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The frequencies of infrared transitions in the electronic ground state of the hydrogen molecule
have been obtained with sub-MHz accuracy. Calculations have been performed in the nonrelativis-
tic quantum electrodynamics framework using a four-particle explicitly correlated wave function
in the exponential basis. In consequence, the long-standing discrepancies—up to several mega-
hertz—between high-precision measurements and previous theoretical predictions have been re-
solved.

The rovibrational ladder of energy levels and the in-
frared (IR) spectrum of the hydrogen molecule is widely
used in astronomy [1–5], plasma physics [6], physical
chemistry [7, 8], and metrology [9, 10]. The long life-
times of rovibrational states, counted in days [11], make
H2 an attractive subject for highly precise spectroscopic
measurements. On the other hand, the structural sim-
plicity of this four-particle molecule enables ultra-high-
precision calculations that fully account for interparticle
correlation, finite-nuclear-mass, relativistic, and QED ef-
fects. Just a decade ago, the theoretical predictions and
measurements of the energy of rovibrational transitions
in H2 isotopologues agreed to within 10 MHz [12–32].
This precision opened the possibility for testing quantum
electrodynamics (QED) effects on rotational transitions
[33], setting bounds on a hypothetical fifth force [34],
and on the number of extra spatial dimensions [35, 36].
Recently, advancements in spectroscopic techniques have
allowed measurements to reach an accuracy of the order
of 10 kHz [37–53]. As a result, discrepancies between
theory and experiment at the level of several megahertz
have been revealed. It was suspected that the incomplete
treatment of relativistic and QED recoil effects could be
the main reason for these discrepancies.

In this Letter, we present the results of our calculations
performed using a nonadiabatic exponential wave func-
tion. Such functions possess correct asymptotic proper-
ties, but are extremely rarely used in molecular calcula-
tions, due to difficulties in evaluating corresponding inte-
grals. We have overcome these difficulties and developed
a method applicable to arbitrary rovibrational excitation
levels. We show that for the rovibrational transitions in
H2, the discrepancy between theory and experiment has
been reduced to a fraction of a megahertz, which is about
three parts per billion (ppb). This achievement indicates
that our calculations predict up to 10 significant digits of
transition frequencies. There are not many instances of
physical systems where such a level of agreement between
molecular or atomic spectroscopy and first-principles cal-
culations has been reached. Examples include the transi-

tions in hydrogen [54, 55] and helium atoms [56], as well
as those in the hydrogen molecular ion [57–60].
Our calculations are based on the nonrelativistic quan-

tum electrodynamic (NRQED) theory, where the energy
of a bound rovibrational level of a light molecule is ex-
pressed as the expansion in powers of the fine-structure
constant α

E(α) = α2mE(2) + α4mE(4) + α5mE(5)

+ α6mE(6) + α7mE(7) + . . . . (1)

Subsequent terms of this expansion can be identified as
the nonrelativistic energy, the relativistic correction, the
QED correction, and higher-order corrections. An im-
portant feature of NRQED is that the coefficients E(n)

of this expansion can be expressed as expectation values
of some effective Hamiltonians H(n) with the nonrela-
tivistic wave function Ψ. These expectation values can
be evaluated using a fully four-body wave function or,
if this is unfeasible, using approximations involving the
separation of nuclear and electronic variables. Of course,
the first approach is preferable because it fully accounts
for the finite-nuclear-mass effects.
Such a wave function must reflect the rotational and

electronic degrees of freedom present in the hydrogen
molecule. Ψ should also account for the coupling be-
tween the rotational angular momentum of nuclei and
orbital angular momentum of electrons L⃗. Having this in
mind, we construct the wave function Ψ as follows

ΨJ,M =
∑
Λ

ΨJ,M
Λ , (2)

where J and M are the total rotational and mag-
netic quantum numbers. The summation index Λ is
an eigenvalue of the projection of L⃗ on the internu-
clear axis and runs over subsequent electronic states
Σg,Σu,Πg,Πu,∆g,∆u, . . . , which corresponds to |Λ| =
0, 1, 2, . . . . The functions ΨJ,M

Λ are represented as the
linear combination

ΨJ,M
Λ =

∑
{k}

c{k}A12 ψ
J,M
{k},Λ (3)
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of four-particle basis functions

ψJ,M
{k},Λ = QΛ e

−αΛR−βΛ(ζ1+ζ2)Rk0 rk1
12 η

k2
1 ηk3

2 ζk4
1 ζk5

2 (4)

with elliptic-like coordinates ζ1 = r1A + r1B , η1 =
r1A − r1B , ζ2 = r2A + r2B , η2 = r2A − r2B , and
R⃗ = r⃗AB . The operator A12 imposes antisymmetry for
electrons, whereas the factor QΛ describes the angular
couplings. This basis function (4) was named the nona-
diabatic James-Coolidge (naJC) function for its resem-
blance to the classic two-electron function introduced by
James and Coolidge [61], who got the idea from Hyller-
aas’ function designed in 1929 for the helium atom [62].

