Nuclear mass and size corrections to the magnetic shielding
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We derive finite nuclear mass and finite nuclear size corrections to the magnetic shielding in light
ions. These corrections are important for the accurate determination of nuclear magnetic moments.
We correct several previous formulas for the nuclear mass corrections and present improved results
for the magnetic shielding in 'H, *He", and 3He. Finally, we obtain an 3He atomic magnetic
moment, which serves as an accurate probe to measure magnetic fields.

I. INTRODUCTION

The nuclear magnetic moment in atoms is partially
shielded by atomic electrons. This effect is not very sig-
nificant: about 107° for light elements. Nevertheless,
because nuclear magnetic moments are determined from
the Zeeman shift in atomic systems, the calculation of
the magnetic shielding is necessary for their accurate de-
termination. For example, the recent measurement of
the magnetic moment of the 3He™ ion [1] together with
the calculation of magnetic shielding [2, 3] allowed for the
most accurate determination so far of the helion magnetic
moment. A similar measurement is planned for “Be3t,
which will result in an improved determination of the °Be
nuclear magnetic moment [4]. Moreover, accurate values
for nuclear magnetic moments are important for the de-
termination of atomic hyperfine splitting (HFS), testing
quantum electrodynamics (QED), and the nuclear struc-
ture theory [5]. This is because HFS is very sensitive
to the distribution of the magnetic moment within the
nucleus.

In this work, we point out two interesting effects that
are frequently overlooked in calculations of nuclear mag-
netic shielding [6], namely, those due to the finite nuclear
mass and the finite nuclear size. Nuclear mass corrections
are as large as relativistic corrections for light atomic sys-
tems, while finite nuclear size effects are much smaller,
but they are expected to be significant for heavier el-
ements. These finite nuclear mass effects have already
been the subject of several works [7, 8]. Here, we red-
erive them thoroughly, correct some mistakes, and up-
date numerical values for the most relevant cases of the
H, 3Het, and ®He elements. The finite nuclear size ef-
fects have been studied only numerically and only for
hydrogen-like systems [9, 10]. Here, we derive a compact
analytic formula in terms of the charge, magnetic, and
effective Zemach nuclear radii, which accounts also for
nuclear inelastic effects.

II. BREIT-PAULI HAMILTONIAN WITH THE
HOMOGENOUS MAGNETIC FIELD

To account for finite nuclear mass effects, we have to
treat nuclei on an equal footing with all electrons. There-
fore, we consider a system of charged particles, each hav-
ing its own mass m,, charge e, spin s,, and the so-called
g-factor g,, which is related to the magnetic moment by
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These particles are electrons with spin 1/2 and nuclei
with an arbitrary spin. Our derivation employs a Breit-
Pauli Hamiltonian with homogenous magnetic field and
with separation of center of mass motion. It closely fol-
lows the lines of Ref. [7]. Let us therefore introduce the
total mass M

M= ma, (2)

center of mass variables

R= %y 20, (3)
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and relative coordinates

Z, = 7, — R, (5)
G = Pu— e P (6)

such that
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The Hamiltonian of a bound system of charged particles
in an external magnetic field including leading relativistic
corrections and with the separated-out center of mass
motion is [7]
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where 14, = |7y — 73|, and L. The interaction of the nuclear spin with the magnetic
1 field is obtained from Eq. (14) as
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Eq. (10), however, is valid for arbitrary spin particles
and has a more compact form.

The magnetic interaction resulting from H;, neglecting
the terms quadratic in B is
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This is a general interaction Hamiltonian, which is valid
for an arbitrary set of particles. In particular, one can ob-
tain the bound electron g-factor or the magnetic shielding
in atomic and molecular systems. In the next section we
derive the atomic magnetic shielding with full account of
the nuclear mass.

III. FINITE NUCLEAR MASS CORRECTIONS

We will derive the magnetic shielding constant for arbi-
trary ions with the vanishing orbital angular momentum

particles are electrons, and Z/ denotes summation over
electrons only. For an electronic state with a spherical
symmetry

—
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one introduces the scalar shielding constant o

§H = -INN 20 B(1-0). (17)

This o is conveniently split into two parts, consisting of
the first- and the second-order matrix elements

oc=01+03. (18)

oy results from the first-order matrix element of 6 H in
Eq. (15)
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where M = my + N, m., N, is the number of electrons,
and Z is the nuclear charge in units of the elementary
charge. Consequently, the shielding constant o; takes
the form
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where py = — " 'Da, and we used ]3|(,z5> = 0. Consider
now the following matrix element
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The o5 part is given by the second-order interaction
coming from the Hamiltonian
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The total shielding constant is ¢ = 01+ 09, where o7 is
given in Eq. (24) and o9 in Eq. (28). For the numerical
calculations, it is convenient to apply the expansion in
the mass ratio, which takes the form (in a.u.)
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where all matrix elements in the above are assumed with
infinite nuclear mass, and ¢(*7) denotes the expansion
term of order o’ (m./my)?. The last term in the above
differs in sign from that derived previously in Ref. |7, §],
see Table I for the updated numerical values.

For the hydrogenic ion in nS state the nonrelativistic
shielding constant, using Eq. (24), is
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which is in agreement with the known formula for the
electron g-factor in the S-state of the hydrogenic ion [7,
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with # = m./my, which verifies the new formula for
the magnetic shielding in hydrogen-like ions. Its small
electron mass expansion takes the following form:
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where the quadratic in the mass ratio term differs from
that derived previously in Ref. [3, Eq. (64)] due to the
computational mistake. As seen from Table I, the largest
uncertainty for light ions comes from the relativistic re-
coil correction o(*1), but this has not yet been studied
in the literature.

