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Formulas for the combined nuclear-recoil and finite-nuclear-size effects of order (Zα)5 and (Zα)6 are de-
rived without any expansion in the nuclear charge radius rC , making them applicable to both electronic and
muonic atoms. The obtained results are particularly relevant for high-precision determinations of root-mean-
square charge radii from muonic atom spectroscopy. We demonstrate that calculations of the atomic isotope shift
based on the widely used Breit approximation give rise to an unphysical nuclear-size contribution that is linear
in the nuclear charge radius rC at order (Zα)5. This spurious term vanishes in a full QED treatment, leaving
the correct contribution quadratic in rC . For electronic atoms, this quadratic term is significantly smaller than
the spurious linear contribution.

I. INTRODUCTION

The finite nuclear size modifies the Coulomb potential in
the vicinity of the nucleus. Although this effect occurs in the
range of just a few femtometers — much smaller than the typ-
ical localization region of the wave function ∼ 105 fm’s —
the resulting shift of energy levels is significant. For example,
the 1S-2S transition in hydrogen is affected by as much as 1
MHz, which should be compared to the experimental accuracy
of 10 Hz [1, 2] and the theoretical uncertainty of 1 kHz [3].
It is possible to determine the proton charge radius (and, si-
multaneously, the Rydberg constant) from observed hydrogen
transition energies. A comparison of the extracted radius with
an independent determination from the muonic hydrogen [4]
resulted in a long-standing discrepancy, known as the “pro-
ton radius puzzle”. This discrepancy has now been largely
resolved in favor of the muonic-hydrogen radius [3].

For atoms with more than one electron, absolute charge ra-
dius determinations are not yet feasible, as theoretical preci-
sion has not reached the required level. However, it is possible
to determine differences of nuclear charge radii between two
isotopes of the same element. Of particular interest is the com-
parison of the nuclear radius differences obtained from elec-
tronic and muonic atoms. This comparison is highly sensitive
to nuclear polarizability effects and provides an opportunity
to test fundamental interaction theories.

This field has been developing rapidly in recent years. For
instance, the difference in squared charge radii between the
deuteron and proton, r2C(d) − r2C(p), was found to be in per-
fect agreement between H-D and µH-µD determinations, af-
ter a meticulous evaluation of deuteron polarizability effects
[5]. Another example is the squared charge radius difference
of helium isotopes, r2C(

3He) − r2C(
4He), which was initially

reported to disagree between electronic and muonic isotope
shift measurements [6, 7]. However, it was recently shown
that inclusion of the second-order hyperfine-interaction cor-
rection [8, 9] resolves this discrepancy. For heavier elements,
multiple isotope shift measurements have been conducted for

electronic Li, Be, and heavier atoms, while the correspond-
ing muonic-atom measurements are currently being pursued
by the QUARTET collaboration [10].

The influence of the finite nuclear size (fns) on atomic en-
ergy levels has been extensively studied, both within the ex-
pansion over the parameter Zα [11] (where Z is the nuclear
charge number and α is the fine-structure constant) and to all
orders in Zα [12]. In particularly, Friar [11] derived the fns
corrections up to order (Z α)6 for the infinitely heavy nucleus.
His derivation and final formulas has recently been verified
and simplified in Ref. [13].

Theoretical treatment of the fns effect in the presence of a
finite-mass nucleus, however, has proven to be significantly
more challenging. Addressing this effect, Friar [11] obtained
a contribution linear in the nuclear radius rC at (Z α)5 m3/M
order, where m is the electron mass and M is the nuclear
mass. If correct, this would represent a substantial contribu-
tion, as its magnitude is comparable to that of the leading fns
recoil effect, which is of order (Zα)4(m4/M)r2C . A similar
approach to the fns recoil effect was later employed by Borie
and Rinker in their seminal work on muonic atoms [14] and
subsequently by Borie in Ref. [15]. It was, however, shown by
Shabaev [16] that the linear in rC fns recoil term disappears
in the rigorous QED treatment.

In this work we derive the complete formulas for the re-
coil fns effects at the (Z α)5 and (Z α)6 orders. The deriva-
tion is carried out without any expansion in the nuclear radius
rC . While an expansion in mrC is justified and commonly
used for electronic atoms, it becomes entirely inadequate for
muonic atoms, where mµrC ≈ 1 (with mµ being the muon
mass). We explicitly demonstrate that the term linear in rC is
an artifact of the approximate treatment of nuclear recoil. In
this approach, the nonrelativistic nuclear kinetic energy and
Breit (magnetic) interaction are added to the Dirac equation, a
method that is inconsistent with QED. Using the Heavy Parti-
cle formulation of QED [17, 18], we apply the exact formula
for nuclear recoil effects with finite nuclear size and demon-
strate limitations of the approximate treatment.
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II. FINITE NUCLEAR SIZE

The finite nuclear size (fns) leads to a shift of binding ener-
gies of atomic systems, Efns. For a light atom we can perform
the expansion of Efns in the parameter Zα, where Z is the
nuclear charge number and α = e2/(4π) is the fine-structure
constant,

Efns = E
(4)
fns + E

(5)
fns + E

(6)
fns + . . . , (1)

where the superscript denotes the order in Zα. Each term
of this expansion can be further expanded in the mass ratio
m/M , where m is the mass of the orbiting particle (electron,
muon) and M is the nuclear mass,

E
(n)
fns = E

(n,0)
fns + E

(n,1)
fns + . . . , (2)

where the second superscript denotes the order in the mass
ratio m/M .

The leading-order nuclear contribution is of order (Zα)4

and given by a simple formula

E
(4)
fns =

2π

3
Zαϕ2(0) r2C , (3)

where ϕ(0) is the nonrelativistic electron (muon) wave func-
tion at the position of nucleus, rC is the root-mean-square
charge radius of the nucleus,

r2C =

∫
d3r r2 ρ(r⃗) , (4)

and ρ(r⃗) is the nuclear charge distribution. Eq. (3) includes
the exact dependence on the finite nuclear mass M through

ϕ2(0) = µ3 (Zα)3

πn3
, (5)

where the reduced mass µ = mM/(m+M).
The next-to-leading fns correction is of order (Zα)5. In the

nonrecoil limit it was obtained by Friar [11], with the result

E
(5,0)
fns = −π

3
ϕ2(0) (Zα)2 mr3F , (6)

where

r3F =

∫
d3r1

∫
d3r2 ρ(r1) ρ(r2) |r⃗1 − r⃗2|3 . (7)

The finite nuclear mass (or, nuclear recoil) effects in Eq. (6)
can be partially included in ϕ2(0) through the reduced mass µ.
However, there are further nuclear recoil corrections of order
(Zα)5 [17], which will be addressed in Sec. V.

