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Abstract

Various properties of the general two-center two-electron integral over the explicitly correlated
exponential function are analyzed for the potential use in high precision calculations for diatomic
molecules. A compact one dimensional integral representation is found, which is suited for the
numerical evaluation. Together with recurrence relations, it makes possible the calculation of the
two-center two-electron integral with arbitrary powers of electron distances. Alternative approach
via the Taylor series in the internuclear distance is also investigated. Although numerically slower,
it can be used in cases when recurrences lose stability. Separate analysis is devoted to molecu-
lar integrals with integer powers of interelectronic distances r12 and the vanishing corresponding

nonlinear parameter. Several methods of their evaluation are proposed.
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I. INTRODUCTION

In order to achieve high accuracy for the nonrelativistic energy as well as for relativis-
tic and quantum electrodynamics (QED) corrections in molecular systems, well optimized
basis functions have to be applied. The explicitly correlated Gaussian (ECG) functions do
not satisfy the cusp condition, therefore their use in the evaluation of higher order QED
corrections [1] is problematic. Nevertheless, the recent calculations of the leading O(a?)
QED effects performed for Hy [2] using ECG functions, lead to the most accurate to date

theoretical predictions of about 1072 ecm™!

uncertainty for dissociation energies. To obtain
even more accurate results and to include higher order QED effects we aim to use the basis

of explicitly correlated exponential functions of the form

— —W1T12—U3T1A—U2TIB—W2T2A— W3 T2B ,.11 n2 ns n4g ns
p=e T12T14 "1BT24T2B- (1)

The notation for interparticle distances is explained after Eq. (4). The use of such exponen-
tial functions in molecular applications is quite limited. Starting from the pioneering work
of Kolos and Roothan [3], the Neumann expansion of 775 (at w = 0) in spherical oblate
coordinates [4] has been applied most often, see the most recent review by Harris in Ref.
[5] and the collection of works in Ref. [6]. This expansion and the more general one of
e~z b in terms of spheroidal functions [4], has been applied by several authors [7-11] in
their accurate calculations for the hydrogen molecule.

An alternative approach to perform integrals with exponential function in Eq. (1) has
originally been proposed in Ref. [12]. Authors have obtained an analytic, although quite
complex formula for the general four-body integral with exponential functions. By taking
the inverse Laplace transform [see Eq. (6)] in one of the nonlinear parameters, one can in
principle obtain the general two-center two-electron integral in Eq. (2). Due to the very
complicated analytic structure of the four-body formula, this inverse Laplace transform
has not been applied so far. In our recent work [13], we have reformulated the problem
of the calculation of the inverse Laplace transform, into the solution of some differential
equations. From these differential equations satisfied by the master integral f(r) (see Eq. (2)
below), one derived analytic recursion relations for integrals with positive integer powers of
interparticle distances, assuming that the nonlinear parameter corresponding to r5 vanishes,
i.e. for standard molecular integrals. Using these recursions one obtained analytic results for

integrals with James-Coolidge and extended Heitler-London basis functions. The application



of analytic formulas has been demonstrated by the calculation of Born-Oppenheimer energies
for Hy in Ref. [14] with accuracy of 107'° au, and for HeH™ in Ref. [15] with accuracy of
about 1072 au. While James-Coolidge and Heitler-London basis functions work very well
for the ground states, they are not equally good for excited states, where arbitrary values
of nonlinear parameters are needed. This is the main subject of this work, to develop a
computational technique for general two-center two-electron integrals, which can be used
for the calculation of nonrelativistic energies, and also for relativistic and QED effects in
two-electron diatomic molecule. Finally we think that various properties of the general two-
center two-body integral derived here, can be applied for the calculation of nonrelativistic
energies of an arbitrary diatomic molecule. This subject has recently been pursued also by
Lesiuk and Moszynski in Ref. [16].

The general structure of this work is the following. In Sec. II we derive the differential
equation for the master integral f(r) in Eq. (2). In Sec. III we find a solution in terms
of one-dimensional integral over elementary functions and additionally consider few special
cases. In Sec. IV the Taylor series of f(r) in the internuclear distance r is derived, and
this shows the general analytic properties of the master integral f. In Sec. V integrals
with positive powers of interparticle distances are obtained by differentiation of the master
integral with respect to the corresponding nonlinear parameter. In Sec. VI we consider
standard molecular integrals, i.e., with the vanishing nonlinear parameter corresponding to

r12. In Sec. VII we present a summary with possible further applications.

II. THE MASTER INTEGRAL

We introduce here notation and definitions following the previous work in Ref. [13], and
obtain the fourth order differential equation which is satisfied by the master integral f(r).
Matrix elements of the nonrelativistic Hamiltonian between functions of the type (1) can
be expressed in terms of f(r) and its derivatives with respect to nonlinear parameters. The

master two-electron two-center integral f(r) is defined by
/d3T1 /d3T2 e~ WIT12 o~ U3TIA o~ U2TIB o~W2T24 o—W3T2B

1A "B 24 T2B

, (2)
and the related class of integrals with the nonnegative integer n is

/d3rl /d3r2 TU3TIA eTU2TIB o~ W27T24 o—W3T2B

47 i, T1A T1B T24 T2B

: (3)



where 1,2 are indices of the electrons, A, B that of the nuclei, and r = r4p is the distance
between the nuclei. The notation for nonlinear parameters comes from the general four-body

integral g defined by

(4)

d3p1 d3p2 d3p3 e—w1 P1—wW2 P2—W3 P3—UL P23 —U2 P31 —U3 P12
g(ur) = ;
(1) / 47 47 4 P23 P31 P12 P1 P2 P3

with p| = 712, po = T4, p3 = Top. Function g is related to f by a Laplace transform, namely

o= [0 = [Targeyer, 5)

