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Abstract

Various properties of the general two-center two-electron integral over the explicitly correlated

exponential function are analyzed for the potential use in high precision calculations for diatomic

molecules. A compact one dimensional integral representation is found, which is suited for the

numerical evaluation. Together with recurrence relations, it makes possible the calculation of the

two-center two-electron integral with arbitrary powers of electron distances. Alternative approach

via the Taylor series in the internuclear distance is also investigated. Although numerically slower,

it can be used in cases when recurrences lose stability. Separate analysis is devoted to molecu-

lar integrals with integer powers of interelectronic distances r12 and the vanishing corresponding

nonlinear parameter. Several methods of their evaluation are proposed.
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I. INTRODUCTION

In order to achieve high accuracy for the nonrelativistic energy as well as for relativis-

tic and quantum electrodynamics (QED) corrections in molecular systems, well optimized

basis functions have to be applied. The explicitly correlated Gaussian (ECG) functions do

not satisfy the cusp condition, therefore their use in the evaluation of higher order QED

corrections [1] is problematic. Nevertheless, the recent calculations of the leading O(α3)

QED effects performed for H2 [2] using ECG functions, lead to the most accurate to date

theoretical predictions of about 10−3 cm−1 uncertainty for dissociation energies. To obtain

even more accurate results and to include higher order QED effects we aim to use the basis

of explicitly correlated exponential functions of the form

φ = e−w1 r12−u3 r1A−u2 r1B−w2 r2A−w3 r2B rn1
12 r

n2
1A r

n3
1B r

n4
2A r

n5
2B. (1)

The notation for interparticle distances is explained after Eq. (4). The use of such exponen-

tial functions in molecular applications is quite limited. Starting from the pioneering work

of Kolos and Roothan [3], the Neumann expansion of r−112 (at ω = 0) in spherical oblate

coordinates [4] has been applied most often, see the most recent review by Harris in Ref.

[5] and the collection of works in Ref. [6]. This expansion and the more general one of

e−ω r12 r−112 in terms of spheroidal functions [4], has been applied by several authors [7–11] in

their accurate calculations for the hydrogen molecule.

An alternative approach to perform integrals with exponential function in Eq. (1) has

originally been proposed in Ref. [12]. Authors have obtained an analytic, although quite

complex formula for the general four-body integral with exponential functions. By taking

the inverse Laplace transform [see Eq. (6)] in one of the nonlinear parameters, one can in

principle obtain the general two-center two-electron integral in Eq. (2). Due to the very

complicated analytic structure of the four-body formula, this inverse Laplace transform

has not been applied so far. In our recent work [13], we have reformulated the problem

of the calculation of the inverse Laplace transform, into the solution of some differential

equations. From these differential equations satisfied by the master integral f(r) (see Eq. (2)

below), one derived analytic recursion relations for integrals with positive integer powers of

interparticle distances, assuming that the nonlinear parameter corresponding to r12 vanishes,

i.e. for standard molecular integrals. Using these recursions one obtained analytic results for

integrals with James-Coolidge and extended Heitler-London basis functions. The application
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of analytic formulas has been demonstrated by the calculation of Born-Oppenheimer energies

for H2 in Ref. [14] with accuracy of 10−15 au, and for HeH+ in Ref. [15] with accuracy of

about 10−12 au. While James-Coolidge and Heitler-London basis functions work very well

for the ground states, they are not equally good for excited states, where arbitrary values

of nonlinear parameters are needed. This is the main subject of this work, to develop a

computational technique for general two-center two-electron integrals, which can be used

for the calculation of nonrelativistic energies, and also for relativistic and QED effects in

two-electron diatomic molecule. Finally we think that various properties of the general two-

center two-body integral derived here, can be applied for the calculation of nonrelativistic

energies of an arbitrary diatomic molecule. This subject has recently been pursued also by

Lesiuk and Moszyński in Ref. [16].

The general structure of this work is the following. In Sec. II we derive the differential

equation for the master integral f(r) in Eq. (2). In Sec. III we find a solution in terms

of one-dimensional integral over elementary functions and additionally consider few special

cases. In Sec. IV the Taylor series of f(r) in the internuclear distance r is derived, and

this shows the general analytic properties of the master integral f . In Sec. V integrals

with positive powers of interparticle distances are obtained by differentiation of the master

integral with respect to the corresponding nonlinear parameter. In Sec. VI we consider

standard molecular integrals, i.e., with the vanishing nonlinear parameter corresponding to

r12. In Sec. VII we present a summary with possible further applications.

II. THE MASTER INTEGRAL

We introduce here notation and definitions following the previous work in Ref. [13], and

obtain the fourth order differential equation which is satisfied by the master integral f(r).

Matrix elements of the nonrelativistic Hamiltonian between functions of the type (1) can

be expressed in terms of f(r) and its derivatives with respect to nonlinear parameters. The

master two-electron two-center integral f(r) is defined by

f(r) = r

∫
d3r1
4π

∫
d3r2
4 π

e−w1 r12

r12

e−u3 r1A

r1A

e−u2 r1B

r1B

e−w2 r2A

r2A

e−w3 r2B

r2B
, (2)

and the related class of integrals with the nonnegative integer n is

f(r, n) = r

∫
d3r1
4 π

∫
d3r2
4 π

1

r1−n12

e−u3 r1A

r1A

e−u2 r1B

r1B

e−w2 r2A

r2A

e−w3 r2B

r2B
, (3)
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where 1, 2 are indices of the electrons, A,B that of the nuclei, and r = rAB is the distance

between the nuclei. The notation for nonlinear parameters comes from the general four-body

integral g defined by

g(u1) =

∫
d3ρ1
4 π

∫
d3ρ2
4 π

∫
d3ρ3
4π

e−w1 ρ1−w2 ρ2−w3 ρ3−u1 ρ23−u2 ρ31−u3 ρ12

ρ23 ρ31 ρ12 ρ1 ρ2 ρ3
, (4)

with ~ρ1 = ~r12, ~ρ2 = ~r2A, ~ρ3 = ~r2B. Function g is related to f by a Laplace transform, namely

g(t) =

∫
d3r

4π
f(r)

e−t r

r2
=

∫ ∞
0

dr f(r) e−t r, (5)

and the opposite relation is the inverse Laplace transform

f(r) =
1

2π i

∫ i∞+ε

−i∞+ε

dt et r g(t). (6)

It was shown in Ref. [13], that the function g satisfies the first order differential equation in

any of it’s parameter α = ui, wi:

σ
∂g

∂α
+

1

2

∂σ

∂α
g + Pα = 0 , (7)

or equivalently
√
σ
∂

∂α
(
√
σ g) + Pα = 0 , (8)

with the inhomogeneous term Pα presented in Appendix A, and σ being the sixth order

polynomial in six variables

σ = u21 u
2
2w

2
3 + u22 u

2
3w

2
1 + u21 u

2
3w

2
2 + w2

1 w
2
2 w

2
3 + u21w

2
1 (u21 + w2

1 − u22 − u23 − w2
2 − w2

3)

+u22w
2
2 (u22 + w2

2 − u21 − u23 − w2
1 − w2

3) + u23w
2
3 (u23 + w2

3 − u22 − u21 − w2
1 − w2

2). (9)