III. (Z α)6 NONRECOIL CORRECTION FOR nS STATES

In this section we recalculate the fns correction of order
(Zα)6 in the nonrecoil limit, E(6,0), for the dipole (exponen-
tial) parametrization of the nuclear charge form factor

ρ(q⃗ 2) =
Λ4

(Λ2 + q⃗ 2)2
. (8)

The charge radii are related to derivatives of ρ(q⃗ 2) at q⃗ 2 = 0,
namely

ρ′(0) = −r2C
6

, ρ′′(0) =
r4CC

60
, (9)

where

r4CC =

∫
d3r r4ρ(r⃗) . (10)

In the exponential parametrization, the charge radii rC and
rCC are evaluated analytically as

rC =
2
√
3

Λ
, rCC =

(
5

2

)1/4

rC . (11)

E(6,0) was originally derived by Friar [11] and the much sim-
plified derivation was presented in Ref. [13]. Following this
simplified derivation, we split the fns correction for an nS
state into the high and low-energy parts,

E
(6,0)
fns (nS) = EH + EL . (12)

The high-energy part EH is given by the three-photon scatter-
ing amplitude with momenta pi = (m, q⃗i)

EH = − (4π Z α)3ϕ2(0)

∫
ddq1
(2π)d

∫
ddq2
(2π)d

ρ(q21)

q41

ρ(q22)

q42

ρ(q23)

q23
Tr

[
(̸p1 +m) γ0 (̸p2 +m)

(γ0 + I)

4

]
, (13)

where we use the dimensional regularization with d = 3− 2 ϵ, q⃗3 = q⃗1 − q⃗2, and ϕ2(0) = ⟨ϕ|δd(r)|ϕ⟩. The above trace equals
to 4m2 + q⃗1 · q⃗2, so we split EH

EH = EH1 + EH2 , (14)

into the nonrelativistic EH1 and relativistic EH2 parts. Using integration formulas from Appendix A we obtain

EH1 = 4π (Z α)3 ϕ2(0) 4m2 r4C
36

[
1

4 ϵ
+ 3 +

7

128
+

10

27
+ 2 ln(2)− 3

2
ln(3) + ln(rC)

]
, (15)
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EH2 = − 4π (Z α)3 ϕ2(0)
r2C
6

[
1

4 ϵ
+

16

27
− 3

16
+ 2 ln(2)− 3

2
ln(3) + ln(rC)

]
. (16)

The elimination of 1/ϵ singularities will be performed in atomic units, which in d-dimensions become a little more complicated.
The nonrelativistic Hamiltonian in natural units is

H =
p⃗ 2

2m
− Z α

[
1

r

]
ϵ

, (17)

where [
1

r

]
ϵ

=

∫
ddq

(2π)d
4π

q2
ei k⃗·r⃗ =

C1

r1−2 ϵ
, (18)

and

C1 = πϵ−1/2 Γ(1/2− ϵ) . (19)

Using coordinates in atomic units

r⃗ = (mZ α)−1/(1+2 ϵ) r⃗au, (20)

the Hamiltonian can be written as

H = m(1−2 ϵ)/(1+2ϵ) (Z α)2/(1+2 ϵ)

[
p⃗ 2
au

2
− C1

r1−2 ϵ
au

]
. (21)

If one pulls out the factor m(1−2 ϵ)/(1+2ϵ) (Z α)2/(1+2 ϵ) ≈ m (Z α)2 (Z αm)−4 ϵ from H , then one obtains the nonrelativistic
Hamiltonian in atomic units. For the leading relativistic correction, one needs to pull out the factor m (Z α)4 (Z αm)−8 ϵ. Simi-
larly for H(6), the common factor m (Z α)6 (Z αm)−12 ϵ is pulled out from all the terms, which corresponds to the replacement
m → 1, Z α → 1 in atomic units. This factor is also pulled out from EH , which is denoted by using the calligraphic symbols,

EH1 = 4π ϕ2(0)au
m4 r4C
36

[
1

4 ϵ
+ 3 +

7

128
+

10

27
+ 2 ln(2)− 3

2
ln(3) + ln(Z αmrC)

]
, (22)

EH2 = − 4π ϕ2(0)au
m2 r2C

6

[
1

4 ϵ
+

16

27
− 3

16
+ 2 ln(2)− 3

2
ln(3) + ln(Z αmrC)

]
, (23)

where

ϕ2(0) = (mZ α)d (1−2 ϵ) ϕ2(0)au . (24)

The low-energy part EL is obtained from the nonrelativistic expansion of the Dirac-Coulomb Hamiltonian in atomic units

HD =
p⃗ 2

2
−
[
1

r

]
ϵ

− p4

8
+

π

2
δd(r) + δV + δ(2)V +

1

8
∇2(δV ) , (25)

where δV and δ(2)V are the fns corrections to the Coulomb potential, given by

δV = −m2 ρ′(0) 4π δd(r) =
2π

3
m2 r2C δd(r) , (26)

δ(2)V =
1

2
m4 ρ′′(0) 4π∇2δd(r) =

π

30
m4 r4CC ∇2δd(r) . (27)

EL is split into two parts EL = EL1 + EL2, where

EL1 = ⟨δV 1

(E −H)′
δV ⟩+ ⟨δ(2)V ⟩

= m4 r4C
4

9n3

[
− 1

n
− 1

2
+ γ − ln

n

2
+ Ψ(n)

]
−m4 r4C

π

9 ϵ
ϕ2(0) +m4 r4CC

1

15n5
, (28)

EL2 = 2

〈
δV

1

(E −H)′

[
−p4

8
+

π

2
δd(r)

]〉
+

〈
1

8
∇2(δV )

〉
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= −m2 r2C
2

3n3

[
9

4n2
− 1

n
− 5

2
+ γ − ln

n

2
+ Ψ(n)

]
+m2 r2C

π

6 ϵ
ϕ2(0)au . (29)

The complete O(α2) finite nuclear size correction for an arbitrary nucleus is given by the sum E
(6,0)
fns = EL + EH . The

diverging 1/ϵ terms in Eqs. (22), (23), (28), and (29) cancel out in the sum and the result is

E
(6,0)
fns (nS) = − (Z α)6 m3 r2C

2

3n3

[
−5

4
+

9

4n2
− 1

n
− lnn+ γ +Ψ(n) + κ1 + ln(mrC Z α)

]
+ (Z α)6 m5 r4C

4

9n3

[
1− 1

n
− lnn+ γ +Ψ(n) + κ2 + ln(mrC Z α)

]
+ (Z α)6 m5 r4CC

1

15n5
, (30)

where

κ1 =
16

27
− 23

16
+

3

2
ln

4

3
≈ −0.413 384 , (31)

κ2 =
10

27
+

199

128
+

3

2
ln

4

3
≈ 2.356 581 . (32)

This is the complete result of order (Zα)6 in the non-recoil limit. Recoil corrections can partially be accounted for by the
replacement m → µ. However, there are further nuclear recoil effect, which are studied in the remaining part of the paper.