The nonlinear (αΛ, βΛ) and linear c{k} parameters
are determined variationally by solving the four-body
Schrödinger equation H(2)ΨJ,M = E(2)ΨJ,M with the
nonrelativistic Hamiltonian

H(2) =

〈
Ψ

∣∣∣∣∣∑
a

p2a
2ma

+ V

∣∣∣∣∣Ψ
〉
, (5)

where V is the sum of Coulomb potentials, and the index
a at particle momentum p and mass m runs through all
four particles. A more detailed description of the Ansatz
and results of such nonrelativistic calculations can be
found in [63–66]. Here, we mention that nonrelativis-
tic energy can be obtained with accuracy limited only by
uncertainties of physical constants, such as the electron-
proton mass ratio and the Rydberg constant R∞.

This nonrelativistic wave function is then used to cal-
culate the expectation value of operators contained in rel-
ativistic and QED Hamiltonians H(n). Namely, the rela-
tivistic correction is evaluated as an expectation value of
the spin-independent Breit-Pauli Hamiltonian H(4) and
consists of the mass velocity term

−

〈
Ψ

∣∣∣∣∣∑
a

p4a
8m3

a

∣∣∣∣∣Ψ
〉
, (6)

the Breit orbit-orbit term〈
Ψ

∣∣∣∣∣∑
a>b

1

2mamb
pia

(
δij

rab
+
riabr

j
ab

r3ab

)
pjb

∣∣∣∣∣Ψ
〉
, (7)

and the Darwin term

π

2

〈
Ψ

∣∣∣∣∣∑
a>b

(
1

ma
+

1

mb

)
δ(3)(rab)

∣∣∣∣∣Ψ
〉
. (8)

Details of the newly developed integration methods for
evaluation of the above expectation values, as well as
their regularization and numerical convergence, are given
in [67] and [68]. Preliminary results for the lowest rota-
tional levels of H2 are also shown therein.
Contributions from the coupling between the nuclear

spin and rotation, as well as between nuclear spins, are

small because they depend quadratically on the electron-
to-nucleus mass ratio. These effects are usually invis-
ible in IR spectroscopy. Nevertheless, they were mea-
sured by Ramsey in 1971 [69], which allowed us [9], using
the four-body Gaussian wave function, to determine the
quadrupole moment of the deuteron to an accuracy bet-
ter than for any other element of the periodic table. In
this work, the energy levels are averaged over the nuclear
spin orientations, thus no hyperfine coupling is consid-
ered.
The next term of the α-expansion (1) is the leading

quantum electrodynamic correction represented by the
following expression

E(5) = − 2

3π
D ln k0 −

7

6π

〈
1

r312

〉
ϵ

(9)

+
4

3

∑
i,X

{(
1 +

m

4mX

)
ln
(
α−2

)
+
19

30
+

m

mX

31

6

}〈
δ3(riX)

〉
− 7

6π

∑
i,X

m

mX

〈
1

r3iX

〉
ϵ

+

(
164

15
+

14

3
lnα

) 〈
δ3(r12)

〉
,

where indices i and X correspond to electrons and nu-
clei, respectively. Eq. (9) consists of five terms: the
Bethe logarithm term, two Araki-Sucher terms, and two
Dirac-delta terms. Currently, only the last two terms
can be evaluated using the four-body naJC wave func-
tion. The first three lead to unknown integrals in this
basis. Therefore, these terms were estimated using the
Born-Oppenheimer (BO) approximation, resulting in fre-
quency uncertainties dominating the overall error budget.
The Bethe logarithm and the electron-electron Araki-
Sucher terms were calculated in [70], while the electron-
nucleus Araki-Sucher contribution is reported here.
The higher-order QED contribution E(6,0) is calculated

within the BO approximation and is expressed by the
potential [71]

E(6,0)(R) =
〈
ϕ
∣∣∣H(6,0)

∣∣∣ϕ〉
+

〈
ϕ

∣∣∣∣H(4,0) 1

(Eel −Hel)′
H(4,0)

