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We derive finite nuclear mass and finite nuclear size corrections to the magnetic shielding in light
ions. These corrections are important for the accurate determination of nuclear magnetic moments.
We correct several previous formulas for the nuclear mass corrections and present improved results
for the magnetic shielding in 1H, 3He+, and 3He. Finally, we obtain an 3He atomic magnetic
moment, which serves as an accurate probe to measure magnetic fields.

I. INTRODUCTION

The nuclear magnetic moment in atoms is partially
shielded by atomic electrons. This effect is not very sig-
nificant: about 10−5 for light elements. Nevertheless,
because nuclear magnetic moments are determined from
the Zeeman shift in atomic systems, the calculation of
the magnetic shielding is necessary for their accurate de-
termination. For example, the recent measurement of
the magnetic moment of the 3He+ ion [1] together with
the calculation of magnetic shielding [2, 3] allowed for the
most accurate determination so far of the helion magnetic
moment. A similar measurement is planned for 9Be3+,
which will result in an improved determination of the 9Be
nuclear magnetic moment [4]. Moreover, accurate values
for nuclear magnetic moments are important for the de-
termination of atomic hyperfine splitting (HFS), testing
quantum electrodynamics (QED), and the nuclear struc-
ture theory [5]. This is because HFS is very sensitive
to the distribution of the magnetic moment within the
nucleus.

In this work, we point out two interesting effects that
are frequently overlooked in calculations of nuclear mag-
netic shielding [6], namely, those due to the finite nuclear
mass and the finite nuclear size. Nuclear mass corrections
are as large as relativistic corrections for light atomic sys-
tems, while finite nuclear size effects are much smaller,
but they are expected to be significant for heavier el-
ements. These finite nuclear mass effects have already
been the subject of several works [7, 8]. Here, we red-
erive them thoroughly, correct some mistakes, and up-
date numerical values for the most relevant cases of the
H, 3He+, and 3He elements. The finite nuclear size ef-
fects have been studied only numerically and only for
hydrogen-like systems [9, 10]. Here, we derive a compact
analytic formula in terms of the charge, magnetic, and
effective Zemach nuclear radii, which accounts also for
nuclear inelastic effects.

II. BREIT-PAULI HAMILTONIAN WITH THE
HOMOGENOUS MAGNETIC FIELD

To account for finite nuclear mass effects, we have to
treat nuclei on an equal footing with all electrons. There-
fore, we consider a system of charged particles, each hav-
ing its own mass ma, charge ea, spin sa, and the so-called
g-factor ga, which is related to the magnetic moment by

µ⃗a =
ga ea
2ma

s⃗a . (1)

These particles are electrons with spin 1/2 and nuclei
with an arbitrary spin. Our derivation employs a Breit-
Pauli Hamiltonian with homogenous magnetic field and
with separation of center of mass motion. It closely fol-
lows the lines of Ref. [7]. Let us therefore introduce the
total mass M

M =
∑
a

ma , (2)

center of mass variables

R⃗ =
∑
a

ma

M
r⃗a , (3)

P⃗ =
∑
a

p⃗a , (4)

and relative coordinates

x⃗a = r⃗a − R⃗ , (5)

q⃗a = p⃗a −
ma

M
P⃗ , (6)

such that [
xia , q

j
b

]
= i δij

(
δab −

mb

M

)
, (7)[

Ri , P j
]

= i δij , (8)[
xia , P

j
]

=
[
Ri , qja

]
= 0 . (9)

The Hamiltonian of a bound system of charged particles
in an external magnetic field including leading relativistic
corrections and with the separated-out center of mass
motion is [7]
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Hin =
∑
a

{
π⃗2
a

2ma
− ea

2ma
ga s⃗a · B⃗ − π⃗4

a

8m3
a

+
ea

8m3
a

[
4 π⃗2

a s⃗a · B⃗ + (ga − 2)
{
π⃗a · B⃗ , π⃗a · s⃗a

}]
− e2a

2
χa B⃗

2

}

+
∑
a>b,b

ea eb
4π

{
1

rab
− 1

2mamb
πi
a

(
δij

rab
+
riab r

j
ab

r3ab

)
πj
b −

2π

3
⟨r2Ea + r2Eb⟩ δ3(rab)−

2π ga gb
3mamb

s⃗a · s⃗b δ3(rab)