IV. RECOIL FNS CORRECTION

The nuclear recoil effect to the first order in the mass ratio was described theoretically to all orders in Zα for the point-like
nucleus [19–21]. The nuclear recoil with the finite-size effect has been derived in the heavy-particle QED (HPQED) approach
[18]. The derived formula is

Erec =
i

M

∫
s

dω

2π
⟨ϕ|Dj

T (ω)G(ED + ω)Dj
T (ω)|ϕ⟩ , (33)

where G(E) = 1/(E−HD) is the Dirac-Coulomb Green function, HD and ED are the Dirac Hamiltonian and the Dirac energy,
respectively, and

Dj
T (ω, r⃗) = − 4πZααi Gij

T (ω, r⃗) , (34)

Gij
T (ω, r⃗) =

∫
d3k

(2π)3
ρ(−k2)

k2

(
δij − ki kj

ω2

)
, (35)

where k2 = ω2 − k⃗2. The subscript s at the integration sign denotes a symmetric integration around the pole at ω = 0 along
the Feynman or Wick rotated contour, see Fig. 1. Because the terms with 1/ω singularity can be separated from terms involving
branch cuts starting at ω = 0, this symmetric integration can safely be implemented.

The significant difference with respect to nonrecoil corrections is in the argument of the nuclear-charge form-factor ρ. It is a
function of −k2 = k⃗ 2 − ω2 and the dependence on ω can not be neglected. For this reason we have to assume that ρ(−k2) can
be analytically continued to the whole complex plane, apart from the negative real axis. Not all the charge densities used in the
literature allow for analytical continuation. The dipole parametrization is the simplest choice that has analytic continuation on
the complex plane and for this reason we use this parametrization in our work.

We now transform Erec to a form that uses the photon propagator in the Coulomb gauge, using the identity

Dj
C(ω) = Dj

T (ω) +
1

ω2

[
ω + ED −HD , pj(VC)

]
, (36)

where

Dj
C(ω, r⃗) = − 4πZααi Gij

C (ω, r⃗) , (37)

Gij
C (ω, r⃗) =

∫
d3k

(2π)3

[
ρ(−k2)

k2

(
δij − ki kj

ω2

)
− ki kj

ω2

ρ(k⃗2)

k⃗2

]
ei k⃗ r⃗ . (38)

This Coulomb gauge form of the nuclear recoil correction is

Erec = − i

M

∫
s

dω

2π
⟨ϕ|
[
pj(VC)− ωDj

C(ω)
]
G(ED + ω)

[
pj(VC) + ωDj

C(ω)
]
|ϕ⟩ 1

ω2
, (39)
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FIG. 1. Integration contours

where pj(VC) = [pj , VC ]. This form is convenient do derive the leading recoil term, which comes from the nuclear kinetic
energy and the Breit interaction. We remind at this point that subscript ”s” in above equation denotes a symmetric integration
around the pole at ω = 0, so ∫

s

dω

2π
f(ω)

1

ω2
=

∫
dω

2π
f(ω)

1

2

(
1

(ω + ϵ)2
+

1

(ω − ϵ)2

)
, (40)

where the Wick rotated contour is assumed. We now split this integral in Eq. (39) into two parts∫
s

dω

2π
f(ω)

1

ω2
=

∫
dω

2π
f(ω)

1

2

(
1

(ω + ϵ)2
− 1

(ω − ϵ)2

)
+

∫
dω

2π
f(ω)

1

(ω − ϵ)2
. (41)

The first term in the above yields the recoil correction in the Breit approximation; it will be referred to as the ”pole” part in the
following. It is calculated

Epole = − i

M

∫
dω

2π
⟨ϕ|
[
pj(VC)− ωDj

C(ω)
] 1

ED + ω −HD

[
pj(VC) + ωDj

C(ω)
]
|ϕ⟩ 1

2

(
1

(ω + ϵ)2
− 1

(ω − ϵ)2

)
= Epole1 + Epole2 . (42)

The first term here is evaluated as

Epole1 = − i

M

∫
dω

2π
⟨ϕ|pj(VC)

1

ED + ω −HD
pj(VC)|ϕ⟩

1

2

(
1

(ω + ϵ)2
− 1

(ω − ϵ)2

)
= − 1

2M
⟨ϕ|pj(VC)

1

(ED −HD)2
pj(VC)|ϕ⟩

= ⟨ϕ| p2

2M
|ϕ⟩ . (43)

The second term is

Epole2 = − i

2M

∫
dω

2π
⟨ϕ|pj(VC)G(ED + ω)Dj

C(ω)|ϕ⟩
(

1

ω + ϵ
− 1

ω − ϵ

)
+ h.c.

=
1

2M
⟨ϕ|pj(VC)

1

ED −HD
Dj

C(0)|ϕ⟩ −
1

2M
⟨ϕ|Dj

C(0)
1

ED −HD
pj(VC)|ϕ⟩

= − 1

2M
⟨ϕ|
{
pj ,

Zα

2

[
δij

r
+

ri rj

r3

]
ρ

αi

}
|ϕ⟩ , (44)

where

1

2

[
δij

r
+

ri rj

r3

]
ρ

= 4π

∫
d3k

(2π)3

[
ρ(k⃗ 2)

k⃗ 2

(
δij − ki kj

k⃗ 2

)
+ ρ′(k⃗ 2)

ki kj

k⃗ 2

]
ei k⃗ r⃗ . (45)
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We thus obtain

Epole = ⟨ϕ|HM |ϕ⟩ , (46)

where HM is the nuclear recoil operator in the Breit approximation

HM =
p2

2M
− 1

2M

{
pj ,

Zα

2

[
δij

r
+

ri rj

r3

]
ρ

αi

}
. (47)

It should be pointed out that usage of HM with the finite nuclear charge distribution is not fully adequate, since it leads to a
numerically large spurious nuclear size correction at (Z α)5 order, which will be examined in detail in the next section.