For example, Eq. (7) for α = w1 reads

σ
∂g

∂w1

+
1

2

∂σ

∂w1

g + P (w1, u1;w2, u2;w3, u3) = 0 , (10)

where the inhomogeneous term P (w1, u1;w2, u2;w3, u3) is given by Eq. (A2). The solution

of this differential equation is presented in the ingenious work of Fromm and Hill [12] by

direct integration of Eq. (2) in the momentum representation. A more compact formula was

obtained by Harris [17]. We do not present here their results, as its explicit form is quite

long and we will not need it.
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To obtain the fundamental differential equation for the master integral f , we use the

differential equation (7) in variable t = u1

σ
∂g

∂t
+

1

2

∂σ

∂t
g + P (t, w1;u3, w3;w2, u2) = 0 , (11)

and perform the inverse Laplace transform in t. This differential equation, using the following

new parameters which are adapted to the symmetry of the problem

w2 = w + x, w3 = w − x, u2 = u− y, u3 = u+ y, (12)

takes the form [
σ4

d2

d r2
r
d2

d r2
+ σ2

d

d r
r
d

d r
+ σ0 r

]
f(r) = F (r), (13)

where

σ = σ0 + t2 σ2 + t4 σ4, (14)

σ4 = w2
1,

σ2 = w4
1 − 2w2

1 (u2 + w2 + x2 + y2) + 16uw x y

= w4
1 + w2

1 σ22 + σ20,

σ0 = w2
1 (u+ w − x− y) (u− w + x− y) (u− w − x+ y) (u+ w + x+ y)

+16 (w x− u y) (ux− w y) (uw − x y)

= w2
1 σ02 + σ00,

and F (r) = Fu1(r) is presented in Appendix A. The differential Eq. (13) is supplemented

by the boundary conditions, namely f(r) vanishes at small and large r.

Taking the occasion, we present here, for later use, a differential equation which is ob-

tained from the inverse Laplace transform of Eq. (10)(1

2

∂σ0
∂w1

+σ0
∂

∂w1

)
f(r)+

(1

2

∂σ2
∂w1

+σ2
∂

∂w1

)
f ′′(r)+

(
w1+w2

1

∂

∂w1

)
f (4)(r) = −Fw1(r), (15)

where Fw1(r) is given in Appendix A, and that for an arbitrary parameter α = u,w, x, y(1

2

∂σ0
∂α

+ σ0
∂

∂α

)
f(r) +

(1

2

∂σ2
∂α

+ σ2
∂

∂α

)
f ′′(r) + w2

1

∂

∂α
f (4)(r) = −Fα(r). (16)

III. POISSON REPRESENTATION

We derive here the integral representation for solutions of the homogeneous and the

inhomogeneous differential equation (13), which is the analog of the Poisson representation
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for Bessel functions [18]. σ is a quadratic polynomial in t2, so it has four zeros ±ta, ±tb.

Assuming tb > ta > 0, the four solutions of the homogeneous equation[
σ4

d2

d r2
r
d2

d r2
+ σ2

d

d r
r
d

d r
+ σ0 r

]
f(r) = 0, (17)

are ∫ −tb
−∞

et r√
σ(t)

dt,

∫ −ta
−tb

et r√
σ(t)

dt,

∫ ta

−ta

et r√
σ(t)

dt,

∫ tb

ta

et r√
σ(t)

dt . (18)

Let us prove it, as an example, for the last term[
σ4

d2

d r2
r
d2

d r2
+ σ2

d

d r
r
d

d r
+ σ0 r

] ∫ tb

ta

dt
et r√
σ(t)

=

∫ tb

ta

dt√
σ(t)

[
σ4

d2

d r2
r
d2

d r2
+ σ2

d

d r
r
d

d r
+ σ0 r

]
et r

=

∫ tb

ta

dt√
σ(t)

[
σ4 t

2 d

dt
t2 + σ2 t

d

dt
t+ σ0

d

dt

]
et r

=
1

2

∫ tb

ta

dt√
σ(t)

[
σ(t)

d

dt
+
d

dt
σ(t)

]
et r, (19)

where the last equation holds because σ(t) = σ0 + σ2 t
2 + σ4 t

4. One integrates by parts,

boundary terms vanish because σ(ta) = σ(tb) = 0, and one obtains

=
1

2

∫ tb

ta

dt et r
[
d

dt

√
σ(t) + σ(t)

d

dt

1√
σ(t)

]
=

1

2

∫ tb

ta

dt et r
1

2
√
σ(t)

(1− 1) = 0. (20)

The solution of the inhomogeneous fundamental differential equation (13) is obtained by

noting that the integration contour in the inverse Laplace transform can be deformed to

encircle all branch cuts on the left side of the complex plain

f(r) =
1

2π i

∫ −∞
0

dt et r
[
g(t+ i ε)− g(t− i ε)

]
. (21)

The analytic properties of g have been analyzed by Fromm and Hill in [12]. The function g(t)

has four overlapping branch cuts, similarly to the function P , in variable t on the negative

real axis starting at

−t1 = u3 + w2 = u+ y + w + x,

−t2 = u2 + w3 = u− y + w − x,

−t3 = u3 + w1 + w3 = u+ y + w − x+ w1,

−t4 = u2 + w1 + w2 = u− y + w + x+ w1, (22)
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correspondingly. The fact that all ti with i = 1, 2, 3, 4 are not positive comes from the

requirement that the integral in Eq. (2) is finite for positive values of ui and wi. Fromm and

Hill found the imaginary part of g for the particular ordering of ti. Their result is generalized

here to an arbitrary ordering of ti and takes the form

1

2π i

[
g(t+ i ε)− g(t− i ε)

]
=

1

2
√
σ

[
θ(t1 − t) ln |β0,0|+ θ(t2 − t) ln |β3,3|

−θ(t3 − t) ln |β3,1 β3,3| − θ(t4 − t) ln |β0,1 β0,0|
]
, (23)

where

βi,j =

√
σ − γi,j√
σ + γi,j

, (24)

and (cf. Ref.[12] with a1 = u3, a2 = w2, a3 = t, a23 = w3, a31 = u2, a12 = w1)

γ0,0 = 2u2w1w3 + (u22 − u23 + w2
1)w3 + w1 (−t2 + u22 + w2

3) + u2 (w2
1 − w2

2 + w2
3),

γ3,3 = 2u3w1w2 + (−u22 + u23 + w2
1)w2 + w1 (−t2 + u23 + w2

2) + u3 (w2
1 + w2

2 − w2
3),

γ0,1 = −2 t w2w3 − (t2 − u23 + w2
2)w3 + w2 (t2 − u22 + w2

3) + t (−w2
1 + w2

2 + w2
3),

γ3,1 = −2 t w2w3 + (t2 − u23 + w2
2)w3 − w2 (t2 − u22 + w2

3) + t (−w2
1 + w2

2 + w2
3). (25)

There is some arbitrariness in the form of Eq. (23) as products of β can be expressed in

several ways [12, 17]

βµ,µ βµ,ν = βν,ν βν,µ = βρ,ρ βρ,σ,

βµ,σ βν,σ βρ,σ = βσ,σ, (26)

for {µ, ν, ρ, σ} being an arbitrary permutation of {0, 1, 2, 3}. One can verify that Im(g) in

Eq. (23), satisfies the differential equation (11) with Im(P ) as an inhomogeneous term. As

a result, f(r) can be expressed in terms of the one-dimensional integral

f(r) =

∫ −∞
0

dt et r
1

2
√
σ

[
θ(t1 − t) ln |β0,0|+ θ(t2 − t) ln |β3,3|

−θ(t3 − t) ln |β3,1 β3,3| − θ(t4 − t) ln |β0,1 β0,0|
]
. (27)

This is a main result obtained in this work. All properties of the master integral f can in

principle be obtained from this integral representation. Some of them, however, can be more

easily obtained from the differential equation (13). The rest of the paper will be devoted

to various properties and various ways of numerical calculation of f(r) in Eq. (27) and its
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derivatives with respect to nonlinear parameters. This form of Eq. (27) is suited for the

direct numerical quadrature, once we know all the singularities on the integration path, and

this is presented in Appendix B.