47 72

and the opposite relation is the inverse Laplace transform
1 1 00+€ i
F0) =50 [ o) )
It was shown in Ref. [13], that the function g satisfies the first order differential equation in

any of it’s parameter a = u;, w;:
a—+——ag+Pa:0, (7)

or equivalently
0
\/E%(\/Eg)—i_Pa:Oa (8)

with the inhomogeneous term P, presented in Appendix A, and ¢ being the sixth order

polynomial in six variables

_ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0 = ujuyws + ujuzwi + uj uz ws + wi wy wy + uy wi (u] +wy — uy — uz — w; — w;)

+us wy (up + wy — uf — g —wi — wg) +ugwg (ug+wy —up —ui —wi —wj). (9)

For example, Eq. (7) for o = w; reads
0=+ 55— g+ Plwi, uy; wy, ug; w3, uz) =0, (10)

where the inhomogeneous term P(wy, ui; ws, ug; ws, us) is given by Eq. (A2). The solution
of this differential equation is presented in the ingenious work of Fromm and Hill [12] by
direct integration of Eq. (2) in the momentum representation. A more compact formula was
obtained by Harris [17]. We do not present here their results, as its explicit form is quite

long and we will not need it.



To obtain the fundamental differential equation for the master integral f, we use the

differential equation (7) in variable ¢t = u,
o — + 5o g+ Pt wi;uz, wsswa, uz) =0, (11)

and perform the inverse Laplace transform in t. This differential equation, using the following

new parameters which are adapted to the symmetry of the problem

Wy =w4+2x, wg=w-—2x, U =U—1Y, U3=1uU+7Y, (12)
takes the form , ,
04%7“%—1—02%7“%4—007’ f(r) = F(r), (13)
where
o = og+tioy+ttay, (14)
04 = wi,

oy = wi — 2w (u? +w? +2* +y}) + 16uway
= w‘f + wf 099 + 099,
oo = wilutw—z—y)(u—wr+r—y)(u—w—r+y) (utw+zt+y)
+16 (wz —uy) (ux —wy) (vw — zy)
= w% 002 + 000,
and F(r) = F,,(r) is presented in Appendix A. The differential Eq. (13) is supplemented
by the boundary conditions, namely f(r) vanishes at small and large 7.

Taking the occasion, we present here, for later use, a differential equation which is ob-

tained from the inverse Laplace transform of Eq. (10)

(1 doy g ﬂ) f(?”)-i—(l 9o +o i) f”(r)—|—<w1—|—wf %) f(4)(7”) = —Fy,(r), (15)

2w, dw, 20w, duy

where F,, (1) is given in Appendix A, and that for an arbitrary parameter o = u, w, z,y

10 0 10 0 0
(32 +005-) F) + (552 + 025 ) £/0) +ul 5 fO0) = =Far). (1)

III. POISSON REPRESENTATION

We derive here the integral representation for solutions of the homogeneous and the

inhomogeneous differential equation (13), which is the analog of the Poisson representation
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for Bessel functions [18]. ¢ is a quadratic polynomial in ¢?, so it has four zeros 4t,, &ty

Assuming t, > t, > 0, the four solutions of the homogeneous equation

? > d d
{cud—'r’d 2+02d rd——i—aor] f(r)=0, (17)

are

—ty etr —tq etr ta etr tp
/ —dt,/ —dt,/ —dt,/
o (D) N0 e V(1) ta

Let us prove it, as an example, for the last term

d2 d2 d d tp etr
|:O-4W d2+0'2dr7“%+0'07’:|/ dt

tp d2 d2

5 \/_[ er +0'2 r——l—aor]

b dt o d d d ot
\/_ ot—t —|—02tdt+aodt

L [ )d+do—(t)]e”, (19)

o

where the last equation holds because o(t) = oo + 021*> + 04t*. One integrates by parts,

boundary terms vanish because o(t,) = o(t;) = 0, and one obtains

:%/t dt ”{dt\/_jL dt\/_}

! 1) —o. (20)

5 /ta dtetTQ—\/m(l

The solution of the inhomogeneous fundamental differential equation (13) is obtained by

noting that the integration contour in the inverse Laplace transform can be deformed to
encircle all branch cuts on the left side of the complex plain

£(r) = QLM O_Oodte” gt +i€) — g(t —ie)]. (21)

The analytic properties of g have been analyzed by Fromm and Hill in [12]. The function g(t)
has four overlapping branch cuts, similarly to the function P, in variable ¢ on the negative

real axis starting at
—t = usz + wa =u+y+w+z,
—1ly = Ug + W3 =u—Yy+w-—uz,
—l3=us+tw+ws =u+y+w—x+w,

—ty= wtw+wy =u—y+w+zx+w, (22)

6



correspondingly. The fact that all ¢; with ¢ = 1,2,3,4 are not positive comes from the
requirement that the integral in Eq. (2) is finite for positive values of u; and w;. Fromm and
Hill found the imaginary part of g for the particular ordering of ¢;. Their result is generalized

here to an arbitrary ordering of ¢; and takes the form

3oy o010 = a(t = i€)] = == [0t =0) I ol + 002 = 1) In

—0(ts — t) In|Bs1 B33 — 0(ta — t) In|Bo1 Bool], (23)

where
Bi; = M) (24)
Vo + i
and (cf. Ref.[12] with a1 = ug, ag = woq, a3 = t, as3 = w3, az; = uz, ajp = wy)
Y00 = 2uswy w3+ (u3 — u§ +wi) ws + wy (—t* + vl + wg) + ug (wi — wi + w%),
Y33 = 2uzw; wy + (—uj 4+ uj + w3) wy + wy (—t + uj +wi) + uz (Wi + wy — w;3),
Yoqu = —2twywz — (t* — u§ + w3) ws + wsy (1 — ui + wg) +t (—w? 4 w3 + w%),
Y31 = —2twyws + (t* — u§ + w3) w3 — wsy (1 — uj + wg) +t (—w? 4+ wi + wg) (25)

There is some arbitrariness in the form of Eq. (23) as products of 5 can be expressed in

several ways [12, 17]