V. (Z α)5 RECOIL FNS CORRECTION

The (Z α)5 recoil fns correction consists of two parts. The first one is the reduced-mass scalling of ϕ2(0) in Eq. (5), whereas
the second part is given by the two-photon exchange amplitude. The sum is

E
(5,1)
fns = − 3

m

M
E

(5,0)
fns +

i

M
ϕ2(0) (4π Z α)2

∫
s

d4k

(2π)4
Gij

T (ω, k⃗)G
ik
T (ω, k⃗) Tr

[
γj 1

̸ t+ ̸k −m
γk (γ0 + I)

4

]
= − 3

m

M
E

(5,0)
fns +

i

M
ϕ2(0) (4π Z α)2

∫
s

d4k

(2π)4
[ρ2(−k2)− 1]

ω

k2 + 2mω

(
1

ω4
+

2

k4

)
. (48)

We perform the Wick rotation of the integration contour ω → i ω, integrate first over the 3-dimensional sphere and then over k,
obtaining

E
(5,1)
fns = − 3

m

M
E

(5,0)
fns − ϕ2(0)

mM
(Z α)2

×
[
3 (1− y2) (1 + 4 y2 − 35 y4)

8 y4
− 3 + 8 y2 + 40 y4 − 140 y6 + 105 y8

16 y5
ln

1 + y

1− y
− ln

1− y2

4

]
, (49)

where y =
√
1− 4m2/Λ2. The expansion of the above formula in small mrC reproduces the result obtained in Ref. [17],

E
(5,1)
fns = −m

M
ϕ2(0) (Z α)2

(
− 43

12
+ ln 12− 2 lnmrC

)
r2C − 3

m

M
E

(5,0)
fns +

m2

M
O
(
mrC

)4
. (50)

We note that E(5,1)
fns for electronic atoms depends on the nuclear radius as r2C . If we were using the Breit approximation to

derive the recoil fns correction of this order, we would obtain a very different result, which is linear in the nuclear radius ∝ rC
and numerically dominating. This fact was first pointed out by Friar in Ref. [11]. The disappearance of the spurious ∝ rC term
in a full-QED calculation was demonstrated by Shabaev [16]. Indeed, calculating the ω = 0 pole contribution in Eq. (48), which
corresponds to the Breit approximation, we obtain

E
(5,1)
rec,pole = − 3

m

M
E

(5,0)
fns +

i

M
ϕ2(0) (4π Z α)2

∫
d4k

(2π)4
(ρ2(−k2)− 1)

k2 + 2mω

1

2

(
1

(ω + ϵ)3
− 1

(ω − ϵ)3

)
= − 3

m

M
E

(5,0)
fns − m2

M

(Z α)5

n3

35

32
√
3

(
mrC − 2m3 r3C

)
. (51)

E
(5,1)
rec,pole contains a spurious term ∼ rC , which is much larger than the correct one ∼ r2C lnmrC . The spurious term is only an

artefact of an approximate treatment of the nuclear recoil correction; it disappears in the correct QED treatment.
We conclude that if one uses the relativistic recoil operator HM given by Eq. (47) (as it is routinely done in many-body

calculations of atomic systems, see, e.g., Ref. [22]), one obtains unphysical results for the recoil fns correction. In principle,
the spurious term can be removed by an additional correction to HM . However, the coefficient of this additional term depends
on the form of the exact forms of the Breit interaction for the extended size nucleus and of the projector to the positive-energy
subspace (used in the RMBPT or MCDF approaches). So, the additional correction to HM has to be carefully adjusted to the
particular approximate calculations, in order to remove this spurious linear in rC term. A better way is to account for the QED
recoil effects, e.g., by means of the model recoil operator [23].
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TABLE I. Table of numerical values of function δf(x) defined by Eq. (55).

x δf(x) x δf(x) x δf(x) x δf(x) x δf(x)

0.45 −3.378 26 0.85 −2.41382 1.25 −1.90976 1.65 −1.59053 2.05 −1.36749
0.50 −3.208 65 0.90 −2.33488 1.30 1.86238 1.70 −1.55846 2.10 −1.34418
0.55 −3.058 29 0.95 −2.26153 1.35 −1.81749 1.75 −1.52775 2.15 −1.32169
0.60 −2.923 74 1.00 −2.19315 1.40 −1.77489 1.80 −1.49831 2.20 −1.29998
0.65 −2.802 38 1.05 −2.12921 1.45 −1.73440 1.85 −1.47005 2.25 −1.27901
0.70 −2.692 16 1.10 −2.06926 1.50 −1.69585 1.90 −1.44290 2.30 −1.25874
0.75 −2.591 49 1.15 −2.01292 1.55 −1.65911 1.95 −1.41680 2.35 −1.23914
0.80 −2.499 06 1.20 −1.95985 1.60 −1.62404 2.00 −1.39168 2.40 −1.22017

VI. (Z α)6 RECOIL FNS CORRECTION

We now will derive the fns contribution of order (Zα)6 coming from the recoil correction Erec given by Eq. (33). Let us split
the ω integration contour in Eq. (33) into the ”pole-contribution” part CP and the high-energy part CH . CP encircles the pole
at ω = 0, whereas CH is the Wick-rotated integration contour along the negative real axis, which goes around the ω = 0 pole
from the left, see Fig. 1. Accordingly, we split E(6,1)

fns into three parts, assuming dimensional regularization

E
(6,1)
fns = E

(1)
H + E

(1)
P + E

(1)
L . (52)

E
(1)
H is the hard three-photon exchange with the ω integration carried out along the CH contour. After subtracting the point-

nucleus limit, the limit ε → 0 can safely be approached. E
(1)
P is the high-energy ”pole” contribution, that is similar to the

nonrecoil EH in Eq. (13), while E(1)
L is the low-energy ”pole” contribution that is similar to the nonrecoil EL in Eqs. (28), (29).

The fns recoil high-energy part E(1)
H is obtained from Eq. (33) using the high-momentum three-photon exchange amplitude,

which yield

E
(1)
H =

i

M
(−4πZα)3 ϕ2(0)

∫
CH

dω

2π

∫
ddk1
(2π)d

∫
ddk2
(2π)d

ρ(−k21) ρ(−k22) ρ(k⃗
2
3 )− 1

k21 k
2
2 k⃗

2
3

×
(
δik − ki2 k

k
2

ω2

)(
δjk − kj1 k

k
1

ω2

)
Tr

[(
γi 1

̸k2+ ̸ t−m
γ0 1

̸k1+ ̸ t−m
γj

+ γ0 1

̸k1− ̸k2+ ̸ t−m
γi 1

̸k1+ ̸ t−m
γj + γi 1

̸k2+ ̸ t−m
γj 1

̸k2− ̸k1+ ̸ t−m
γ0

)
γ0 + I

4

]
, (53)

where k⃗3 = k⃗1 − k⃗2 and k2i = ω2 − k⃗2i . We perform at first
∫
ddk1 d

dk2 integration analytically using formulas from Appendix
A, and next integration over ω along CH contour with ε → 0 limit. The result is

E
(1)
H = − m2

M

(Z α)6

n3
f(mrC) , (54)

where

f(mrC) =
mrC

2
√
3

(
13

6
− 64

9
√
3
− 350

9π
+

80 ln 2

π

)
+

m2 r2C
12

(
1895

216
+ 64 ln 2

)
+ (mrC)

3 δf(mrC) . (55)

The function δf(mrC) was computed numerically with help of Wolfram Mathematica. The contribution of δf is negligible
for electronic atoms but significant for the muonic atoms. Table I lists numerical values of δf(mrC) for the range of argument
0.45 ≤ mµ rC ≤ 2.40 relevant for muonic atoms.