It would be interesting to investigate various expansions of f(r) in Eq. (27), in particular

the expansion around w1 = 0 is studied in Sec. VI. Here, we obtain the master integral f at

w1 = 0 in a simple form which is convenient for the numerical evaluation. The σ polynomial

reads

σ|w1=0 = (u22 − u23 + w2
2 − w2

3) (u22w
2
2 − u23w2

3)− t2 (u22 − u23) (w2
2 − w2

3)

= 16 (w x− u y)(ux− w y)(uw − x y) + 16 t2 uw x y, (28)

and the differential equation becomes [13][
16uw x y

d

d r
r
d

d r
+ 16 r (w x− u y) (ux− w y) (uw − x y)

]
f(r) = F (r)

∣∣
w1=0

, (29)

where the inhomogeneous term F (r) using Eq.(A5) is

F (r)
∣∣
w1=0

= 2 (uw x− uw y − ux y + w x y)F1− + 2 (uw x− uw y + ux y − w x y)F2−

−2(uw x+ uw y + ux y + w x y)F3− + 2 (uw x+ uw y − ux y − w x y)F4−,

(30)

and where

F1± = Ei(−2 r u) er (u−w−x+y) ± Ei(−2 r w) er (−u+w+x−y),

F2± = Ei(−2 r w) er (−u+w−x+y) ± Ei(−2 r u) er (u−w+x−y),

F3± =

[
Ei(2 r x) + Ei(2 r y)− Ei(2 r (x+ y)) + ln

(
uw (x+ y)

x y (u+ w)

)]
e−r (u+w+x+y)

±Ei(−2 r (u+ w)) er (u+w+x+y),

F4± =

[
Ei(−2 r x) + Ei(−2 r y)− Ei(−2 r (x+ y)) + ln

(
uw (x+ y)

x y (u+ w)

)]
e−r (u+w−x−y)

±Ei(−2 r (u+ w)) er (u+w−x−y), (31)

with Ei being the exponential integral function. The solution of this differential equation

(assuming p2 > 0) in terms of solutions of the homogeneous equation was presented in Ref.

[13].

f(r) = − 1

16uw x y

[
I0(p r)

∫ ∞
r

dr′ F (r′)K0(p r
′) +K0(p r)

∫ r

0

dr′ F (r′) I0(p r
′)

]
, (32)
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where

p2 =
(w x− u y) (w y − ux) (uw − x y)

uw x y
, (33)

and I0, K0 are modified Bessel functions. A more convenient, however is the integral form

of Eq. (27)

f(r) =

(∫ −∞
−u−w−x−y

ln |β0,0|+
∫ −∞
−u−w+x+y

ln |β3,3|

−
∫ −∞
−u−w+x−y

ln |β3,1 β3,3| −
∫ −∞
−u−w−x+y

ln |β0,1 β0,0|
)

et r

2
√
σ
dt,

(34)

with the following γi,j coefficients

γ0,0 = −4 (uw x+ uw y − ux y − w x y),

γ3,3 = 4 (uw x+ uw y + ux y + w x y),

Γ(β3,1 β3,3) = −16uw x y/(t+ u+ w − x+ y) + 4 (uw x− uw y + ux y + w x y),

Γ(β0,1 β0,0) = −16uw x y/(t+ u+ w + x− y)− 4 (uw x− uw y − ux y − w x y), (35)

where Γ is defined in Eq. (B3). In the particular case of exchange integral w = u, x = y,

σ00 vanishes and the master integral becomes

f(r) =
1

8w x

(∫ −∞
−2 (w+x)

dt ln

∣∣∣∣ t+ 2 (w − x)

t− 2 (w − x)

∣∣∣∣ et rt
+

∫ −∞
−2 (w−x)

dt ln

∣∣∣∣t− 2 (w + x)

t+ 2 (w + x)

∣∣∣∣ et rt
−2

∫ −∞
−2w

dt ln

∣∣∣∣t+ 2 (w − x)

t+ 2 (w + x)

∣∣∣∣ et rt
)
. (36)

An equivalent integral representation, obtained from the differential equation (29) was pre-

sented in Ref. [13], but this form is more convenient for the numerical evaluation.

IV. TAYLOR EXPANSION IN r

Here, we find the Taylor expansion in the internuclear distance r of the master integral

f . As it was noticed by Fromm and Hill in [12] this expansion is absolutely convergent,

therefore it is another way to calculate the master integral as well as its derivatives with

respect to ui and wi. Following Ref. [12], we find the initial terms and the recurrence

relation for subsequent terms of the Taylor series.
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The expansion in small r of the master integral has the form

f(r) =
∞∑
k=1

rk
[
f
(1)
k ln(r) + f

(2)
k

]
. (37)

The leading term, can be obtained by noting that the limit r → 0 corresponds to the

one-center integral [12]

1

16 π2

∫
d3r1

∫
d3r2

e−α r1−β r2−γ r12

r21 r
2
2 r12

=
1

2 γ

[
π2

6
+

1

2
ln2

(
α + γ

β + γ

)
+ L2

(
1− α + β

α + γ

)
+ L2

(
1− β + α

β + γ

)]
, (38)

where L2 is the dilogarthmic function [18]. Let us introduce for the later use the following

Xi symbols

X0 =
1

2w1

[
π2

6
+

1

2
ln2

(
2u+ w1

2w + w1

)
+ L2

(
1− 2 (u+ w)

2u+ w1

)
+ L2

(
1− 2 (u+ w)

2w + w1

)]
,

X1 = ln

(
2u+ w1

2 (u+ w)

)
,

X2 = ln

(
2w + w1

2 (u+ w)

)
,

Xr =
1

2
ln[r2 (2u+ w1)(2w + w1)] + γE. (39)

where γE is the Euler constant. The leading terms in small r expansion using Eq. (38) are

f
(1)
1 = 0,

f
(2)
1 = X0. (40)

and f
(i)
0 = f

(i)
−1 = 0. The next terms of this expansion f

(1)
2 , f

(2)
2 are obtained from the large

t asymptotics of the function g

g =
X0

t2
+
g(1) ln t+ g(2)

t3
+ o
(
t−4
)
. (41)

Since g(t) satisfies the differential equation (11) with the inhomogenous term P (t) =

P (t, w1, u3, w3, w2, u2)

P (t) = w2
1

[
2 + ln(u2 + u3 + w1) + ln(w1 + w2 + w3)− 2 ln(t)

]
+ o
(
t−1
)
, (42)

the 1/t3 coefficients are

g(1) = −2,

g(2) = ln(u2 + u3 + w1) + ln(w1 + w2 + w3). (43)
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As noticed by Fromm and Hill [12], they are related to f
(i)
2 coefficients by

f
(1)
2 = −g

(1)