B,u,,u ﬁp,u - ﬁu,u 51/,# = 6p,p Bp,m
6;1,0 61/,0 ﬁp,a = Bo,m (26)
for {u, v, p,o} being an arbitrary permutation of {0,1,2,3}. One can verify that Im(g) in

Eq. (23), satisfies the differential equation (11) with Im(P) as an inhomogeneous term. As

a result, f(r) can be expressed in terms of the one-dimensional integral

f(r) = /0_ dte'” ﬁw(h —t) In[Boo| +0(t2 —t) In[Bs3]
—g(tg — t) 111 |6371 6373| — 9(t4 — t) ln |5071 50@” . (27)

This is a main result obtained in this work. All properties of the master integral f can in
principle be obtained from this integral representation. Some of them, however, can be more
easily obtained from the differential equation (13). The rest of the paper will be devoted

to various properties and various ways of numerical calculation of f(r) in Eq. (27) and its



derivatives with respect to nonlinear parameters. This form of Eq. (27) is suited for the
direct numerical quadrature, once we know all the singularities on the integration path, and
this is presented in Appendix B.

It would be interesting to investigate various expansions of f(r) in Eq. (27), in particular
the expansion around w; = 0 is studied in Sec. VI. Here, we obtain the master integral f at
wy = 0 in a simple form which is convenient for the numerical evaluation. The o polynomial

reads

Olu=o = (u3 — uz + wy — w) (3 wy — uzwy) — * (u; — ug) (w; — wy)

= 16(wz —uy)(ur —wy)(uw —ry) + 162 uwxy, (28)
and the differential equation becomes [13]

16uwxy%r%+ 167 (we —uy) (ur —wy) (ww —zy)| f(r) = F(r)]

where the inhomogeneous term F'(r) using Eq.(Ab) is

F(r)}wlzo =2uwwr—uwy—ury+wzy) - +2wwr—uvwy+uzry—wxy) Fy_
2uwrt+uvwytury+wzy)Fs- +2uwr+uwy—ury—wazy)Fy_,
(30)

and where

Fiy = Ei(=2ru)e" ") £ EBi(—27 w) " (Tvretey),
Fyy = El(—2 r ,w) 6r(—u+w—:c+y) + El(—2 r U) e (u—w—&—:c—y),

. . . vw (z+y) —r (utwtay)

F3. = |Ei(2 Ei(2 — FEi(2 In{ ————= FlTeTITY
34 _ i2rx)+Ei(2ry) —Ei2r (z +v)) + n(my(u—i—w))}e
+Ei(—27 (u 4 w)) " (wretaty),

. _ _ uw (@ + Y\ -y
Fy = |Ei(-2 Bi(—2 — Fi(—-2 In{ ———= rTwssTY
P _ i(=2rx)+ Ei(-2ry) (=27 (z+y)) + n(xy(u—l—w))} e
LRi(—2 7 (1 w)) " 40 (31)

with Ei being the exponential integral function. The solution of this differential equation
(assuming p? > 0) in terms of solutions of the homogeneous equation was presented in Ref.

[13].

fr) = [IO(PT) [ P Kooy + Kator) [ PG R (32)

16uwzxy 0
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where

= wr—uy) (wuyw—;;x) (ww=zy) (33)

and Iy, K, are modified Bessel functions. A more convenient, however is the integral form

of Eq. (27)

Fr) = ( [T
—U—w—r—yY —u—w+r+y
— 00 —00 etr
—/ In|Bs1 fs3 —/ In |81 50,0|> 2\/Edt’

U—w+xr—y u—w—z+y
(34)
with the following ; ; coefficients
Y0 = “d(uwr+uwy —ury —way),
Y33 = d(uwr+uwy+ury+wary),
['(B31033) = —1l6uwzy/t+ut+w—z+y)+4(vwer —vwy+uzry +wry),
I'(BoaBop) = —l6uwzy/(t+ut+w+axz—y)—4(uwr—uvwy —uzy —way), (35)

where T' is defined in Eq. (B3). In the particular case of exchange integral w = u, x = v,

ooo vanishes and the master integral becomes

1 > —
(/ g |t 2w —2)
8wx \J_2(wix) t—2(w—x)
- t—2
N i@t m‘ﬂ
-2 (w—2x) t+2(w+$)

9 / dtlnw
_ t+2(w+2)

flr) =

etr
t

etr
t

) "

An equivalent integral representation, obtained from the differential equation (29) was pre-

2w

sented in Ref. [13], but this form is more convenient for the numerical evaluation.

IV. TAYLOR EXPANSION IN r

Here, we find the Taylor expansion in the internuclear distance r of the master integral
f. As it was noticed by Fromm and Hill in [12] this expansion is absolutely convergent,
therefore it is another way to calculate the master integral as well as its derivatives with
respect to u; and w;. Following Ref. [12], we find the initial terms and the recurrence

relation for subsequent terms of the Taylor series.

9



The expansion in small r of the master integral has the form

Zr £ n(r) + 12, (37)

The leading term, can be obtained by noting that the limit » — 0 corresponds to the

one-center integral [12]

e ar1i— Bro—yriz
B d37“1 d37"2
167r 7’1 7”2 712

1 a—+y a+f b+«
27[€+§ln (5+7)+L2(1_a+7>+L2<1_6+7)}’ (38)

where Ly is the dilogarthmic function [18]. Let us introduce for the later use the following

X; symbols
1 21 2 2 2
X, = W_+_1nz 2utw) g 2utw)) o 2erw) ]
2w, 2 2w 4+ wy 2u + wy 2w+ wy
X, =1 (2u+w1)
(u+ w)
X, = 1 (2w—|—w1)
(u+ w)
1
X, = 3 Infr? (2u + wp) (2w + w1)] + Vg (39)

where ~g is the Euler constant. The leading terms in small r expansion using Eq. (38) are

fl(l) =0,
i = Xo. (40)
and foi) = ffq = 0. The next terms of this expansion f2(1), f2(2) are obtained from the large

t asymptotics of the function g

X M Int + g2
0, g mtrTgT

g:t_2 t3

o(t™). (41)