+
ga gb

4mamb

sia s
j
b

r3ab

(
δij − 3

riab r
j
ab

r2ab

)}
+

∑
a,b

ea eb
4π

1

2 r3ab

[
ga

mamb
s⃗a · r⃗ab × π⃗b −

(ga − 1)

m2
a

s⃗a · r⃗ab × π⃗a

]
, (10)

where rab = |r⃗a − r⃗b|, and

π⃗a = q⃗a +
1

2
D⃗a × B⃗ , (11)

D⃗a = ea x⃗a +
ma

M
D⃗ , (12)

D⃗ =
∑
a

ea x⃗a . (13)

For a point spin s = 1/2 particle, g = 2, ⟨r2E⟩ = 3/(4m2),
and χ = 1/(4m3). For a finite size particle ⟨r2E⟩ includes
the mean square charge radius. An equivalent Hamilto-
nian for a system of spin 1/2 point particles was originally
obtained by Hegstrom in Ref. [11]. Our Hamiltonian in
Eq. (10), however, is valid for arbitrary spin particles
and has a more compact form.

The magnetic interaction resulting from Hin neglecting
the terms quadratic in B⃗ is

δH =−
∑
a

ea
2ma

(x⃗a × q⃗a + ga s⃗a) · B⃗

+
∑
a

1

4m3
a

[
q2a D⃗a × q⃗a · B⃗ + 2 ea q

2
a s⃗a · B⃗

+ ea (ga − 2) q⃗a · s⃗a q⃗a · B⃗
]
+

∑
a̸=b,b

ea eb
4π

[

− 1

4mamb
qia

(
δij

rab
+
riab r

j
ab

r3ab

)
(D⃗b × B⃗) j

+
1

4 r3ab

ga
mamb

(s⃗a × r⃗ab) · (D⃗b × B⃗)

− 1

4 r3ab

(ga − 1)

m2
a

(s⃗a × r⃗ab) · (D⃗a × B⃗)

]
. (14)

This is a general interaction Hamiltonian, which is valid
for an arbitrary set of particles. In particular, one can ob-
tain the bound electron g-factor or the magnetic shielding
in atomic and molecular systems. In the next section we
derive the atomic magnetic shielding with full account of
the nuclear mass.

III. FINITE NUCLEAR MASS CORRECTIONS

We will derive the magnetic shielding constant for arbi-
trary ions with the vanishing orbital angular momentum

L⃗. The interaction of the nuclear spin with the magnetic
field is obtained from Eq. (14) as

δH = − eN
2mN

gN s⃗N · B⃗

+
eN

4m3
N

[
2 q2N s⃗N · B⃗ + (gN − 2) q⃗N · s⃗N q⃗N · B⃗

]
+
∑
b

′ eN e

4π

(s⃗N × r⃗Nb)

4 r3Nb

·
[

gN
mN me

D⃗b × B⃗ − (gN − 1)

m2
N

D⃗N × B⃗

]
, (15)

where we assumed that for nucleus a = N , all other
particles are electrons, and

∑′ denotes summation over
electrons only. For an electronic state with a spherical
symmetry

(s⃗N × X⃗) · (Y⃗ × B⃗) = −2

3
s⃗N · B⃗ X⃗ · Y⃗ , (16)

one introduces the scalar shielding constant σ

δH = −gN eN
2mN

s⃗N · B⃗(1− σ) . (17)

This σ is conveniently split into two parts, consisting of
the first- and the second-order matrix elements

σ = σ1 + σ2 . (18)

σ1 results from the first-order matrix element of δH in
Eq. (15)

σ1 =
1

2 gN m2
N

[
2 +

(gN − 2)

3

] 〈
q2N

〉
(19)

+
1

3

ee
4π

〈∑
b

′ r⃗bN
r3bN

·
[

1

me
D⃗b −

(gN − 1)

gN mN
D⃗N

]〉
.