2
,

f
(2)
2 =

ψ(3) g(1) + g(2)

2
, (44)

where ψ is the Euler ψ-function [18] and ψ(3) = −γE+1+1/2. The next terms in r expansion

can be obtained from the fundamental differential equation (13). As the inhomogeneous term

F (r) has a similar expansion

F (r) =
∞∑

k=−1

rk
(
F

(1)
k ln(r) + F

(2)
k

)
, (45)

the recurrence relations are the following

f
(1)
k+1 =

F
(1)
k−2 − σ0 f

(1)
k−3 − σ2 (k − 1)2 f

(1)
k−1

σ4 (k + 1) k2 (k − 1)
, (46)

f
(2)
k+1 =

F
(2)
k−2 − σ0 f

(2)
k−3 − σ2 (k − 1)2 f

(2)
k−1 − σ2 2 (k − 1) f

(1)
k−1 − σ4 2 k [2 (k + 1) (k − 1) + 1] f

(1)
k+1

σ4 (k + 1) k2 (k − 1)
,

The resulting first terms in the expansion of the master integral f in powers of r are

f(r) = r X0 + r2
(
Xr −

3

2

)
+r3

[
−w

2
1X0

12
− w1

4
+

(u2 + w2 + x2 + y2)X0 − wX1 − uX2 − 2 (u+ w)

6

+
x y

3w1

− 2x y (2uwX0 + uX1 + wX2)

3w2
1

]
+r4

[
7

54
w2

1 +
w1 (u+ w)

12
+

3uw − 3x y − 11u2 − 11w2 − 9x2 − 9 y2

36

+Xr

(
−w

2
1

18
+
u2 + w2 + x2 + y2

6

)]
+O(r5). (47)

Let’s consider now the special case of w1 = 0. The recurrence relation takes the form:

f
(1)
k+1 =

F
(1)
k − σ00 f

(1)
k−1

σ20 (k + 1)2
,

f
(2)
k+1 =

F
(2)
k − σ00 f

(2)
k−1

σ20 (k + 1)2
− 2

k + 1
f
(1)
k+1, (48)

11



and the first terms in r-expansion are

f(r)|w1=0 = r

[
1

2u
ln
(

1 +
u

w

)
+

1

2w
ln
(

1 +
w

u

)]
+ r2

[
−3

2
+ γ +

1

2
ln(4 r2 uw)

]
+r3

[
−u

3
− w

3
+

x y

18u
+

x y

18w
+

(
u

4
+
w2 + x2 + y2

12u
− w x y

18u2

)
ln

(
1 +

u

w

)
+

(
w

4
+
u2 + x2 + y2

12w
− ux y

18w2

)
ln

(
1 +

w

u

)]
+r4

[
uw − x y

12
− w2 + u2

18
+

1

6
(u2 + w2 + x2 + y2)

(
−3

2
+ γ +

1

2
ln(4 r2 uw)

)]
+O(r5). (49)

In order to obtain the Taylor expansion of f(r, n)

f(r, n) =
∞∑
k=1

rk
[
f
(1)
k (n) ln(r) + f

(2)
k (n)

]
, (50)

one expands Eq. (15) in power series in r and obtains the following recursions for coefficients

f
(1)
k+2(n) =

−1

σ20 (k + 2) (k + 1)

[
σ00 f

(1)
k (n) + σ02 (n− 1)2 f

(1)
k (n− 2)

+σ22 (n− 1)2 (k + 2) (k + 1) f
(1)
k+2(n− 2)

+(n− 1)2 (k + 4) (k + 3) (k + 2) (k + 1) f
(1)
k+4(n− 2)

+(n− 3) (n− 2)2 (n− 1) (k + 2) (k + 1) f
(1)
k+2(n− 4)

]
, (51)

f
(2)
k+2(n) =

1

σ20 (k + 2) (k + 1)

[
Fw1,k(n− 1)− σ20 (2 k + 3) f

(1)
k+2(n)

−σ00 f (2)
k (n)− σ02 (n− 1)2 f

(2)
k (n− 2)

−σ22 (n− 1)2
[
(k + 2) (k + 1) f

(2)
k+2(n− 2) + (2 k + 3) f

(1)
k+2(n− 2)

]
−(n− 3) (n− 2)2 (n− 1)

[
(k + 2) (k + 1) f

(2)
k+2(n− 4) + (2 k + 3) f

(1)
k+2(n− 4)

]
−(n− 1)2

[
(k + 4) (k + 3) (k + 2) (k + 1) f

(2)
k+4(n− 2)

+2 (2 k + 5) (k2 + 5 k + 5) f
(1)
k+4(n− 2)

]]
, (52)

where f
(i)
k (0) = f

(i)
k . The usefulness of the calculation of f(r) and f(r, n) via Taylor series

in r and the above recursions needs to be verified numerically. Nevertheless, the expansion

terms say a lot about analytic properties of f , as a function of w1, x, y, u and w. In particular,

the expansion in Eq. (47) suggests that f is an entire function in x, y at fixed r, u, w, w1.

12



V. GENERAL RECURSION RELATIONS

In order to use the exponentially correlated basis in molecular calculations, one has to be

able to calculate derivatives of the master integral f with respect to nonlinear parameters.

Differential equations (13,15) and (16) are used below, to express the derivative of f(r) with

respect to an arbitrary parameter α = w1, x, y, u, w in terms of f(r), f ′(r), f ′′(r), and f ′′′(r).

This is done as follows. From Eq. (13), the fourth derivative f (4)(r) can be expressed in

terms of lower derivatives of f(r) and we use this in Eqs. (15) and (16) to eliminate fourthth

derivative. Next, differentiate these equations with respect to r and again eliminate fourth

derivative. Doing this differentiation and elimination three times, one obtains four equations

for four unknowns: the derivative of f with respect to w1, and its three further derivatives

with respect to r. The solution of these linear equations for α = w1 is

2 δ σ0
∂f(r)

∂w1

= r δ
∂σ0
∂w1

f ′(r) + w1

(
−2σ0 σ2 − w1 σ2

∂σ0
∂w1

+ 2w1 σ0
∂σ2
∂w1

)
[f ′′(r) + r f ′′′(r)]

− σ0
(

4w1 σ0 + 2w2
1

∂σ0
∂w1

− σ2
∂σ2
∂w1

)
[f(r) + r f ′(r)] + . . . , (53)

and for α = u,w, x, y

2 δ σ0
∂f(r)

∂α
= r δ

∂σ0
∂α

f ′(r)− w2
1

(
σ2
∂σ0
∂α
− 2σ0

∂σ2
∂α

)
[f ′′(r) + r f ′′′(r)]

− σ0
(

2w2
1

∂σ0
∂α
− σ2

∂σ2
∂α

)
[f(r) + r f ′(r)] + . . . , (54)

where . . . denotes inhomogeneous terms presented in Eqs. (C3,C5), and where

δ = 4w2
1 σ0 − σ2

2 = −(w2
1 − 4u2) (w2

1 − 4w2) (w2
1 − 4x2) (w2

1 − 4 y2). (55)

The solution for higher order derivatives with respect to r can be represented in the matrix

form. Let us introduce a symbol ~f to denote

~f(r) =


f(r)

f ′(r)

f ′′(r)

f ′′′(r)

 . (56)

Then
∂ ~f

∂α
= Âα ~f + ~Fα, (57)

13



where Âα and Fα are presented in Appendix C. These vector differential equations with

respect to the nonlinear parameter α can be used as recursion relations to express the

integral with any powers of electron distances in terms of the master integral f(r) and it’s

first three derivatives with respect to r. These recursions become unstable when w1 ≈ 0,

δ ≈ 0 or σ0 ≈ 0. These cases require a separate analysis. In the next Section we consider

recursion relations for w1 = 0 which has applications for standard molecular integrals.