Since ¢(t) satisfies the differential equation (11) with the inhomogenous term P(t) =

P(t7 W1, U3z, W3, Wa, u2)
P(t) = wi [2+ In(us + uz + wi) + In(wy + wa + ws) — 2 In(t)] + o(t71), (42)
the 1/t3 coefficients are

g(l) = _27

g@ = In(us + us + wy) + In(wy + ws + ws). (43)

10



As noticed by Fromm and Hill [12], they are related to f2(i) coefficients by

m _ 97
f2 - 2 )
3) gV 1 @

2

where 9 is the Euler ¢-function [18] and ¢(3) = —yg+1+1/2. The next terms in r expansion
can be obtained from the fundamental differential equation (13). As the inhomogeneous term
F(r) has a similar expansion

[e.e]

Fir)y=">"r*(F" In(r) + F”), (45)

k=-1

the recurrence relations are the following

f(l) _ FIS)Q — 0o flglf):a — oy (k—1)? flglf)l (46)
h oy (k+1)k2(k—1) ’

o _ FP = o0 10 — oo (k=12 £ =022 (k= 1) f{Y) — 042k [2(k + 1) (k — 1) + 1] £,
h oy (k+1)k2(k—1) ’

The resulting first terms in the expansion of the master integral f in powers of r are

flr) = rXo+r? (Xr_§>

2
e CwiXo w | (WP A+ + 7)) Xo—w Xy —uXs -2 (u+tw)
12 4 6
LY 22y QuwXo+uXi +wXy)
3wy 3w?
7 wy (u+w) 3uw—3zy—11u?—11w? —9x? — 9y?
41 b 2 1
o {54w1+ 2 36
5 2 2 2 0
LX, (—7“1”—81+“ v 6” Ty )1 +O(). (47)

Let’s consider now the special case of w; = 0. The recurrence relation takes the form:

F;El) — 000 f]gl_)l

f(l) _
kt1 0920 (k + 1)2 ’
F(Q) — f(2) 9
2 00 Jk— 1
2 == e e/ ] (48)

0'20(1{7"—1)2 k+1

11



and the first terms in r-expansion are

_ 1 u 1 w ,[ 3 1 )
f)lw=0 =7 {ﬁ ln(1+5) b ln<1+ 5)} +r { 5Tty mdr uw)]

2
2 2 2
3 U w Ty Ty u  w+zxr+ty wxY U
47 — Inl 14+ =
i { 373 Bu Bw +(4+ 12u 18u2> n( +w>

w  ur+ri+y? uxy w
w _ nl1+%
+(4+ 12w 18w2> n( +u)}

Uw —x w?+u? 1 3 1
+7~4{ y— — (v +w* + 2% + 37 (——+7+§1n(47“2uw)>]

12 18 + 6 2
+O(r%). (49)

In order to obtain the Taylor expansion of f(r,n)

= > r* [AY () () + £7 ()], (50)

k=1
one expands Eq. (15) in power series in r and obtains the following recursions for coefficients

fia(n) = — {%of,i (n) + 002 (n = 1)* £ (n — 2)

oy (k+2) (E+1)
to (n—1)2 (k+2) (k+1) £y (n —2)
(=12 (k+4) (k+3) (k+2) (k+1) fOy(n —2)

tn=3)(n—22(n—1)(k+2) (k+1) f(n 4)], (51)

12y (n) = ! [F<n 1)~ 0w 2K+ 3) 1 0y(n)

J20 (k’+2) (k‘—i—l)

—000 féQ)(n) — 002 (n — 1)2 f,EZ)(n - 2)

o2 (= 1) [k +2) (k 4+ 1) fZ(n = 2) + 2k +3) f{ly(n - 2)]
~(n=3)(n =2 (n = 1) [(k+2) (k+1) fiZ(n = 4) + 2k +3) f{Ly(n — )

~(n =12 [(k+4) (k +3) (k+2) (k + 1) 2y (0 2)

+2(2k+5) (K2 +5k+5) f,§1+>4(n—2)H, (52)

where f,gi)(O) = f,gi). The usefulness of the calculation of f(r) and f(r,n) via Taylor series
in r and the above recursions needs to be verified numerically. Nevertheless, the expansion
terms say a lot about analytic properties of f, as a function of wy, x, y, v and w. In particular,

the expansion in Eq. (47) suggests that f is an entire function in z,y at fixed r, u, w, wy.

12



V. GENERAL RECURSION RELATIONS

In order to use the exponentially correlated basis in molecular calculations, one has to be
able to calculate derivatives of the master integral f with respect to nonlinear parameters.
Differential equations (13,15) and (16) are used below, to express the derivative of f(r) with
respect to an arbitrary parameter a = wy, x, y, u, w in terms of f(r), f'(r), f’(r), and f”(r).
This is done as follows. From Eq. (13), the fourth derivative f®(r) can be expressed in
terms of lower derivatives of f(r) and we use this in Egs. (15) and (16) to eliminate fourthth
derivative. Next, differentiate these equations with respect to r and again eliminate fourth
derivative. Doing this differentiation and elimination three times, one obtains four equations
for four unknowns: the derivative of f with respect to w, and its three further derivatives

with respect to r. The solution of these linear equations for o = w; is

250‘0 aé]:fjl‘) 5%f< )—|—U}1 (—20'00'2 wlagg;‘l—i—Zwlaog ) [f”(T') +7’f'"(r)]
. <4w100+2w1 2;‘02 o 2221) ) 7 P (53)

and for a = u,w, x,y

af(T) o doy 2 doyg Joy " 7
26 09 e =rd 8af(r)_w1 02 5 —20’0—a [f(r) +r f"(r)]
2 (90'0 60'2 /
—op | 2w] =— —oa— | [f(r)+rf(r)]+..., (54)
o o
where . .. denotes inhomogeneous terms presented in Eqgs. (C3,C5), and where

§ =4wioy— o = —(wi — 4u?) (Wi — 4w?) (w] —42?) (W — 49°). (55)

The solution for higher order derivatives with respect to r can be represented in the matrix

form. Let us introduce a symbol f to denote

f(r)
fry=| T (56)
)
()
Then ~
g—i; = A, [+ F,, (57)



where A, and F, are presented in Appendix C. These vector differential equations with
respect to the nonlinear parameter a can be used as recursion relations to express the
integral with any powers of electron distances in terms of the master integral f(r) and it’s
first three derivatives with respect to r. These recursions become unstable when w; =~ 0,
0 ~ 0 or gy = 0. These cases require a separate analysis. In the next Section we consider
recursion relations for w; = 0 which has applications for standard molecular integrals.