Because
∑

ama x⃗a = 0, the position x⃗N of the nucleus
with respect to mass center and the dipole operator D⃗
can be expressed in terms of the electron coordinates only

x⃗N = − me

M

∑
a

′ r⃗aN , (20)

D⃗ = ee
∑
a

′r⃗aN

(
1 + (Z −Ne)

me

M

)
, (21)
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where M = mN +Neme, Ne is the number of electrons,
and Z is the nuclear charge in units of the elementary
charge. Consequently, the shielding constant σ1 takes
the form

σ1 =
α

3me

〈∑
a

′ 1

ra

〉
+

(4 + gN )

6 gN

⟨p2N ⟩
m2

N

+
α

3

〈∑
b

′ r⃗bN
r3bN

·
∑
a

′r⃗aN

〉
1

gN

me

M

×
[
(Z −Ne)

M
+ (1− gN )

(
1

me
+

Z

mN

)]
, (22)

where p⃗N = −
∑

a
′p⃗a, and we used P⃗ |ϕ⟩ = 0. Consider

now the following matrix element〈∑
a

′ r⃗aN
r3aN

·
∑
b

′r⃗bN

〉
=

1

i Z α

〈
[p⃗N , H − E]

∑
b

′r⃗bN

〉
=

∑
b

′ 1

i Z α

〈
p⃗N [H − E , r⃗bN ]

〉
= ⟨p2N ⟩ 1

Z α

M

mN me
, (23)

which is used to simplify σ1

σ1 =
α

3me

〈∑
a

′ 1

ra

〉
+

⟨p2N ⟩
3 gN m2

N

[
3− gN

2

+
mN

M

(
1− Ne

Z

)
+ (1− gN )

mN

Z me

]
. (24)

The σ2 part is given by the second-order interaction
coming from the Hamiltonian

δH = −
∑
a

ea
2ma

x⃗a × q⃗a · B⃗ − eN ee
4π

s⃗N
2mN

·
∑
b

′ r⃗bN
r3bN

×
[
gN

q⃗b
me

− (gN − 1)
q⃗N
mN

]
, (25)

namely

σ2 =
2

3

〈∑
a

ea
2ma

x⃗a × q⃗a
1

(E −H)

∑
b

′ ee
4π

r⃗bN
r3bN

×
[
p⃗b
mb

− (gN − 1)

gN

p⃗N
mN

]〉
. (26)

Using∑
a

ea
2ma

x⃗a × q⃗a =
ee

2me
L⃗+

(
ee

2me
+

Z ee
2mN

)
× me

M

∑
a

′r⃗aN × p⃗N , (27)

we arrive at

σ2 =
α

3M

(
1 +

Z me

mN

)〈∑
a

′r⃗aN × p⃗N
1

(E −H)

∑
b

′ r⃗bN
r3bN

×
[
p⃗b
me

− (gN − 1)

gN

p⃗N
mN

]〉
. (28)

The total shielding constant is σ = σ1+σ2, where σ1 is
given in Eq. (24) and σ2 in Eq. (28). For the numerical
calculations, it is convenient to apply the expansion in
the mass ratio, which takes the form (in a.u.)

σ = σ(2,0) + σ(2,1) + . . . , (29)

σ(2,0) =
α2

3

〈∑
a

′ 1

ra

〉
, (30)

σ(2,1) =
α2

3

me

mN

[〈∑
a

′ 1

ra

1

(E −H)′
p2N

〉
+ ⟨p2N ⟩ (1− gN )

Z gN

+

〈∑
a

′r⃗a × p⃗N
1

(E −H)′

∑
b

′ r⃗b × p⃗b
r3b

〉]
,

(31)

where all matrix elements in the above are assumed with
infinite nuclear mass, and σ(i,j) denotes the expansion
term of order αi (me/mN )j . The last term in the above
differs in sign from that derived previously in Ref. [7, 8],
see Table I for the updated numerical values.

For the hydrogenic ion in nS state the nonrelativistic
shielding constant, using Eq. (24), is

σ =
(Z α)2

3n2
mN

mN +me
+

(Z α)2m2
e

3n2 gN (mN +me)2

×
[
3− gN

2
+

mN

mN +me

(
1− 1

Z

)
− (gN − 1)

mN

Z me

]
=

(Z α)2

3n2 gN (1 + x)2

[(
3− gN

2
+

x

1 + x

)
+
x2

Z

(
1

1 + x
+ gN

)]
, (32)

where x = mN/me. It is convenient to define δgN =
−gN σ

δgN =
(Z α)2

3n2 (1 + x)2

[
gN
2

− 3− x

1 + x

− x2

Z

(
1

1 + x
+ gN

)]
, (33)

which is in agreement with the known formula for the
electron g-factor in the S-state of the hydrogenic ion [7,
12],

δge =
(Z α)2

3n2 (1 + x)2

[(
ge
2

− 3− x

1 + x

)
− Z x2

(
1

1 + x
+ ge

)]
(34)

with x = me/mN , which verifies the new formula for
the magnetic shielding in hydrogen-like ions. Its small
electron mass expansion takes the following form:

σ =
Z α2

3n2

[
1 +

me

mN

(
1

gN
− 2

)
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+
m2

e

m2
N

(
4Z − 3

gN
− Z

2
+ 3

)
+ . . .