The particular case of σ0 = 0 happens for an exchange integral where w = u and x = y.

Here, one can use recurrence only for f ′(r) to generate the analytic expressions for derivatives

with respect to w − u and x − y. They are quite compact as there will be only three

independent parameters, and can be expressed in terms of f(r) and f ′(r). The derivatives

with respect to remaining nonlinear parameters can be calculated afterwards, by setting

w = u, x = y.

VI. RECURSIONS FOR STANDARD MOLECULAR INTEGRALS

We describe in this Section the evaluation of standard molecular integrals, where w1 = 0.

Recursion relations for the integral f(r, n) in Eq. (3) have been presented in Ref. [13].

Here we rederive them using a more compact notation. In particular cases, close to spuri-

ous singularities, we propose to use these recursions to derive an analytical expression for

individual integrals, which are then implemented in the numerical codes.

Let us take Eqs. (13) and (15), and differentiate them with respect to w1, n and n − 1

times respectively at w1 = 0

r σ00 f(r, n) + σ20 f
′(r, n) + r σ20 f

′′(r, n) + (n− 1)n r σ02 f(r, n− 2)

+ (n− 1)nσ22 f
′(r, n− 2) + (n− 1)n r σ22 f

′′(r, n− 2) + 2 (n− 1)n f (3)(r, n− 2)

+ (n− 1)n r f (4)(r, n− 2) + (n− 3) (n− 2) (n− 1)n f ′(r, n− 4)

+ (n− 3) (n− 2) (n− 1)n r f ′′(r, n− 4) = Fu1(r, n) , (58)

σ00 f(r, n) + σ20 f
′′(r, n) + (n− 1)2 σ02 f(r, n− 2) + (n− 1)2 σ22 f

′′(r, n− 2)

+ (n− 1)2 f (4)(r, n− 2) + (n− 3) (n− 2)2 (n− 1) f ′′(r, n− 4) = Fw1(r, n− 1) . (59)

These are two linear equations for three unknowns f(r, n), f ′(r, n), f ′′(r, n). The third equa-

tion is obtained by elimination of f ′′(r, n) and further differentiation with respect to r. The

14



solution of these three equations for f(r, n) and f ′(r, n) are

f(r, n) =
1

σ00

[
−(n− 2) (n− 1)σ02 f(r, n− 2) + (n− 1) r σ02 f

′(r, n− 2)

+2 (n− 1)σ22 f
′′(r, n− 2) + (n− 1) r σ22 f

(3)(r, n− 2)

+(n− 1) (n+ 2) f (4)(r, n− 2) + (n− 1) r f (5)(r, n− 2)

+4 (n− 3) (n− 2) (n− 1) f ′′(r, n− 4) + 2 (n− 3) (n− 2) (n− 1) r f (3)(r, n− 4)

+2Fw1(r, n− 1) + r F ′w1
(r, n− 1)− F ′u1(r, n)

]
, (60)

f ′(r, n) = − 1

σ20

[
(n− 1) r σ02 f(r, n− 2) + (n− 3) (n− 2) (n− 1)n f ′(r, n− 4)

+(n− 1)nσ22 f
′(r, n− 2) + 2 (n− 3) (n− 2) (n− 1) r f ′′(r, n− 4)

+(n− 1) r σ22 f
′′(r, n− 2) + 2 (n− 1)n f (3)(r, n− 2) + (n− 1) r f (4)(r, n− 2)

+r Fw1(r, n− 1)− Fu1(r, n)
]
, (61)

where

FX(r, n) = (−1)n
∂n

∂wn1

∣∣∣∣
w1=0

FX(r), (62)

for X = w1, u1. Equation (60) allows one to obtain integral f(r, n) with an arbitrary power

n− 1 of r12 in terms of f(r), for example

f(r, 0) = f(r),

f(r, 1) =
r3

4
h0(r u)h0(r w) j0(r x) j0(r y),

f(r, 2) =
1

σ00

[
r σ02 f

′(r) + 2 σ22 f
′′(r) + r σ22 f

(3)(r) + 4 f (4)(r) + r f (5)(r)

+2Fw1(r, 1) + r F ′w1
(r, 1)− F ′u1(r, 2)

]
,

f(r, 3) =
r5

24

[
−3h1(r u)h1(r w) j1(r x) j1(r y)− h0(r u)h0(r w) j0(r x) j0(r y)

+h0(r w)h2(r u) j0(r x) j0(r y) + h0(r u)h2(r w) j0(r x) j0(r y)

+h0(r u)h0(r w) j2(r x) j0(r y) + h0(r u)h0(r w) j0(r x) j2(r y)

]
, (63)

where jn and hn are modified spherical Bessel functions

jn(x) = xn
(1

x

d

dx

)n sinh(x)

x
,

hn(x) = xn
(1

x

d

dx

)n exp(−x)

x
. (64)

One notices, that f(r, n) for odd n can be expressed in terms of jn and hn only, and their

numerical evaluation is straightforward. In contrast, numerical evaluation of the formulas
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for even n is much more difficult. If σ20 is not small, then derivatives of f(r) can be reduced

to f(r) and f ′(r) using

f (n)(r) = − 1

r σ20

[
σ00
[
(n−2) f (n−3)(r)+r f (n−2)(r)

]
+σ20 (n−1) f (n−1)(r)−F (n−2)

u1
(r)
]

(65)

If σ20 is small, then the inverse recursion

f (n)(r) = − 1

(n+ 1)σ00

[
r σ00 f

(n+1)(r) + (n+ 2)σ20 f
(n+2)(r) + r σ20 f

(n+3)(r)− F (n+1)
u1

(r)
]

(66)

is stable and can be used to obtain all the derivatives including the function f(r) itself.

Alternatively f (n)(r) can be obtained directly, using the integral form of Eq. (34). If σ00 is

small but not σ20, then these formulas can be rewritten using Eq. (61) to the form without

σ00 in the denominator, for example

f(r, 2) =
1

σ20

[
σ02 f

(−2)(r)−r σ02 f (−1)(r)−σ22 f(r)−r σ22 f ′(r)−3 f ′′(r)−r f ′′′(r)
]
+. . . (67)

where f (−n)(r) is defined by

f (−n)(r) =

∫ r

0

f (−n+1)(r) dr , (68)

and can be obtained from Eqs. (34) or (66). It may lead however to other type of numerical

instabilities, if the branch point starts at 0, see Eq. (22), and in this case one can build

the explicit table of integrals, as in Ref. [14, 15]. When both σ20 ≈ 0 and σ00 ≈ 0, then

parameters x, y are small and in this case the Neumann expansion [5] can be applied.