The particular case of o9 = 0 happens for an exchange integral where w = u and x = y.
Here, one can use recurrence only for f’(r) to generate the analytic expressions for derivatives
with respect to w — u and x — y. They are quite compact as there will be only three
independent parameters, and can be expressed in terms of f(r) and f’(r). The derivatives
with respect to remaining nonlinear parameters can be calculated afterwards, by setting

w=ux=71.

VI. RECURSIONS FOR STANDARD MOLECULAR INTEGRALS

We describe in this Section the evaluation of standard molecular integrals, where w; = 0.
Recursion relations for the integral f(r,n) in Eq. (3) have been presented in Ref. [13].
Here we rederive them using a more compact notation. In particular cases, close to spuri-
ous singularities, we propose to use these recursions to derive an analytical expression for
individual integrals, which are then implemented in the numerical codes.

Let us take Egs. (13) and (15), and differentiate them with respect to wy, n and n — 1

times respectively at wy; = 0

r oo f(r,n) 4 o f(r,n) + 17 og f(r,n) + (0 — 1) nr ooy f(r,n —2)
+(n—1)noyuf(rn—2)+0m—Dnroyf'(rn—2)+2n—-1nf3rn-2)
+(n—=)nrfPrn—2)+n—-3)(n-2)(n—1)nf(rn—4)
+(n—=3)(n—2)(n—1)nrf"(r,n—4) = F, (r,n), (58)

oo f(r,n) 4+ o9 f'(r,n) + (n — 12 00g f(r,n — 2) + (n — 1) 09 f/(r,n — 2)
+ (n—1)? f(4)(r,n —2)+n—=3)(n—2>%*n—-1)f"(r,n—4) = F,,(r,n—1). (59)

These are two linear equations for three unknowns f(r,n), f'(r,n), f”(r,n). The third equa-

tion is obtained by elimination of f”(r,n) and further differentiation with respect to r. The
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solution of these three equations for f(r,n) and f'(r,n) are
f(r,n) = Uioo [—(n=2)(n—1) 002 f(r,n—2) + (n— 1) 7002 f'(r,n — 2)
+2(n—1) oa f'(r,n —2) + (n— 1) r oy fO(r,n —2)
+n—=1D(n+2) fDrn—2)+0n-1)rfOurn—2)

+4(n=3)(n—2)(n—1)f"(r,mn—4)+2(n—-3)(n—2)(n—1)r fO(r,n—4)

+2Fy, (r,n—1)+rF, (r,n—1) = F, (r,n)], (60)
f'(r,n) = —OLQO [(n=1)roef(rn—2)+(n-3)(n—2)(n—1)nf(r,n—4)

+(n—Dnop f'(rrn—2)+2(n—-3)(n—2)(n—1)r f"(r,n—4)
+n—Dronf'(rn—2)+2n—D)nfOrn—-2)+n—-1rfDrn-2)
+r Fy (r,n—1) — F,, (r, n)}, (61)

where
an

Fi(r.m) = (-1)" o
1 lwi;=0

}iY(T>7 (62)

for X = wy,u;. Equation (60) allows one to obtain integral f(r,n) with an arbitrary power

n — 1 of ri5 in terms of f(r), for example
f(r,0) = f(r),

r

4

f(r,1) = — ho(ru) ho(rw) jo(rz) jo(ry),

£2) = ——[row J'()+ 200 (1) + 70 SO +47D0) + 7 790
00

+2 Fy, (1, 1) + 7 Fy (r,1) — F, (r, 2)},

T5

fr,3) = 57 | =3hlru) h(rw) ju(rz) ju(ry) = ho(rw) ho(rw) jo(r ) jo(ry)

+ho(rw) ha(rw) jo(rx) jo(ry) + ho(r w) ho(rw) jo(rx) jo(ry)
+ho(rw) ho(rw) ja(r x) jo(ry) + ho(ru) ho(rw) jo(r ) j2(ry) |, (63)

where j, and h,, are modified spherical Bessel functions

-y
ha(z) = 2 6 %)”@. (64)

One notices, that f(r,n) for odd n can be expressed in terms of j, and h, only, and their

numerical evaluation is straightforward. In contrast, numerical evaluation of the formulas
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for even n is much more difficult. If o9 is not small, then derivatives of f(r) can be reduced
to f(r) and f'(r) using
1

T 0920

for) ==

(00 [(n=2) F ) f0D ()] 30 (n=1) fO0 ()= F 2 (1) (65)

If 09 is small, then the inverse recursion

1
Fr) = ————[row f"(r) + (n+2) 020 [ (r) + 17000 f7) (1) = FEH ()]
(n + ].) o) 1
(66)
is stable and can be used to obtain all the derivatives including the function f(r) itself.
Alternatively f(r) can be obtained directly, using the integral form of Eq. (34). If oy is

small but not oy, then these formulas can be rewritten using Eq. (61) to the form without

090 in the denominator, for example

f(r,2) = L (002 FED(r)=rooe V(1) =000 f(r) =1 090 f'(r)=3 f"(r)—r ()] +... (67)