]
, (35)

where the quadratic in the mass ratio term differs from
that derived previously in Ref. [3, Eq. (64)] due to the
computational mistake. As seen from Table I, the largest
uncertainty for light ions comes from the relativistic re-
coil correction σ(4,1), but this has not yet been studied
in the literature.

IV. FINITE NUCLEAR SIZE CORRECTIONS

Let us pass now to another nuclear correction, which
is due to the finite distribution of the charge and the
magnetic moment within the nucleus. We will study this
correction for hydrogenic ions only, but generalization for
an arbitrary ion is straightforward. For light hydrogenic
ions this effect is given by

σfs = −Z α
2

3

[
2 (Z α)2m2 (r2C + r2M ) + 8 (Z α)3m r̃Z

]
,

(36)

where m = me, rC is the charge radius, rM the magnetic
radius, and r̃Z the effective Zemach radius of the nucleus.
This formula is proved as follows.

The shift of nonrelativistic hydrogenic levels due to rC
is given by

δH = eA0 − e

6
r2C ∇⃗E⃗

= − Z α
(1
r
− 2π

3
δ3(r) r2C

)
, (37)

where e = ee. The finite nuclear size affects the nonrel-
ativistic wave function, which in turn affects the matrix
elements for the nuclear magnetic shielding

σC = 2
α

3m

〈1
r

1

(E −H)′
2π

3
Z α r2C δ

3(r)
〉

= − 2 (Z α)2m2 r2C
Z α2

3
. (38)

To derive the contribution from the magnetic radius
of the nucleus, let us rederive the leading shielding that
comes from the e2 A⃗2/(2m) term in the kinetic energy of
the electron

δE =
α

2m

〈
(B⃗ × r⃗) ·

(
µ⃗× r⃗

r3

)〉
= µ⃗ · B⃗ α

3m

〈
r⃗ · r⃗

r3

〉
. (39)

The shielding σ is thus given by

σ = − α

3m

〈
r⃗ · ∇⃗

(1
r

)〉
. (40)

The magnetic radius rM enters the magnetic interaction
similarly to rC in Eq. (37); therefore, the shift due to
the magnetic radius is

σM =
α

3m

2π

3
r2M

〈
r⃗ · ∇⃗

(
δ3(r)

)〉

=
α

3m

2π

3
r2M (−3) ⟨δ3(r)⟩

= − 2 (Z α)2m2 r2M
Z α2

3
. (41)

The calculation of the shift due to the Zemach ra-
dius r̃Z is more complicated. r̃Z represents the hyperfine
anomaly, namely (Eexp

hfs −Epoint
hfs )/EF = −2Z αm r̃Z , see

Eq. (48). If we assume that it comes exclusively from the
charge and magnetic moment distribution, it becomes rZ
given by Eq. (49), which can only be derived from the
Dirac equation. Let us thus start derivation from the
relativistic hyperfine splitting

Ehfs = − e
〈
ψ†

∣∣∣α⃗ · A⃗I

∣∣∣ψ〉, (42)

where, for a point nucleus

A⃗I =
1

4π
µ⃗I ×

r⃗

r3
. (43)

In the nonrelativistic limit Ehfs is given by the Fermi
formula

EF = − e

2m

〈
ϕ
∣∣{σ⃗ · p⃗ , σ⃗ · A⃗I

}∣∣ϕ〉
=−

〈
ϕ|µ⃗e · B⃗I|ϕ

〉
=− 2

3

〈
ϕ|µ⃗e · µ⃗I δ

3(r)|ϕ
〉
. (44)

We are now ready to consider the leading finite nuclear
size correction EZ to the hyperfine splitting

EZ = 2

〈
ϕ†(0)
0

∣∣∣∣(−e) γ⃗ · A⃗I
1

̸p−m
eγ0A0

∣∣∣∣ϕ(0)0

〉
= 2 e2

∫
d3p

(2π)3
1

p⃗ 2

×
〈
ϕ†(0)
0

∣∣∣∣γ⃗ · A⃗I(−p⃗) (̸p+m) γ0A0(p⃗)