Before considering the recoil fns ”pole” high-energy part E(1)
P , let us calculate the reduced-mass correction to ϕ2(0) in the

dimensional regularization. The nonrelativistic Hamiltonian in atomic units is

Hµ =
p⃗ 2

2
+

p⃗ 2

2

m

M
− C1

r1−2 ϵ
. (56)

Variable change r⃗ → r⃗ µ−1/(1+2 ϵ) leads to Hµ → µ
1−2 ϵ
1+2 ϵ H ≈ (1− m

M (1− 4 ϵ))H , thus

ϕ2(0) = ⟨ϕ|δd(r)|ϕ⟩ → µ
3−2 ϵ
1+2 ϵ ϕ2(0) ≈ µ3−8 ϵ ϕ2(0) ≈

(
1− (3− 8 ϵ)

m

M

)
ϕ2(0) . (57)
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We now examine the ”pole” contribution, which is split into two parts:

E
(1)
P = EP1 + EP2 . (58)

The first part EP1 is induced by p2/(2M) and evaluated as

EP1 = − (3− 8 ϵ)
m

M
EH − (4π Z α)3 ϕ2(0)

∫
ddq1
(2π)d

∫
ddq2
(2π)d

ρ(q21)

q21

ρ(q22)

q22

ρ(q23)

q23

1

2M

×
{
q⃗ 2
1 Tr

[
1

(̸p1 −m)
γ0

1

(̸p1 −m)
γ0

1

( ̸p2 −m)

(γ0 + I)

4

]
+ (1 ↔ 2)

}
= − (5− 8 ϵ)

m

M
EH1 − (3− 8 ϵ)

m

M
EH2

+ (4π Z α)3 ϕ2(0)

∫
ddq1
(2π)d

∫
ddq2
(2π)d

ρ(q21)

q41

ρ(q22)

q42

ρ(q23)

q23

m

M
(q⃗1 + q⃗2)

2 , (59)

where EH , EH1, and EH2 are defined in Eqs. (14), (15), and (16) correspondingly. The second term EP2 is due to the
electron-nucleus Breit interaction. It is expressed as

EP2 = (4π Z α)3 ϕ2(0)

∫
ddq1
(2π)d

∫
ddq2
(2π)d

ρ(q21)

q21

ρ(q22)

q22

ρ(q23)

q23

1

2M

×
{
Tr

[
γi 1

( ̸p1 −m)
γ0

1

(̸p2 −m)
γ0

(γ0 + I)

4

]
qj1 G

ij
C (0,−q⃗1)

q21
ρ(q21)

+ Tr

[
γ0

1

( ̸p1 −m)
γi 1

(̸p2 −m)
γ0

(γ0 + I)

4

]
(qj1 + qj2)G

ij
C (0, q⃗3)

q23
ρ(q23)

+ Tr

[
γ0

1

( ̸p1 −m)
γ0

1

(̸p2 −m)
γi (γ0 + I)

4

]
qj2 G

ij
C (0, q⃗2)

q22
ρ(q22)

}
. (60)

where q⃗3 = q⃗1 − q⃗2. After performing traces one obtains

EP2 = − (4π Z α)3 ϕ2(0)

∫
ddq1
(2π)d

∫
ddq2
(2π)d

ρ(q21)

q41

ρ(q22)

q42

ρ(q23)

q43

1

M

×
{
4 q21 q

2
2 − 4 (q⃗1 · q⃗2)2 +

ρ′(q23)
ρ(q23)

q23
[
(q21 − q22)

2 + q22 q
2
3 + q21 q

2
3

]}
. (61)

The complete fns recoil ”pole” high-energy part E(1)
P = EP1 + EP2 is

E
(1)
P = − (5− 8 ϵ)

m

M
EH1 − (3− 8 ϵ)

m

M
EH2 + δEP , (62)

where

δEP = − (4π Z α)3 ϕ2(0)
m

M

∫
ddq1
(2π)d

∫
ddq2
(2π)d

∂

∂q23

ρ(q21)

q41

ρ(q22)

q42
ρ(q23)

[
(q21 − q22)

2

q23
+ q22 + q21

]
=

(Z α)6

n3

m2

M

2471

2592
m2 r2C . (63)

The low-energy part E(1)
L , with |⃗k| ∼ mα, is obtained by using the nonrelativistic expansion of HM in Eq. (47). Using

− 1

8π

[
δij

r
+

ri rj

r3

]
ρ

= − 1

8π

[
δij

r
+

ri rj

r3

]
ϵ

− ρ′(0) δd(r) , (64)

we obtain

HM =
m

M

[
p2

2
− 1

2
pi
(
δij

r
+

rirj

r3

)
ϵ

pj +
1

4

{
pi,
{
pi, δV

}}]
. (65)
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This expression should be combined with the nonrelativistic expansion of the Dirac-Coulomb Hamiltonian in Eq. (25) to obtain

HD +HM = Hµ − p4

8
+

π

2
δd(r) + δV + δ(2)V +

1

8
∇2(δV ) +

m

M

[
−1

2
pi
(
δij

r
+

rirj

r3

)
ϵ

pj +
1

4

{
pi,
{
pi, δV

}}]
. (66)

After rescaling the reduced mass, the above expression becomes

HD +HM =

(
1− m

M
(1− 4 ϵ)

)
H −

(
1− m

M
(4− 8 ϵ)

)
p4

8
+

(
1− m

M
(3− 8 ϵ)

)(
π

2
δd(r) + δV

)
+

(
1− m

M
5

)(
δ(2)V +

1

8
∇2(δV )

)
+

m

M

[
−1

2
pi
(
δij

r
+

rirj

r3

)
ϵ

pj +
1

4

{
pi,
{
pi, δV

}}]
. (67)

Similarly to the derivation of the nonrecoil fns correction, the low-energy part E(1)
L is split into two parts,

E(1)
L = E(1)

L1 + E(1)
L2 , (68)

where E(1)
L1 is the nonrelativistic contribution proportional to r4C ,

E(1)
L1 = ⟨δV 1

(E −H)′
δV ⟩+ ⟨δ(2)V ⟩ = −(5− 12 ϵ)

m

M
EL1 , (69)

and E(1)
L2 is the relativistic part proportional to r2C

E(1)
L2 =

m

M

{
− 5

8
⟨∇2(δV )⟩+ 2 (6− 12 ϵ)

〈
δV

1

(E −H)′
p4

8

〉
− 2 (5− 12 ϵ)