020

where f(=™)(r) is defined by

S () = / PO () dr (68)

and can be obtained from Eqgs. (34) or (66). It may lead however to other type of numerical
instabilities, if the branch point starts at 0, see Eq. (22), and in this case one can build
the explicit table of integrals, as in Ref. [14, 15]. When both o9 ~ 0 and o¢y =~ 0, then
parameters x,y are small and in this case the Neumann expansion [5] can be applied.
What remains are the derivative of f with respect to a = u,w,z,y at w; = 0. We
adapt here the derivation of corresponding formulas from Ref. [13]. One takes fundamental

differential equations in u; and o at wy =0

0o f('f’) + 099 f/(T) + 1 o9 f”(r) = Ful('f’) (69)
1 do af(r do29 ., af"(r
3 e 0o G ) o G = R (70

differentiates the first equation with respect to «, eliminates 0f”(r)/0a and differentiate
resulting equation again with respect to r. The obtained equation for the derivative of f,

using 0ogg/0a = 090/ v 18

o =g 0+ (o0 = 1) pin + S, ()

da  2a oo0 O Q
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where

Golr) = [(52 = 5o) L) = (24 r )R] (72)

and

1
Gu(r) = — [(Uy—wx) (v —wy) (—Fiy — Foy + Fq + Fuy)

F(utw) (@ —y) (vw—ay) (—Fi + Fay)

Hu—w) (@ +y) (ww — wy) (<P + Fi)|

1
Gu(r) = " [(WJ—UWC) (vr —wy) (=Fiyp — Foy + F3y + Fuy)

+u+w) (z—y) (vw —zy) (Fiy — Fay)
Hu—w) (2 +y) (ww —vy) (~Far + Fiy)]

Gy(r) = i [(uy—wx) (uzr —wy) (Fiy + Foy — Fyy — Fyy)
Hutw) (z —y) (ww —2y) (~For + Fiy)

Hu—w) (@ +y) (vw — wy) (~Fra + Fu)|

Gy(r) = 5 [(uy—wx) (ur —wy) (Fis + Foy — F3y — Fiy)
+u+w) (x — y) (ww — y) (Fy — Fiy)
(= w) (2 +y) (ww —xy) (Fiy — Foy)] . (73)

Here o from the denominator can be removed, when necessary, as in the case of f(r,n) by
introducing f(~™(r). The formula (71) allows one to obtain integrals with arbitrary pow-
ers of electronic distances. It requires however, further investigations of various numerical
instabilities when the denominator approaches 0. In particular, oy vanishes for exchange
integrals. In this case w = u,r = y and one can generate a table of integrals avoiding
recursions, by Taylor expansion of the fundamental solution in Eq. (27) in wq, w — u, and
x —y. Alternatively, one can take recursion relations presented in Eq. (61) and integrate it

once over r.

VII. SUMMARY

The evaluation of two-center two-electron integrals is a difficult task. Depending on a
physical problem different approaches are employed. For the calculation of nonrelativistic

energies of a two-electron diatomic molecule the best way is by the use of Kolos-Wolniewicz
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basis functions, namely w; = 0 and arbitrary nonlinear parameters u,w, x,y. The master
integral can be calculated numerically using Eqs. (34) and (37). Integrals with powers of
interparticle distances can be obtained by using analytic recursions Eq. (60), (65), and 71)
followed by numerical evaluation of obtained formulas.

For the calculation of QED effects in a two-electron diatomic molecule, the best way is
to use the most general basis functions with nonvanishing w,, u, w, x,y. The master integral
can be evaluated according to Eq. (27), and integrals with additional positive powers of
interparticle distance can be obtained through recursion relations Eq. (57). Integrals with
negative powers can be obtained by numerical integration with respect to the corresponding
nonlinear parameter. In order to demonstrate correctness of obtained formulas for two-
center two-electron integrals, Table I presents a simple, examplary calculations of the ground

electronic E; state of the Hy molecule.

TABLE I: Examplary calculations of the Born-Oppenheimer energy at the equilibrium distance
R = 1.4 of the ground E; state of Hy molecule, obtained using functions of the form Eq. (1), with
parameters w; = —0.5,u = 1,w = 1,y = 0.125,x = —0.125 defined in Eqgs. (12), N is a number of
basis functions, and ni 4+ ne + ng + ng + n5 < . The result with oo is accurate to all digits and

was obtained in [7-11, 14]

Q N Epo(a.u.)

0 1 —1.038401456
1 4 —-1.157108377
. 2 13 —1.172368483
3 32 —1.174254201
o0 —1.174475714

An additional approach to evaluate two-center integrals is by the Taylor expansion in
small internuclear distance r. Its applicability has to be verified numerically. Nevertheless,
it serves at present as a simple check of various formulas for recursion relations and the
master integral. The advantage of calculations by Taylor series, is that expansion terms are
quite simple. They are related to the known one-center (helium-like) integrals and can be
obtained recursively (46, 51, 52). A similar Taylor expansion can in principle be obtained

for many-body three-linked integrals (at most three odd powers of interparticle integrals).
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This would open a window for high precision results in many electron diatomic molecules.
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Appendix A: Inhomogeneous terms