∣∣∣∣ϕ〉 , (10)

whereH(4,0) is the leading-order relativistic (Breit-Pauli)
Hamiltonian in the nonrecoil limit, and H(6,0) is the
higher-order relativistic Hamiltonian. Hel and Hn are
the electronic and the nuclear parts, respectively, of the
nonrelativistic Hamiltonian H(2). The explicit formulas
for E(6,0)(R) are far too extensive to be presented here—
they can be found in [71]. The total correction is

E(6,0) =
〈
χ
∣∣∣E(6,0)(R)

∣∣∣χ〉
+

〈
χ

∣∣∣∣E(4,0)(R)
1

(E(2,0) −Hn)′
E(4,0)(R)

∣∣∣∣χ〉 ,
(11)
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where χ is the nuclear wave function obtained by solving
the radial Schrödinger equation.

The α7 term is a very problematic correction because
its complete form is still unknown. It is therefore esti-
mated by a dominating term inferred from the atomic
hydrogen theory [72]

E(7) ≈ π

〈
Ψ

∣∣∣∣∣∣
∑
a,X

δ3(raX)

∣∣∣∣∣∣Ψ
〉{

1

π

[
A60 +A61 lnα−2

+A62 ln2 α−2
]
+

1

π2
B50 +

1

π3
C40

}
. (12)

This correction gives another significant contribution to
the error budget.

The leading correction from the finite nuclear size ef-
fect was accounted for by

E
(4)
fs =

2π

3

〈
Ψ

∣∣∣∣∣∣
∑
a,X

δ3(raX)

∣∣∣∣∣∣Ψ
〉
r2C,p

λ2
, (13)

where rC,p = 0.84075(64) fm is the root mean square
charge radius of the proton [72], and λ is the reduced
electron Compton wavelength.

Calculations were performed using CODATA
2022 recommended physical constants, in partic-
ular the proton-to-electron mass ratio mp/m =
1836.152 673 426(32), the inverse fine structure con-
stant 1/α = 137.035 999 177(21), the Rydberg constant
R∞ = 10 973 731.568 157(12) m−1, and the speed of light
in vacuum c = 299 792 458 m s−1 [72]. Results of calcula-
tions are presented in Table I, which contains numerical
values of the dissociation energy Dv,J = 2E(H)−E(H2)
for the lowest vibrational (v = 0, 1, 2) and rotational
(J = 0, . . . 4) quantum numbers. The range of quantum
numbers is sufficiently wide to cover all levels involved
in measured infrared transitions of sub-MHz accuracy
reported in the literature. The uncertainties assigned
to theoretically predicted dissociation energy are also of
sub-MHz accuracy (1 MHz ≈ 0.000 033 cm−1), where the
dominant source of these uncertainties is the incomplete
calculation of the α7 term.
Establishing reliable uncertainty for each transition

frequency ν is challenging, due to the partial error can-
cellation between two rovibrational levels. The over-
all uncertainty u is a root-mean-square of the individ-
ual uncertainties un originating from subsequent terms
ν(n) = ∆E(n) of the α-expansion. To determine the un,
we have applied distinct approaches depending on the
method by which the ν(n) term was evaluated. For ν(n)

obtained with the DNA approach (as ν(2) and ν(4)), the
uncertainty was estimated as a maximum uncertainty of
both levels. For ν(n) obtained with the adiabatic approx-
imation (as ν(5) and ν(6)), the uncertainty was estimated
by ν(n)m/µn, where µn is the nuclear reduced mass. As
the complete ν(7) is currently unknown, and its dominant

term from the atomic hydrogen theory provides just an
estimate, a conservative 25% error is assumed.

Having determined uncertainties, we can now compare
our results to experimental values. Among many mea-
surements of IR transitions in H2, just nine claim sub-
MHz accuracy. These measurements were taken within
the last two years [49–51, 53], and they concern purely
rotational transitions as well as the transitions belong-
ing to the fundamental vibrational band and the first
overtone band. Table II combines these experimental
and corresponding theoretical frequencies. Each panel
is dedicated to a single transition line and contains all
components comprising the final theoretical frequency,
along with their individual error bars. The bottom row
of each panel shows the difference between the theoretical
and experimental frequency, accompanied by the com-
bined uncertainty, σ. An agreement is found for all nine
lines, with the most considerable difference of 1.4σ for
the Q1(1) line. The differences are also depicted in Fig. 1
against the ±1 MHz band. This figure vividly shows that
theoretical predictions and spectroscopic measurements
reached sub-MHz agreement. For some lines, the experi-
mental accuracy is an order of magnitude higher than the
theoretical one, which motivates further development of
computational methods, particularly that for ν(7).