What remains are the derivative of f with respect to α = u,w, x, y at w1 = 0. We

adapt here the derivation of corresponding formulas from Ref. [13]. One takes fundamental

differential equations in u1 and α at w1 = 0

r σ00 f(r) + σ20 f
′(r) + r σ20 f

′′(r) = Fu1(r) (69)

1

2

∂σ00
∂α

f(r) + σ00
∂f(r)

∂α
+

1

2

∂σ20
∂α

f ′′(r) + σ20
∂f ′′(r)

∂α
= −Fα(r) (70)

differentiates the first equation with respect to α, eliminates ∂f ′′(r)/∂α and differentiate

resulting equation again with respect to r. The obtained equation for the derivative of f ,

using ∂σ20/∂α = σ20/α is

∂f

∂α
= − 1

2α
f(r) +

r

2

(
1

σ00

∂σ00
∂α
− 1

α

)
f ′(r) +

Gα(r)

σ00
, (71)
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where

Gα(r) =
[( 1

2α
− ∂

∂α

)
F ′u1(r)−

(
2 + r

d

dr

)
Fα(r)

]
w1=0

(72)

and

Gw(r) =
1

w

[
(u y − w x) (ux− w y) (−F1+ − F2+ + F3+ + F4+)

+(u+ w) (x− y) (uw − x y) (−F1+ + F2+)

+(u− w) (x+ y) (uw − x y) (−F3+ + F4+)
]

Gu(r) =
1

u

[
(u y − w x) (ux− w y) (−F1+ − F2+ + F3+ + F4+)

+(u+ w) (x− y) (uw − x y) (F1+ − F2+)

+(u− w) (x+ y) (uw − x y) (−F3+ + F4+)
]

Gx(r) =
1

x

[
(u y − w x) (ux− w y) (F1+ + F2+ − F3+ − F4+)

+(u+ w) (x− y) (uw − x y) (−F3+ + F4+)

+(u− w) (x+ y) (uw − x y) (−F1+ + F2+)
]

Gy(r) =
1

y

[
(u y − w x) (ux− w y) (F1+ + F2+ − F3+ − F4+)

+(u+ w) (x− y) (uw − x y) (F3+ − F4+)

+(u− w) (x+ y) (uw − x y) (F1+ − F2+)
]
. (73)

Here σ0 from the denominator can be removed, when necessary, as in the case of f(r, n) by

introducing f (−n)(r). The formula (71) allows one to obtain integrals with arbitrary pow-

ers of electronic distances. It requires however, further investigations of various numerical

instabilities when the denominator approaches 0. In particular, σ00 vanishes for exchange

integrals. In this case w = u, x = y and one can generate a table of integrals avoiding

recursions, by Taylor expansion of the fundamental solution in Eq. (27) in w1, w − u, and

x− y. Alternatively, one can take recursion relations presented in Eq. (61) and integrate it

once over r.

VII. SUMMARY

The evaluation of two-center two-electron integrals is a difficult task. Depending on a

physical problem different approaches are employed. For the calculation of nonrelativistic

energies of a two-electron diatomic molecule the best way is by the use of Kolos-Wolniewicz
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basis functions, namely w1 = 0 and arbitrary nonlinear parameters u,w, x, y. The master

integral can be calculated numerically using Eqs. (34) and (37). Integrals with powers of

interparticle distances can be obtained by using analytic recursions Eq. (60), (65), and 71)

followed by numerical evaluation of obtained formulas.

For the calculation of QED effects in a two-electron diatomic molecule, the best way is

to use the most general basis functions with nonvanishing w1, u, w, x, y. The master integral

can be evaluated according to Eq. (27), and integrals with additional positive powers of

interparticle distance can be obtained through recursion relations Eq. (57). Integrals with

negative powers can be obtained by numerical integration with respect to the corresponding

nonlinear parameter. In order to demonstrate correctness of obtained formulas for two-

center two-electron integrals, Table I presents a simple, examplary calculations of the ground

electronic Σ+
g state of the H2 molecule.

TABLE I: Examplary calculations of the Born-Oppenheimer energy at the equilibrium distance

R = 1.4 of the ground Σ+
g state of H2 molecule, obtained using functions of the form Eq. (1), with

parameters w1 = −0.5, u = 1, w = 1, y = 0.125, x = −0.125 defined in Eqs. (12), N is a number of

basis functions, and n1 + n2 + n3 + n4 + n5 ≤ Ω. The result with ∞ is accurate to all digits and

was obtained in [7–11, 14]

.

Ω N EBO(a.u.)

0 1 −1.038 401 456

1 4 −1.157 108 377

2 13 −1.172 368 483

3 32 −1.174 254 201

∞ −1.174 475 714

An additional approach to evaluate two-center integrals is by the Taylor expansion in

small internuclear distance r. Its applicability has to be verified numerically. Nevertheless,

it serves at present as a simple check of various formulas for recursion relations and the

master integral. The advantage of calculations by Taylor series, is that expansion terms are

quite simple. They are related to the known one-center (helium-like) integrals and can be

obtained recursively (46, 51, 52). A similar Taylor expansion can in principle be obtained

for many-body three-linked integrals (at most three odd powers of interparticle integrals).
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This would open a window for high precision results in many electron diatomic molecules.
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Appendix A: Inhomogeneous terms

The first order differential equation (8), satisfied by the general four body integral, defined

by Eq. (3), involves the inhomogeneous term Pα for α = ui, wi. They are related to each

other by

Pw1 = P (w1, u1;w2, u2;w3, u3)

= P (w1, u1;w3, u3;w2, u2)

Pu1 = P (u1, w1;w2, u2;u3, w3)

Pw2 = P (w2, u2;w3, u3;w1, u1)

Pu2 = P (u2, w2;w3, u3;u1, w1)

Pw3 = P (w3, u3;w1, u1;w2, u2)

Pu3 = P (u3, w3;u1, w1;w2, u2) (A1)

The expression for P was obtained in [13] and is the following

P (w1, u1;w2, u2;w3, u3)

=
u1w1 [(u1 + w2)

2 − u23]
(−u1 + u3 − w2) (u1 + u3 + w2)

ln

[
u2 + u3 + w1

u1 + u2 + w1 + w2

]
+

u1w1 [(u1 + u3)
2 − w2

2]

(−u1 − u3 + w2) (u1 + u3 + w2)
ln

[
w1 + w2 + w3

u1 + u3 + w1 + w3

]
−u

2
1w

2
1 + u22w

2
2 − u23w2

3 + w1w2 (u21 + u22 − w2
3)

(−w1 − w2 + w3) (w1 + w2 + w3)
ln

[
u1 + u2 + w3

u1 + u2 + w1 + w2

]
−u

2
1w

2
1 − u22w2

2 + u23w
2
3 + w1w3 (u21 + u23 − w2

2)

(−w1 + w2 − w3) (w1 + w2 + w3)
ln

[
u1 + u3 + w2

u1 + u3 + w1 + w3

]
+
u2 (u2 + w1) (u21 + u23 − w2

2)− u23 (u21 + u22 − w2
3)

(−u2 + u3 − w1) (u2 + u3 + w1)
ln

[
u1 + u3 + w2

u1 + u2 + w1 + w2

]
+
u3 (u3 + w1) (u21 + u22 − w2

3)− u22 (u21 + u23 − w2
2)

(u2 − u3 − w1) (u2 + u3 + w1)
ln

[
u1 + u2 + w3

u1 + u3 + w1 + w3

]
−w1 [w2 (u21 − u22 + w2

3) + w3 (u21 − u23 + w2
2)]