The first order differential equation (8), satisfied by the general four body integral, defined

by Eq. (3), involves the inhomogeneous term P, for o = u;, w;. They are related to each

other by
Py, = P(wi,u;wa, ug; ws, usz)
= P(wy,u1; ws, uz; w, ug)
P, = P(U1,w1;wzau2;u3,w3)
Py, = P(w27u2;w33U3;w17U1)
P, = P(u27w2;w3vu3;uluwl)
Py, = P(wg,ug;wl,ul;wg,ug)
P., = P(us, ws;uy, wy; wa, us) (A1)
The expression for P was obtained in [13] and is the following
P(wy, ur; wa, ug; ws, us3)
uy wy [(ug + wq)? — u] In Uy + Uz + wy
(—U1+U3—w2)(U1+U3+w2) u1+uQ+w1+w2
uyp wy [(ug + uz)? — w?] [ wy + Wy + ws }
(—uy — uz + we) (ug + ug + wy) uy + ug + wy + ws
Cufw? +uFwd — udwi + wi wy (uf +uj — wi) [ uy + ug + ws ]
(—wi — wa 4+ ws) (w1 + wa + ws) Uy + Uy + Wy + wo
Cufwi — ujwi 4+ udwi 4+ wy wy (uf + uf — wj) [ Uy + uz + Wy ]
(—wl—l—wg—wg)(wl—i—wg—i—wg) U1 + Uz + Wy + Ws
+u2(u2+w1)(u%+u§—w2) —u? (u? + u3 — w?) [ Uy + Uz + wy ]
(—ug +ug — wy) (ug + uz + wy) Uy + ug + wy + wo
uz (uz +wy) (uf +ud — w3) —ud (u3 + u3 — wi) Uy + up + w3
(ug — uz — wy) (ug + ug + wy) Uy + usz + wy + ws
Cwy [wy (uf — u3 + wi) + ws (uf — uf + w3)] { ug + uz + wy ]
(w1 — wy — w3) (w1 + wy + w3) Ug + Uz + Wy + w3
wy [u (uf + uf — wd) +us (uf + uf — wi)] wi + wy + ws (A2)
(—ug — uz + wy) (ug + ug + wy) Ug + u3 + wo + w3
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In the case the nonlinear parameter « is the combination of w;, u; as in Eq. (12), then P,

is given by
Pw - Pw2+Pw3
P, = P,, — Py,
Pu - Pu2+PU3
P, = P, — P, (A3)

The inhomogeneous term in the fundamental differential equation (13) is the inverse Laplace

transform of P
1 1 00+¢€

F,=— dte'” P,

271

(A4)

—i00+e ur=t

In particular, F,, is given by

1 2 —
Ful (’l“) = {wl (_ + mruTw T Z/) e " (utw+wi —z+y)

72 r
oy (12+w) o (whwtaty)
r r
[ wi
+5 (u—w—x+y)+2uw(x—y)+2zy(w—u)

X Ei(—'r (2u + wy)) " Ut _Fi(—r (2w 4 wy)) e (”“’”y)}

(u+w—i—x+y)+2uw(x+y)+2xy(u+w)}

Ef
X ( 2r(x+y)) — Ei(—r(w —2x)) — Ei(—r (w; — 2y))

_m{(x—i—y) (w1 4 2u) (wy + 2w)

== o 2y)D e~ (wrute ) L B2y (44 w)) € (u+w+ac+y):| }

+{x RN _y} (A5)

21



where Ei is the exponential integral function, and F,, is

Fw1<r>:{[r(u+w+?’x+y)+1(2_ we  ww W )
r 2u4+w;  2wHw, wi—2x w;—2y
g((u+w)(u~|—x)(u+y)+(u+w)(w+x)(w+y)
T 2u 4+ wq 2w+ wy
_(u+:r:)(w+:v)(x+y)_(u+y)(w+y)(:ﬁ—l—y)_(u+w+:1:+y)2)}
w; — 2T wy, — 2y 2
x o~ (utwtz+ty)
+{r(u+w+w13—az+y)+1(_2+ wy N wq N wy N wq )
T 2u4+w,  2w+w  w—2x  w+2y

w1 1 2 9
+T—2+; wit4(zy+tur+wr—uy—wy—uw)+ (w +ut+w—1x+7Yy)

_2(u—w)(u—l—x)(u—y)+2(u—w)(w—|—m)(w—y)

2u+ wy 2w+ wn
+2 (U + ZE) (U} + ZL’) (ZL’ + y) + 2 (u - y) (w - y) <_*T - y) efr(u+w+w17:v+y)
wy — 2w wy + 2y
—i—{m — =,y — —y} (A6)

One notes, that F,,, involves only the exponential and rational functions.

Appendix B: Numerical evaluation of the master integral

For the numerical evaluation of the master integral in Eq. (27), one should find all

singularities on the integration path [12]. For this one decomposes o — 73 ; into products

0_7370 = (ug —uz +wy) (ug + ug +wy) (t — ug — wy)

t + ug + ws) (w1 — wy + w3) (wy + wa + w3)
0—73%,3 =

)

(

Uy — uz — wy) (ug + ug + wy) (—t + ug + woy)

t + uz + wsy) (wy + we — w3) (wy + wy + ws)
(

(
(
(
(
o—73, = (t+uz —wy) (=t + uz + ws
(
(
(

)

(
) (=t + ug — ws)
wy + we — ws3) (t 4 us + w3) (W — wa + w3)
0—73,1 = (=t +ug —wy) (L + uz +wy) (t + ug — ws)

wy + we — w3) (—t 4 us + w3) (w1 — wg + w3) (B1)

and observes that 3y, vanishes on the negative axis at ¢t = ty, f53 at t = ¢, 31 at t = 1o,

and fy 1 at t = t;. All singularities at other points ¢t —u; —w;, t+u; —w; and t —u; +w, cancel
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out among various In 3’s, because the original integral Eq. (2) is finite at these points and
g is analytic. The cancellation can be achieved explicitly, by combining the corresponding
f’s under the common logarithm. For this one has to consider all possible orderings of t;.
Because of the symmetries 1 <+ 2 and A <> B one can assume, without loosing generality,
that t; > t5 and t3 > t4. We remain with six possible orderings of t;, t; > to > t3 > t4, t1 >
3 >ty >ty, t1 21321 21y, 1321 >ty 21y, (3 2>1 214 2>1g, t3 21211 > to,
and six corresponding representations of the master integral f

f(T) = (/t21n|50,0’+/tsln|50,053,3|+l41ﬂ\50,0/53,1|—/t 1H’Bo,153,1|) f/;dt

to ta —00 etT
In | Bo ol —/ 1H|50,2|+/ In|5Bo0/Bs1 —/ In|Bo1 53,1|) \/—dt
t3 to ta g

tyq to —0o0 etr
In|Boo| — / In|fByo| — / In {500 Boa Bozl — / In|fGo1 53,1’) dt
t3 7 to \/E

t

1

/tt
f

1

<
<
|
<
<

3

3
t
t
t

t1 to tq —00 et?”
/ In |Bo,0 Bo2| — / In B 2| +/ In|Bo,0/Bs1| — / In [Bo1 53,1|> dt
3 t1 to t4 \/E
t1 tq to —00 etr
= / In |50,0 50,2| - / In ’ﬁ0,2| - / In |50,0 50,1 50,2’ - / In |5o,1 53,1|> dt
5 t 4 ta Vo
tq t1 ) to —o0 6”
= / In |/30,0 /30,2| - / In Wo,o Bo,1 50,2| - / In |50,0 Bo,1 50,2| - / In |/30,1 /33,1|) dt
3 tq t1 to