〈
δV

1

(E −H)′
π

2
δd(r)

〉
+

1

4
⟨
{
pi,
{
pi, δV

}}
⟩ − 2

〈
δV

1

(E −H)′
1

2
pi
[
δij

r
+

rirj

r3

]
ϵ

pj
〉}

= − (3− 12 ϵ)
m

M
EL2 +

m3

M
r2C

1

n3

(
1

n2
+

2

3

)
. (70)

We observe here an additional state dependence, beyond this in EL2. The sum of all calculated recoil terms is

E
(6,1)
fns = E

(1)
H + E

(1)
P + E

(1)
L = −m2

M

∂

∂m
E

(6,0)
fns +

m2

M

(Z α)6

n3

[
m2 r2C

(
1

n2
+

4199

2592

)
− f(mrC)

]
, (71)

where the function f is defined in Eq. (54). In the above, the first term corresponds to the reduced-mass rescaling of the
corresponding nonrecoil correction and the second one is a remainder. We note that the function f contains a contribution linear
in rC (see Eq. (55)), which is numerically large for electronic atoms. As a result, the (Zα)6 recoil fns contribution numerically
dominates over the (Zα)5 contribution for electronic atoms - a surprising fact, first found in Ref. [17] basing on numerical
calculations.

VII. TOTAL FNS CORRECTION WITH RECOIL

We now summarize all known contributions to the fns effect of light hydrogen-like atoms for a finite-mass nucleus, Efns =

E
(4)
fns + E

(5)
fns + E

(6)
fns . The leading-order nuclear contribution is

E
(4)
fns =

2π

3

(Zα)4

πn3
µ3 r2C δl,0 , (72)

where µ = mM/(m+M) is the reduced mass. The above formula is model-independent and includes the nuclear recoil effect
to all orders in m/M .

The finite nuclear size contribution of order (Zα)5, calculated to first order in m/M but to all orders in mrC , is given by

E
(5)
fns = −m

(Z α)5

πn3
µ3 δl,0

{
π r3F
3

+
1

M m2

[
3 (1− y2) (1 + 4 y2 − 35 y4)

8 y4

− 3 + 8 y2 + 40 y4 − 140 y6 + 105 y8

16 y5
ln

1 + y

1− y
− ln

1− y2

4

]}
, (73)
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where y =
√
1− (mrC)2/3. This contribution is model-dependent. The model dependence of the nonrecoil part can be

estimated by comparing results obtained in the exponential and Gaussian models, with corresponding results for rF summarized
in Table II. The recoil part of E(5)

fns is calculated within the exponential nuclear model only. In the case of an arbitrary nuclear
model, the above formulas are not valid and one has to return to Eq. (48). For the integral over k in Eq. (48) to exist, the nuclear
form factor ρ(−k2) should be not only an analytical function in the complex plane (with a branch cut on the negative axis),
but should also vanish at complex infinity. We note that many of popular nuclear models (Gaussian, Fermi) do not satisfy this
condition and are thus not suitable for describing the recoil fns effect.

For the electronic atoms, Eq. (73) can be simplified by using the fact that the parameter mrC is small. Expanding in mrC ,
we obtain

E
(5)
fns = −m

(Z α)5

n3
µ3 δl,0

[
r3F
3

− 1

π

(
43

12
− ln 12 + 2 lnmrC

)
r2C
M

+
1

m2M
O
(
mrC

)4]
. (74)

The dependence on rC is the same for all the models and only the coefficient 43/12− ln 12 is a subject of a model dependence.
The finite size effect at order (Zα)6, calculated for nS states to first order in m/M but to all orders in mrC is given by

E
(6)
fns (nS) =− (Z α)6 µ3 r2C

2

3n3

[
−5

4
+

9

4n2
− 1

n
− lnn+ γ +Ψ(n) + κ1 + ln(µ rC Z α)

]
+ (Z α)6 µ5 r4C

4

9n3

[
1− 1

n
− lnn+ γ +Ψ(n) + κ2 + ln(µ rC Z α)

]
+ (Z α)6 µ5 r4CC

1

15n5
+

m2

M

(Z α)6

n3

[
m2 r2C

(
1

n2
+

4199

2592

)
− f(mrC)

]
, (75)

where rCC is defined by Eq. (10), κ1 and κ2 are defined in Eqs. (31), (32) and f(mrC) is defined in Eq. (55), with numerical
values summarized in Table I. The contribution E

(6)
fns is model-dependent; the model dependence coming through rCC , κ1, κ2,

and f(mrC). The model dependence of the nonrecoil part can be estimated by comparing results obtained in the exponential and
Gaussian models, with help of results summarized in Table II. The recoil part of E(6)

fns is calculated for the exponential nuclear
model only. For electronic atoms, E(6)

fns can be expanded in mrC , with the result

E
(6)
fns (nS) =− (Z α)6 µ3 r2C

2

3n3

[
−5

4
+

9

4n2
− 1

n
− lnn+ γ +Ψ(n) + κ1 + ln(µ rC Z α)

]
+

m2

M

(Z α)6

n3

[
−mrC

2
√
3

(
13

6
− 64

9
√
3
− 350

9π
+

80 ln 2

π

)
+m2 r2C

(
1

n2
+

8

9
− 16

3
ln 2

)
+O

(
mrC

)3]
, (76)

where the second line includes all terms beyond the reduced-mass scaling of the nonrecoil relativistic correction. Regarding
model dependence we expect the same functional form, while the constant κ1 and value of coefficients of rC , r2C in the second
line of Eq. (76) are model dependent.

We would like to point out that for electronic atoms, the (Zα)5 fns correction is very small numerically (since it is suppressed
both by Zα and a small parameter mrC as compared to the leading fns effect). On the contrary, the (Zα)6 fns contribution,
being enhanced by ln(mrCZα), is numerically significant and gives the dominant correction to the leading fns correction (72).

For the P states, the finite size corrections E(4)
fns and E

(5)
fns vanish, while at the (Z α)6 order they take the form [24]

E
(6)
fns (nPJ) = (Z α)6

1

9

(
1

n3
− 1

n5

)[(
1

2
− ⟨L⃗ · s⃗ ⟩

)
µ3 r2C +

1

5
µ5 r4CC

]
, (77)

where ⟨L⃗ · s⃗⟩ = −1, 1/2 for J = 1
2 ,

3
2 , correspondingly. This simple formula is valid up to the first order in m/M mass ratio; the

general result valid to all orders in mass ratio was obtained in Ref. [24]. E(6)
fns vanishes for states with L > 1.

