabatic calculation of the Bethe logarithm

and Araki-Sucher correction for excited rovibrational levels. We believe this task is feasible

since it has already been accomplished at the ground rovibrational level.11
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