(w1 − w2 − w3) (w1 + w2 + w3)
ln

[
u2 + u3 + w1

u2 + u3 + w2 + w3

]
−w1 [u2 (u21 + u23 − w2

2) + u3 (u21 + u22 − w2
3)]

(−u2 − u3 + w1) (u2 + u3 + w1)
ln

[
w1 + w2 + w3

u2 + u3 + w2 + w3

]
(A2)
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In the case the nonlinear parameter α is the combination of wi, ui as in Eq. (12), then Pα

is given by

Pw = Pw2 + Pw3

Px = Pw2 − Pw3

Pu = Pu2 + Pu3

Py = Pu3 − Pu2 (A3)

The inhomogeneous term in the fundamental differential equation (13) is the inverse Laplace

transform of P

Fα =
1

2 π i

∫ i∞+ε

−i∞+ε

dt et r Pα

∣∣∣
u1=t

(A4)

In particular, Fu1 is given by

Fu1(r) =

{
w1

(
1

r2
+

2w1 + u+ w − x+ y

r

)
e−r (u+w+w1−x+y)

−w1

(
1

r2
+
u+ w + x+ y

r

)
e−r (u+w+x+y)

+

[
w2

1

2
(u− w − x+ y) + 2uw (x− y) + 2 x y (w − u)

]
×
[
Ei(−r (2u+ w1)) e

r (u−w−x+y) − Ei(−r (2w + w1)) e
−r (u−w−x+y)

]
+

[
w2

1

2
(u+ w + x+ y) + 2uw (x+ y) + 2 x y (u+ w)

]
×
[(

Ei(2 r (x+ y))− Ei(−r (w1 − 2x))− Ei(−r (w1 − 2 y))

− ln

[
(x+ y) (w1 + 2u) (w1 + 2w)

(u+ w) (w1 − 2x) (w1 − 2 y)

])
e−r (u+w+x+y) + Ei(−2 r (u+ w)) er (u+w+x+y)

]}
+

{
x→ −x, y → −y

}
(A5)
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where Ei is the exponential integral function, and Fw1 is

Fw1(r) =

{[
r (u+ w + x+ y) + 1

r3

(
2− w1

2u+ w1

− w1

2w + w1

− w1

w1 − 2x
− w1

w1 − 2 y

)
+

2

r

(
(u+ w) (u+ x) (u+ y)

2u+ w1

+
(u+ w) (w + x) (w + y)

2w + w1

−(u+ x) (w + x) (x+ y)

w1 − 2x
− (u+ y) (w + y) (x+ y)

w1 − 2 y
− (u+ w + x+ y)2

2

)]
×e−r (u+w+x+y)

+

[
r (u+ w + w1 − x+ y) + 1

r3

(
−2 +

w1

2u+ w1

+
w1

2w + w1

+
w1

w1 − 2x
+

w1

w1 + 2 y

)
+
w1

r2
+

1

r

(
w2

1 + 4 (x y + ux+ w x− u y − w y − uw) + (w1 + u+ w − x+ y)2

−2 (u− w) (u+ x) (u− y)

2u+ w1

+
2 (u− w) (w + x) (w − y)

2w + w1

+
2 (u+ x) (w + x) (x+ y)

w1 − 2x
+

2 (u− y) (w − y) (−x− y)

w1 + 2 y

)]
e−r (u+w+w1−x+y)

}
+

{
x→ −x, y → −y

}
(A6)

One notes, that Fw1 involves only the exponential and rational functions.

Appendix B: Numerical evaluation of the master integral

For the numerical evaluation of the master integral in Eq. (27), one should find all

singularities on the integration path [12]. For this one decomposes σ − γ2i,j into products

σ − γ20,0 = (u2 − u3 + w1) (u2 + u3 + w1) (t− u2 − w3)

(t+ u2 + w3) (w1 − w2 + w3) (w1 + w2 + w3)

σ − γ23,3 = (u2 − u3 − w1) (u2 + u3 + w1) (−t+ u3 + w2)

(t+ u3 + w2) (w1 + w2 − w3) (w1 + w2 + w3)

σ − γ23,1 = (t+ u3 − w2) (−t+ u3 + w2) (−t+ u2 − w3)

(w1 + w2 − w3) (t+ u2 + w3) (w1 − w2 + w3)

σ − γ20,1 = (−t+ u3 − w2) (t+ u3 + w2) (t+ u2 − w3)

(w1 + w2 − w3) (−t+ u2 + w3) (w1 − w2 + w3) (B1)

and observes that β0,0 vanishes on the negative axis at t = t2, β3,3 at t = t1, β3,1 at t = t2,

and β0,1 at t = t1. All singularities at other points t−ui−wj, t+ui−wj and t−ui+wj cancel
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out among various ln β’s, because the original integral Eq. (2) is finite at these points and

g is analytic. The cancellation can be achieved explicitly, by combining the corresponding

β’s under the common logarithm. For this one has to consider all possible orderings of ti.

Because of the symmetries 1 ↔ 2 and A ↔ B one can assume, without loosing generality,

that t1 > t2 and t3 > t4. We remain with six possible orderings of ti, t1 ≥ t2 ≥ t3 ≥ t4, t1 ≥

t3 ≥ t2 ≥ t4, t1 ≥ t3 ≥ t4 ≥ t2, t3 ≥ t1 ≥ t2 ≥ t4, t3 ≥ t1 ≥ t4 ≥ t2, t3 ≥ t4 ≥ t1 ≥ t2,

and six corresponding representations of the master integral f

f(r) =

(∫ t2

t1

ln |β0,0|+
∫ t3

t2

ln |β0,0 β3,3|+
∫ t4

t3

ln |β0,0/β3,1| −
∫ −∞
t4

ln |β0,1 β3,1|
)
et r√
σ
dt

=

(∫ t3

t1

ln |β0,0| −
∫ t2

t3

ln |β0,2|+
∫ t4

t2

ln |β0,0/β3,1| −
∫ −∞
t4

ln |β0,1 β3,1|
)
et r√
σ
dt

=

(∫ t3

t1

ln |β0,0| −
∫ t4

t3

ln |β0,2| −
∫ t2

t4

ln |β0,0 β0,1 β0,2| −
∫ −∞
t2

ln |β0,1 β3,1|
)
et r√
σ
dt

=

(
−
∫ t1

t3

ln |β0,0 β0,2| −
∫ t2

t1

ln |β0,2|+
∫ t4

t2

ln |β0,0/β3,1| −
∫ −∞
t4

ln |β0,1 β3,1|
)
et r√
σ
dt

=

(
−
∫ t1

t3

ln |β0,0 β0,2| −
∫ t4

t1

ln |β0,2| −
∫ t2

t4

ln |β0,0 β0,1 β0,2| −
∫ −∞
t2

ln |β0,1 β3,1|
)
et r√
σ
dt

=

(
−
∫ t4

t3

ln |β0,0 β0,2| −
∫ t1

t4

ln |β2
0,0 β0,1 β0,2| −

∫ t2

t1

ln |β0,0 β0,1 β0,2| −
∫ −∞
t2

ln |β0,1 β3,1|
)
et r√
σ
dt

(B2)