Formulas summarized in this section demonstrate that the dependence of the fns effect on the nuclear charge radius rC is
generally quite complicated. It contains odd powers of rC , logarithms, as well as model-dependent parameters. This makes it
abundantly clear that the use of the so-called Seltzer’s moments [25], which assumes expansion of the fns correction to energies
in even multipoles of rC , is incorrect. It is truly astonishing that the expansion in terms of Seltzer’s moments, despite lacking
any physical justification, continues to appear in the literature up to this day [22, 26].

VIII. RESULTS AND DISCUSSION

In this paper we extended our previous studies of the fns
effect for electronic and muonic hydrogen-like atoms [13], by

calculating the nuclear recoil fns corrections of order (Zα)5

and (Zα)6. Calculations were performed without any expan-
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TABLE II. Various results for the exponential and the Gaussian models of the nuclear charge distributions.

Exponential Gaussian

ρ(q2) Λ4/(Λ2 + q2)2 exp
(
a q2

2

)
ρ(r) Λ3/(8π) e−Λ r (2πa)−3/2 exp

(
− r2

2 a

)
V (r) (1/r)

(
1− e−Λ r

)
− (Λ/2) e−Λ r (1/r) erf

(
r√
2 a

)
rC 2

√
3/Λ

√
3 a

rCC/rC 1.257 433 1.136 219
rF /rC 1.558 965 1.514 599
κ1 −0.413 384 −0.465 457
κ2 2.356 581 1.688 528

0 5 10 15 20 25 30 35 40

-1.80

-1.75

-1.70

-1.65

-1.60

  All-order

  RM

  RM + E5

  RM + E5 + E6

δ
E

Z

FIG. 2. Finite size recoil correction, calculated to all orders in Zα
(red solid line) and within the Zα expansion, for the 1s state of
muonic atoms with the nuclear charge radius fixed by rC = 1 fm.
Units are δE/[(m2/M)(Zα)4/π]. The dashed green line corre-
sponds to the reduced-mass (RM) contribution −3(m/M)Efns com-
ing from ϕ2(0). The dashed-dot brown line shows results with inclu-
sion of the (Zα)5 correction (E5), whereas the dashed-dot-dot blue
line shows results with additional inclusion of the (Zα)6 correction
(E6).

sion in the nuclear charge radius rC , ensuring that the obtained
results are applicable for muonic atoms.

The derived formulas were checked by comparing with nu-
merical calculations performed to all order in Zα by method
described in Ref. [27]. The comparison of the all-order and
the Zα-expansion results is in Fig. 2 shown for the 1S state
of muonic atoms. In order to obtain smooth curves, we arti-
ficially fixed the nuclear charge radius at rC = 1 fm for all
nuclear charges. We observe that the Zα-expansion results
converge to the all-order values in the limit of Z → 0. It is
remarkable that the inclusion of the (Zα)6 correction is essen-
tial in order to achieve good agreement with all-order results
already for small values of Z.

Now we examine the magnitude of the obtained correc-
tions for several interesting from the experimental point of
view cases. The first case is the 2S-1S transition in hydro-
gen, which is the basis of the determination of the Rydberg

TABLE III. E(6,1)
fns for the 2P -2S transition in light muonic atoms,

in µeV.

rC [fm] mµ rC f(mµ rC) E
(6,1)
fns (2P − 2S)

µH 0.840 60(39) 0.450 1.022 0.69
µD 2.127 58(78) 1.139 3.849 1.18
µ3He 1.970 07(94) 1.055 3.450 48.7
µ4He 1.678 6(12) 0.899 2.745 29.2

constant and has been measured with a 10 Hz accuracy [1, 2].
We obtain the following results for the (Zα)5 and (Zα)6 fns
corrections:

E
(5,0)
fns (H, 2S−1S) = 29 Hz ,

E
(5,1)
fns (H, 2S−1S) = 20 Hz ,

E
(6,0)
fns (H, 2S−1S) = − 585 (5) Hz ,

E
(6,1)
fns (H, 2S−1S) = 20 Hz . (78)

We see that the E
(5,0)
fns correction is abnormally small, being

suppressed by an additional power of rC . It is interesting that
the recoil (Zα)5 correction has nearly the same magnitude
as the nonrecoil contribution to this order. We note that for
hydrogen the (Zα)5 corrections are already included in the
nuclear-structure calculations, performed for example in Ref.
[28]. The uncertainty of E

(6,0)
fns is the estimated model de-

pendence, evaluated as twice the difference between the ex-
ponential and the Gaussian models. This model-dependence
uncertainty is comparable with the theoretical uncertainty due
to α5 nuclear polarizability of 11 Hz [28]. The corrections in
Eq. (78) are larger than experimental uncertainty but smaller
than the other theoretical uncertainties (of about 1 kHz) and
the proton-radius uncertainty (about 1 kHz) [3].

Next we analyze the 2P -2S transition in light muonic
atoms. Our numerical results for the recoil fns correction for
muonic atoms with Z = 1 and Z = 2 are presented in Ta-
ble III. Recoil fns results for µH and µD are smaller than
experimental uncertainty (of 2.3 and 3.4 µeV, correspond-
ingly) and thus negligible at present. For the helium isotopes,
they are close to the experimental uncertainty (48 µeV) but
still smaller than the uncertainty from the unknown nuclear-
polarizability effects in the three-photon exchange. One may
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expect that the recoil fns corrections become more significant
for heavier elements, such as µLi or µBe, due to enhancement
by Z2 with respect to the leading finite size.

It should be stressed that the fns corrections are only the
elastic part of the total nuclear-structure effect. The remain-
ing, inelastic part includes the nuclear polarizability effect. In
principle, it is advantageous to account for the elastic and in-
elastic nuclear-structure parts on the same footing, but this is
not always possible. The nuclear structure effects has been
accurately calculated at the order (Z α)5 for H and He iso-
topes, both for electronic and muonic atoms, see Ref. [5] and
references therein, and estimated for heavier muonic atoms
[29]. However, the inelastic (Z α)6 correction is not known
yet and is the source of the main theoretical uncertainty in
light muonic atoms.

IX. SUMMARY

We derived formulas for the nuclear recoil fns corrections
of order (Zα)5 and (Zα)6. Our calculations were performed
without any expansion in the nuclear charge radius rC , which
makes the obtained results applicable both for electronic and
muonic atoms. The obtained results are relevant for high-
precision determinations of the root-mean-square charge radii
from spectroscopy of muonic atoms [10].

We demonstrated that the application of the widely-used
Breit approximation to the nuclear recoil effect with an ex-

tended nuclear charge distribution leads to appearance of an
unphysical fns contribution at the (Z α)5 order, which is linear
in the nuclear charge radius rC . This spurious term disappears
in the full-QED treatment, leaving the the correct contribution
∝ r2C ln rC , which is for the electronic atoms much smaller
than this spurious term.