IV. FINITE NUCLEAR SIZE CORRECTIONS

Let us pass now to another nuclear correction, which
is due to the finite distribution of the charge and the
magnetic moment within the nucleus. We will study this
correction for hydrogenic ions only, but generalization for
an arbitrary ion is straightforward. For light hydrogenic
ions this effect is given by
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where m = m,, r¢ is the charge radius, rj; the magnetic
radius, and 7z the effective Zemach radius of the nucleus.
This formula is proved as follows.

The shift of nonrelativistic hydrogenic levels due to r¢
is given by
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where e = e.. The finite nuclear size affects the nonrel-
ativistic wave function, which in turn affects the matrix

elements for the nuclear magnetic shielding
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To derive the contribution from the magnetic radius
of the nucleus, let us rederive the leading shielding that
comes from the €2 A2/(2m) term in the kinetic energy of
the electron
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The shielding o is thus given by

R TAT0) ST

The magnetic radius s enters the magnetic interaction
similarly to r¢ in Eq. (37); therefore, the shift due to
the magnetic radius is
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The calculation of the shift due to the Zemach ra-
dius 7z is more complicated. 7z represents the hyperfine
anomaly, namely (Ejx> — EPP™)/Ep = —2 Z am 7y, see
Eq. (48). If we assume that it comes exclusively from the
charge and magnetic moment distribution, it becomes 7z
given by Eq. (49), which can only be derived from the
Dirac equation. Let us thus start derivation from the

relativistic hyperfine splitting

(41)
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In the nonrelativistic limit Fyg is given by the Fermi
formula
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We are now ready to consider the leading finite nuclear
size correction Ez to the hyperfine splitting
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and where pg and pj; are the Fourier transforms of Gg
and G ;. If we are about to represent complete hyperfine
anomaly, then rz becomes 7z in Eq. (48), because it may
include the nuclear inelastic contribution.

Let us now combine perturbation due to rz and the
homogenous magnetic field
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We claim that the e A terms in the propagator and in the
wave function can be neglected, because they lead to an
additional p? in the denominator and their contribution
thus goes with the nuclear radius to the third power.
Therefore, we have only two corrections due to the last
terms in Egs. (51) and (52), namely,
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which proves Eq. (36). In addition, Yerokhin [13] ver-
ified this equation by numerically calculating the mag-
netic shielding with Dirac wave functions for various Z,
charge, and magnetic radii of the nucleus. The advantage
of Eq. (36) over the direct numerical calculation is the
presence of 7z instead of rz, which represents the sum of
elastic and inelastic contributions to HFS, and thus can
be determined from the HFS anomaly.

TABLE 1. Contributions to the shielding constant 10° o for
'H, ®He", and ®He using Ref. [3, 8]. New results are
c@V(He), 0P, 6 and og. Because the direct numeri-
cal calculation of QED corrections to ¢(® is not sufficiently
accurate for low Z [9, 10], we estimate uncertainty from QED
corrections at this order by assuming that it does not exceed
the known relativistic contribution to o®. ogs was calculated
using: rc(p) = ru(p) = 0.84 fm [14], 7z(p) = 0.87 fm [5],
rc(h) = rar(h) = 1.97 fm [15], 7z (h) = 2.60 fm, other physi-
cal constants are from [16].

'H 3Het 3He
o0 177504515 35.5009030 59.936 7710
oY _0.0176037 —0.0139334 —0.0230201
o2 0.000014 1 0.000001 4 0.000002 1(7)
%0 0.002546 9 0.0203751 0.052663 1
A 0.0000000(28)  0.0000000(74)  0.0000000(192)
50 0.000018 4 0.0000820 0.000096 3
o(6:0) 0.0000002(2)  0.0000065(65) 0.0000129(129)
Ots —0.000000 1 —0.000 006 7 —0.0000135(67)
100  17.735427(3)  35.507427(10)  59.966 512(24)

Previous 17.735436(3)  35.507434(9)  59.967029(23)

V. SUMMARY

The total magnetic shielding for hydrogen-like ions in-
cluding contributions up to order ab is (cf. Eq. (25) of
Ref. [2])
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where [17]
Inko = 2.984 128 556, (59)
In ks = 3.272 806 545 (60)

Numerical results for all these known contributions to
the magnetic shielding in H, He™, and He are presented
in Table I. The updated values are o(31) for He, where
we corrected the sign error in the last term in Eq. (31).
This leading recoil correction to the magnetic shielding is
about 0.02-107%, which is the relative 2-10~% correction
in the determination of nuclear magnetic moments. The
higher-order recoil correction, the last term in Eq. (35),



which is also corrected in this work, is much smaller and
thus is negligible at present accuracy of measurements.
The same holds for nuclear finite size effects, described
by Eq. (36); they are negligible for light elements and
can safely be neglected. However, the nuclear finite size
effects can be significant for heavy elements, where they
strongly affect binding energies and hyperfine splitting.

Finally, our recommended values for the nuclear mag-
netic shieldings are in the penultimate row, and they are
compared to previous recommendations from Ref. [3] in
the last row. The largest change of 0.5 - 1079 is for the
He atom; changes to H and He™ ion are negligible.

We can now use these new shieldings to recalculate the
helion magnetic moment from He™ measurement

p(*He™) = — 4.255099 606 9(30)(17) x “TN (61)

namely, it is
p(*He™)
1 —o(3He™)
= —2.1276253500(17) un , (62)

p(PHe™ ) =

which differs slightly from that in Ref. [1] , while our
recommended value for the atomic >He magnetic moment
is

1 — o(®He)

1 —o(3He™")
2127497763 7(17) iy (63)

p(*He) = p(°He™)

which can serve as a reference in gaseous NMR mea-
surements [18] because it is the most accurately known
atomic magnetic moment.
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