/o
(B2)

In order to eliminate singularities algebraically, the products and ratios of # can be combined

together [17]

Vo9 —vo _Vo-T

— B3
Vo+yy +yo  Jo+T (B3)
where
o+
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As a result, no singularity appears on the integration path, which is demonstrated by the

following decompositions

g — F2(50,1 53,1)

g — FQ(BO,O/BSJ) =

0 — FQ(BO,O 50,2)

0 — I12(50,0 50,1)

Table II presents numerical results for f for several internuclear distances r and nonlinear

parameters wy, z,y,u and w. For r < 0.01 f is evaluated from the Taylor series up to r®,

—(t—’LL3—wg)(t+U3—wg)(t—U3+w2>(t+U3+w2)

(t —ug — w3) (t +ug — ws) (t — ug +ws) (t + up + ws3)/(4%)

—(uZ—u3+w1)(u2+u3+w1)(t—u3—wg)(t+u3—w2)(t—u2—w3)

(w1+w2—wg)(t—uQ+w3)(w1+w2+w3)/t—u2—w1—w2)2

—(—ug + uz + wy) (ug + ug + wy) (t + ug — we) (t + usz + we) (t — ug + w3)

(t+u2—|—w3) (wl—wg—l—wg) (w1+w2+w3)/(t—|—u3—|—w1—l—w3)2

—(ug — ug + wy) (ug + usz + wy) (t — ug + wa) (t + ug + we) (t + ug — ws)

(wy + wy — w3) (t + ug + ws) (w1 + wy + ws) /(t + ug + wy + wy)?

and for r > 0.01 from the integral representation in Eq. (B2).

TABLE II: Master integral f for selected values of internuclear distances r and nonlinear parameters

wi us w2 u3 w3 f(0.1) 102 f(1.0)10° f(10) 1013
2.5 20 1.5 1.0 0.5 1.539488720658182  3.811561883331994  2.916 697 700 943 504
2.0 2.5 1.5 1.0 0.5 1.575469059882717  3.538642196033083  1.056 827512869 080
1.5 2.0 25 1.0 0.5 1.592898118308067  3.359218711378032  0.983 486 526 526 378
1.0 2.0 1.5 25 0.5 1.687851128764463  3.142086593091502  0.648 185277118373
0.5 2.0 1.5 1.0 2.5 1.687626825828684  2.985309587884137  0.621477 317148430
—0.5 2.0 1.5 1.0 2.5 2.285510252707772  5.843903698492676  2.026400 131640 827
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Appendix C: Exact form of general recursion relations

The recursion relations for the general master integral, as given by Eq. (57) involves the

4 by 4 matrix A,. For a = x,y,u,w, A is the following

_105 _r (85 _ 26900 wioa _rwioa
4 da’ 4 \ O« oo Oa )’ 200 200
1 T0q r 9%
A = 2 ) 4 da’
o=
Oa roa r
d o 105 r 9
2 2 4 da’ 4 da
_rog 96 __6 0oy _ ré 0oy _ rog
4wi da’ 2wy da? 2wy da 2
where
09 8(11}%00) 80’2
Oa = —5 — 209 —
wi O e
and the inhomogeneous term F, is
_ o2 993 O 2 _ 35\ 9 202 0%
2009 Oa Or + (2 wy o()) Orda + wy og Or3
doz _ 5 O 9.2 9%
ﬁ = 1 da 92 3a 2 1 9r20a F (7”)
“ 6| v 0, 02 9,2 0 w
da Or 2 9rda 1 9r30a
_ o2 Qo2 9 _o®
2wi da + 200 da + 02 or? O
2_ 4 2_ 0§\ 0o 4 suwior 92 | rwios 9
2 (wl O‘()) +r <2 wy O‘()) or + o9 Or? + oog Orsd
2 0 2 92
1| —rog—8wig —2rwigz
+5 d 82 8 Fa(r)
2 2
—09 — 1035 — 10wy 55 —2rwi 53
B 92
2?"00—|—402 or —|—7"02 2
For o = w; matrix A is
_105 _r(85 _ 25390 _wiow,  _rwiow,
4 dwy’ 4\ Jwy og Owy )’ 200 200
1 T Owy _9 r 96 _ rd
A — _ 2 ? w17 4 8w1 wl’
R Twy row 105 25 r 95 _ 1
2 ) 2 4 w1 w1’ 4 Ow w1
rogd _ rog 05 8oy _ 6 0oy rdoy _ ré oy _ TOw _6
w} 4wi dwy’ w} 2wy dwr’  wj 2wy dw 2 w1
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and the inhomogeneous term

L(ﬂ_4

4009 \ Owi 0'_0

R
| (8- 2) & et 2w g 20t
2(wi-2)+r(2ut-2) g +suiz Haruin
+1 —7‘02—810%%—27“10%53_7«22
O —oa—ron 2 — 10w & —2rud I

2
27"00—1-402%—1-7"02%

26

2 dog 2 0 92 _ o2 8_3 2 o2
wy 8w1> + <2 wy Jo> Oorow, wy or3 + wy oo Or3dw,
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