The recoil fns correction contributes to the nonlinearity of
the so-called King plots in the isotope-shift measurements of
many-electron atoms [26, 30], which are used for searches of
new-physics scalar boson fields coupling to electrons and neu-
trons. This effect should be included into the theoretical anal-
ysis of the observed nonlinearities. It is interesting that the
leading recoil fns effect ∼ (Zα)4 does not contribute to the
King’s plot nonlinearities (since the reduced-mass prefactor
can be effectively absorbed into the nuclear radius). There-
fore, it is essential that the full QED approach is used for de-
scription of the recoil fns effect when studying these nonlin-
earities.

A possible future application of the method developed in
this work would be a calculation of the analogous correction to
the hyperfine splitting in µH, which could provide a sensitive
low-energy test of the Standard Model [31, 32] by comparing
the splitting intervals in electronic and muonic atoms. Fur-
ther application could be a calculation of the radiative recoil
fns correction, which can be as large as that obtained in this
work. Yet another application could be a calculation of (Z α)7

and α(Z α)6 recoil corrections to the Lamb shift and hyper-
fine splitting in hydrogenic systems, which are not known and
limit the accuracy of the current theoretical predictions [3].
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Appendix A: ddk integration

We aim to perform the following integration in d = 3− 2 ϵ
dimensions, assuming ϵ to be small,

f(m1,m2,m3;n1, n2, n3) =

∫
ddk1
(2π)d

∫
ddk2
(2π)d

× 4π

(k21 +m2
1)

n1

4π

(k22 +m2
2)

n2

4π

(k23 +m2
3)

n3
, (A1)

where k⃗3 = k⃗1 − k⃗2, n1, n2 and n3 are arbitrary integers,
m1,m2 and m3 are arbitrary nonnegative real numbers. If
any of ni is negative or equal to 0, then we can assume that
the corresponding mi = 0.

In several cases f vanishes. Namely, for arbitrary n1, n2

and n3,

f(0, 0, 0;n1, n2, n3) = 0 . (A2)

If two parameters are equal to 0, e.g., m1 = m2 = 0, then

f(0, 0,m3;n1, n2, n3) = 0, if n1 ≤ 0 or n2 ≤ 0 . (A3)

In order to solve the general case, we assume at first that n1 =
n2 = n3 = 1, then the master integral f is

f(m1,m2,m3) ≡ f(m1,m2,m3; 1, 1, 1) =

4π

(
1

4 ϵ
+

1− γE + ln(4π)

2
− ln(m1 +m2 +m3)

)
.

(A4)

If all mi are not equal to 0, then for positive n1, n2, n3

f(m1,m2,m3, n1 + 1, n2 + 1, n3 + 1) =
(−1)n1+n2+n3

n1!n2!n3!

× ∂n1

∂(m2
1)

n1

∂n2

∂(m2
2)

n2

∂n3

∂(m2
3)

n3
f(m1,m2,m3) . (A5)

If m1 = 0, then we use a general formula valid for arbitrary
ni,
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f(0,m2,m3;n1, n2, n3) =
m

2 (d−n1−n2−n3)
3

(4π)d−3

Γ(d/2− n1) Γ(n1 + n2 − d/2) Γ(n1 + n3 − d/2) Γ(n1 + n2 + n3 − d)

Γ(2n1 + n2 + n3 − d) Γ(n2) Γ(n3) Γ(d/2)

×2F1(n1 + n2 + n3 − d, n1 + n2 − d/2, 2n1 + n2 + n3 − d, 1−m2
2/m

2
3) . (A6)

In fact, when m1 = 0, one can still use differentiation as in Eq. (A5), but later one has to separate out 1/mi
1 terms and the

remainder coincides with the general formula in Eq. (A6). A few non obvious examples are:

f(0,m2,m3,−1, 1, 1) = − 4πm2 m3 (m
2
2 +m2

3) , (A7)

f(0,m2,m3,−2, 1, 1) =
4π

3
m2 m3 (3m

2
2 +m2

3) (m
2
2 + 3m2

3) . (A8)

Appendix B: Matrix elements for S states

The following matrix elements contain 1/ϵ singularity〈[
1

r4

]
ϵ

〉
≡
〈(

∇⃗
[
1

r

]
ϵ

)2〉
=

〈
1

r4

〉
+ ⟨π δd(r)⟩

(
− 2

ϵ
+ 8

)
, (B1)〈[

1

r3

]
ϵ

〉
≡
〈[

1

r

]3
ϵ

〉
=

〈
1

r3

〉
+ ⟨π δd(r)⟩

(
1

ϵ
+ 2

)
, (B2)

where 〈
1

r3

〉
= lim

a→0

∫ ∞

a

dr

r
f(r) + f(0) (γ + ln a) =

4

n3

(
1

2
− 1

2n
− γ −Ψ(n) + ln

n

2

)
, (B3)〈

1

r4

〉
= lim

a→0

∫ ∞

a

dr

r2
f(r)− f(0)

a
+ f ′(0) (γ + ln a) =

8

n3

(
− 5

3
+

1

2n
+

1

6n2
+ γ +Ψ(n)− ln

n

2

)
, (B4)

f(r) =

∫
dΩϕ∗(r⃗)ϕ(r⃗) , (B5)

and 〈
π δd(r)

1

(E −H)′
p4

8

〉
=

1

n3

(
− 3

2
− 1

n
+

5

4n2
+ γ +Ψ(n)− ln

n

2

)
− 1

4 ϵ
⟨π δd(r)⟩ , (B6)〈

π δd(r)
1

(E −H)′
π δd(r)

〉
=

1

n3

(
− 1

2
− 1

n
+ γ +Ψ(n)− ln

n

2

)
− 1

4 ϵ
⟨π δd(r)⟩ , (B7)〈

π δd(r)
1

(E −H)′
1

2
pi
[
δij

r
+

rirj

r3

]
ϵ

pj
〉

=
2

n3

(
− 9

4
− 1

n
+

5

4n2
+ γ +Ψ(n)− ln

n

2

)
− 1

2 ϵ
⟨π δd(r)⟩ . (B8)

The regular matrix elements in a.u. are evaluated as

E = − 1

2n2
, (B9)〈

1

r

〉
=

1

n2
, (B10)〈

1

r2

〉
=

2

n3
, (B11)

⟨π δ3(r)⟩ = 1

n3
, (B12)

〈
π∇2δd(r)

〉
=

2

n5
, (B13)〈{

pi,
{
pi, π δd(r)

}}〉
= − 2

n5
, (B14)〈

pi
(
δij

r
+

rirj

r3

)
pj
〉

=
1

n3

(
− 2

n
+ 4

)
, (B15)〈

pi
(
δij

r2
+

rirj

r4

)
pj
〉

=
1

n3

(
− 4

3n2
+

16

3

)
. (B16)