Unlike earlier calculations [73] that estimated the rel-
ativistic and quantum electrodynamic corrections using
the Born-Oppenheimer approximation, the current DNA
results include the finite-nuclear-mass effects. For fre-
quencies in the first overtone the difference between cur-
rent and previous calculations reaches 3 MHz, in the
fundamental band it is approximately 1.5 MHz, and for
purely rotational transitions it is about 0.1 MHz. The
small third value demonstrates effective cancellation of
recoil effects within a single oscillation band. The change
in the total recoil effect is primarily due to relativistic and
the leading QED components of the frequency.

As well as the nine transition frequencies displayed in
Table II, other energy gaps can be evaluated by taking
the difference of dissociation energies from Table I. An
upper bound to the uncertainty for such a transition can
be inferred from Table II, i.e., 0.1 MHz for a rotational
transition, 0.4 MHz for the fundamental band, and 0.8
MHz for the first overtone.

The results obtained demonstrate that finite-nuclear-
mass effects significantly impact not only nonrelativistic
energy but also relativistic and quantum electrodynam-
ics (QED) corrections. By incorporating these effects,
the theoretical predictions matched the experimental re-
sults with sub-MHz accuracy. Further improvements will
require a fully nonadiabatic calculation of the Bethe log-
arithm for excited rovibrational levels. We believe this
task is feasible since it has already been accomplished
at the ground level [74]. The same nonadiabatic effects
might be responsible for the discrepancy observed be-
tween theoretical predictions and experimental results
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FIG. 1. Difference between theoretically predicted and exper-
imental line position shown against the ±1 MHz error band
(in blue) and the theoretical error band (in green). The error
bars around the dots come from the experiment.

for the J spin-spin coupling in the nuclear magnetic res-
onance (NMR) spectra of HD [75]. This J-coupling is
quite small, about 43 Hz, making it particularly sensi-
tive to long-range spin-spin interactions between hadrons
[76, 77]. In conclusion, relativistic and QED nonadia-
batic effects are indispensable for achieving the required
level of accuracy in testing QED in molecular systems
and for interpreting any discrepancies in terms of yet un-
known forces.
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TABLE I. Dissociation energy Dv,J for the five lowest rotational levels in the vibrational states v = 0, 1, 2 of H2 [cm−1].

(v, J) Dv,J (v, J) Dv,J (v, J) Dv,J

(0,0) 36 118.069 630(26) (1,0) 31 956.903 458(26) (2,0) 28 031.066 922(29)
(0,1) 35 999.582 816(26) (1,1) 31 844.329 004(25) (2,1) 27 924.275 245(29)
(0,2) 35 763.696 497(26) (1,2) 31 620.231 155(26) (2,2) 27 711.708 670(29)
(0,3) 35 412.550 787(25) (1,3) 31 286.678 128(26) (2,3) 27 395.367 529(30)
(0,4) 34 949.272 190(25) (1,4) 30 846.690 132(26) (2,4) 26 978.171 929(31)

TABLE II. Transition frequency components [MHz] in H2. The total theoretical frequency is compared with experimental
data. CODATA recommended physical constants were used [72]; in particular, the proton root mean square charge radius
rC,p = 0.84075(64) fm.

Component S0(0) : (0, 2) → (0, 0) S0(1) : (0, 3) → (0, 1) Q1(1) : (1, 1) → (0, 1)

ν(2) 10 623 700.7825(3) 17 598 550.7339(4) 124 571 317.1657(4)

ν(4) 230.555(11) 378.562(11) 699.881(11)

ν(5) −91.335(47) −150.565(77) −636.16(33)

ν(6) −0.793(3) −1.308(4) −5.719(18)

ν(7) 0.040(10) 0.070(17) 0.310(78)

ν
(4)
fs −0.01346(2) −0.02219(3) −0.0943(1)

Theory 10 623 839.229(49) 17 598 777.469(80) 124 571 375.38(34)
Experiment 10 623 839.09(39)a 17 598 777.46(75)a 124 571 374.73(31)b

Difference 0.14(39) 0.01(75) 0.65(46)

Component S1(0) : (1, 2) → (0, 0) Q2(1) : (2, 1) → (0, 1) Q2(2) : (2, 2) → (0, 2)

ν(2) 134 841 618.0297(4) 242 091 633.7378(5) 241 392 544.6686(5)

ν(4) 917.267(11) 1235.957(12) 1209.546(12)

ν(5) −723.86(37) −1228.46(63) −1221.38(63)
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