In order to eliminate singularities algebraically, the products and ratios of β can be combined

together [17] √
σ − γ√
σ + γ

γ′ −
√
σ

γ′ +
√
σ

=

√
σ − Γ√
σ + Γ

(B3)

where

Γ =
σ + γ γ′

γ + γ′
(B4)
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As a result, no singularity appears on the integration path, which is demonstrated by the

following decompositions

σ − Γ2(β0,1 β3,1) = −(t− u3 − w2) (t+ u3 − w2) (t− u3 + w2) (t+ u3 + w2)

(t− u2 − w3) (t+ u2 − w3) (t− u2 + w3) (t+ u2 + w3)/(4 t
2)

σ − Γ2(β0,0/β3,1) = −(u2 − u3 + w1) (u2 + u3 + w1) (t− u3 − w2) (t+ u3 − w2) (t− u2 − w3)

(w1 + w2 − w3) (t− u2 + w3) (w1 + w2 + w3)/(t− u2 − w1 − w2)
2

σ − Γ2(β0,0 β0,2) = −(−u2 + u3 + w1) (u2 + u3 + w1) (t+ u3 − w2) (t+ u3 + w2) (t− u2 + w3)

(t+ u2 + w3) (w1 − w2 + w3) (w1 + w2 + w3)/(t+ u3 + w1 + w3)
2

σ − Γ2(β0,0 β0,1) = −(u2 − u3 + w1) (u2 + u3 + w1) (t− u3 + w2) (t+ u3 + w2) (t+ u2 − w3)

(w1 + w2 − w3) (t+ u2 + w3) (w1 + w2 + w3)/(t+ u2 + w1 + w2)
2 (B5)

Table II presents numerical results for f for several internuclear distances r and nonlinear

parameters w1, x, y, u and w. For r < 0.01 f is evaluated from the Taylor series up to r8,

and for r > 0.01 from the integral representation in Eq. (B2).

TABLE II: Master integral f for selected values of internuclear distances r and nonlinear parameters

w1 u2 w2 u3 w3 f(0.1) 102 f(1.0) 103 f(10) 1013

2.5 2.0 1.5 1.0 0.5 1.539 488 720 658 182 3.811 561 883 331 994 2.916 697 700 943 504

2.0 2.5 1.5 1.0 0.5 1.575 469 059 882 717 3.538 642 196 033 083 1.056 827 512 869 080

1.5 2.0 2.5 1.0 0.5 1.592 898 118 308 067 3.359 218 711 378 032 0.983 486 526 526 378

1.0 2.0 1.5 2.5 0.5 1.687 851 128 764 463 3.142 086 593 091 502 0.648 185 277 118 373

0.5 2.0 1.5 1.0 2.5 1.687 626 825 828 684 2.985 309 587 884 137 0.621 477 317 148 430

−0.5 2.0 1.5 1.0 2.5 2.285 510 252 707 772 5.843 903 698 492 676 2.026 400 131 640 827
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Appendix C: Exact form of general recursion relations

The recursion relations for the general master integral, as given by Eq. (57) involves the

4 by 4 matrix Aα. For α = x, y, u, w, A is the following

Aα =
1

δ


−1

4
∂δ
∂α
, − r

4

(
∂δ
∂α
− 2 δ

σ0

∂σ0
∂α

)
, −w2

1 σα
2σ0

, − r w2
1 σα

2σ0

r σα
2
, , r

4
∂δ
∂α
,

σα
2
, r σα

2
, 1

4
∂δ
∂α
, r

4
∂δ
∂α

− r σ0
4w2

1

∂δ
∂α
, − δ

2w2
1

∂σ2
∂α
, − r δ

2w2
1

∂σ2
∂α
− r σα

2
,

 (C1)

where

σα =
σ2
w2

1

∂ (w2
1 σ0)

∂α
− 2σ0

∂σ2
∂α

(C2)

and the inhomogeneous term ~Fα is

~Fα =
1

δ


− σ2

2σ0

∂σ2
∂α

∂
∂r

+
(

2w2
1 − δ

σ0

)
∂2

∂r∂α
+ w2

1
σ2
σ0

∂3

∂r3

∂σ2
∂α
− σ2 ∂

∂α
− 2w2

1
∂3

∂r2 ∂α

∂σ2
∂α

∂
∂r
− σ2 ∂2

∂r∂α
− 2w2

1
∂4

∂r3∂α

− σ2
2w2

1

∂σ2
∂α

+ 2σ0
∂
∂α

+ σ2
∂3

∂r2 ∂α

 Fu1(r)

+
1

δ


2
(
w2

1 − δ
σ0

)
+ r

(
2w2

1 − δ
σ0

)
∂
∂r

+
5w2

1 σ2
σ0

∂2

∂r2
+

r w2
1 σ2
σ0

∂3

∂r3

−r σ2 − 8w2
1
∂
∂r
− 2 r w2

1
∂2

∂r2

−σ2 − r σ2 ∂
∂r
− 10w2

1
∂2

∂r2
− 2 r w2

1
∂3

∂r3

2 r σ0 + 4σ2
∂
∂r

+ r σ2
∂2

∂r2

 Fα(r) (C3)

For α = w1 matrix A is

Aw1 =
1

δ


−1

4
∂δ
∂w1

, − r
4

(
∂δ
∂w1
− 2 δ

σ0

∂σ0
∂w1

)
, −w2

1 σw1

2σ0
, − r w2

1 σw1

2σ0

r σw1

2
, − δ

w1
, r

4
∂δ
∂w1
− r δ

w1
,

σw1

2
,

r σw1

2
, 1

4
∂δ
∂w1
− 2 δ

w1
, r

4
∂δ
∂w1
− r δ

w1

r σ0 δ
w3

1
− r σ0

4w2
1

∂δ
∂w1

, δ σ2
w3

1
− δ

2w2
1

∂σ2
∂w1

, r δ σ2
w3

1
− r δ

2w2
1

∂σ2
∂w1
− r σw1

2
, − δ

w1


(C4)
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and the inhomogeneous term

~Fw1 =
1

δ



1
4σ0

(
∂δ
∂w1
− 4w2

1
∂σ0
∂w1

)
+
(

2w2
1 − δ

σ0

)
∂2

∂r∂w1
− w1

σ2
σ0

∂3

∂r3
+ w2

1
σ2
σ0

∂4

∂r3∂w1(
∂σ2
∂w1
− σ2

w1

)
− σ2 ∂

∂w1
+ 2w1

∂2

∂r2
− 2w2

1
∂3

∂r2∂w1(
∂σ2
∂w1
− σ2

w1

)
∂
∂r
− σ2 ∂2

∂r∂w1
+ 2w1

∂3

∂r3
− 2w2

1
∂4

∂r3∂w1

− δ
w3

1
+ 1

4w2
1

∂δ
∂w1
− ∂σ0

∂w1
+ 2σ0

∂
∂w1
− σ2

w1

∂2

∂r2
+ σ2

∂3

∂r2∂w1

Fu1(r)

+
1

δ


2
(
w2

1 − δ
σ0

)
+ r

(
2w2

1 − δ
σ0

)
∂
∂r

+ 5w2
1
σ2
σ0

∂2

∂r2
+ r w2

1
σ2
σ0

∂3

∂r3

−r σ2 − 8w2
1
∂
∂r
− 2 r w2

1
∂2

∂r2

−σ2 − r σ2 ∂
∂r
− 10w2

1
∂2

∂r2
− 2 r w2

1
∂3

∂r3

2 r σ0 + 4σ2
∂
∂r

+ r σ2
∂2

∂r2

Fw1(r) (C5)
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