∣∣∣∣ϕ(0)0

〉
,

(45)

where p0 = m and

A0(p⃗) = − Z e

p⃗ 2
GE(p⃗

2), (46)

A⃗I(p⃗) = − i µ⃗I ×
p⃗

p2
GM (p⃗ 2), (47)

with normalization GE(0) = GM (0) = 1. EZ can be
simplified to

EZ =
2Z αm

π2

∫
d3p

p4

[
GE(p

2)GM (p2)− 1

]
EF

= − 2Z αmrZEF , (48)

where

rZ =

∫
d3r1

∫
d3r2 ρE(r1) ρM (r2) |r⃗1 − r⃗2|, (49)
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and where ρE and ρM are the Fourier transforms of GE

and GM . If we are about to represent complete hyperfine
anomaly, then rZ becomes r̃Z in Eq. (48), because it may
include the nuclear inelastic contribution.

Let us now combine perturbation due to rZ and the
homogenous magnetic field

δE = 2
〈
ψ̄M

∣∣∣(−e) γ⃗ · A⃗I
1

̸p− e A̸−m
eγ0A0

∣∣∣ψM

〉
,

(50)

where

|ψM ⟩ =
(
I − 1

2m
γ⃗ (p⃗− e A⃗) +

e

8m2
σ⃗B⃗

) ∣∣∣∣ ϕM (0)
0

〉
,

(51)
and where ϕM is an eigenstate of

HM =
p2

2m
− Z α

r
− e

2m
σ⃗B⃗

(
1− p2

2m2
+

Zα

6mr

)
. (52)

We claim that the e A⃗ terms in the propagator and in the
wave function can be neglected, because they lead to an
additional p2 in the denominator and their contribution
thus goes with the nuclear radius to the third power.
Therefore, we have only two corrections due to the last
terms in Eqs. (51) and (52), namely,

δE = 2 ⟨ϕ|HZ
e

8m2
σ⃗B⃗⟩

− 2
〈
ϕ
∣∣∣HZ

1

(E −H)′
e

2m
σ⃗B⃗

(
− p2

2m2
+

Zα

6mr

)∣∣∣ϕ〉,
(53)

where

HZ =
2

3
µ⃗e · µ⃗I δ

3(r) (2Z αmrZ). (54)

Therefore,

δE = µ⃗I · B⃗ α (Z α)3mrZ
8

3

(
1

4
− X

m2 (Z α)3

)
, (55)

where

X =
〈
ϕ
∣∣∣π δ3(r) 1

(E −H)′

(
− p2

2m2
+

Zα

6mr

)∣∣∣ϕ〉
=

5

4
(Z α)3m2. (56)

Thus with δE = µ⃗I · B⃗ σZ

σZ = − 8

3
α (Z α)4mrZ , (57)

which proves Eq. (36). In addition, Yerokhin [13] ver-
ified this equation by numerically calculating the mag-
netic shielding with Dirac wave functions for various Z,
charge, and magnetic radii of the nucleus. The advantage
of Eq. (36) over the direct numerical calculation is the
presence of r̃Z instead of rZ , which represents the sum of
elastic and inelastic contributions to HFS, and thus can
be determined from the HFS anomaly.

TABLE I. Contributions to the shielding constant 106 σ for
1H, 3He+, and 3He using Ref. [3, 8]. New results are
σ(2,1)(He), σ(2,2), σ(6) and σfs. Because the direct numeri-
cal calculation of QED corrections to σ(6) is not sufficiently
accurate for low Z [9, 10], we estimate uncertainty from QED
corrections at this order by assuming that it does not exceed
the known relativistic contribution to σ6. σfs was calculated
using: rC(p) = rM (p) = 0.84 fm [14], r̃Z(p) = 0.87 fm [5],
rC(h) = rM (h) = 1.97 fm [15], r̃Z(h) = 2.60 fm, other physi-
cal constants are from [16].

1H 3He+ 3He

σ(2,0) 17.750 451 5 35.500 903 0 59.936 771 0

σ(2,1) −0.017 603 7 −0.013 933 4 −0.023 020 1

σ(2,2) 0.000 014 1 0.000 001 4 0.000 002 1(7)

σ(4,0) 0.002 546 9 0.020 375 1 0.052 663 1

σ(4,1) 0.000 000 0(28) 0.000 000 0(74) 0.000 000 0(192)

σ(5,0) 0.000 018 4 0.000 082 0 0.000 096 3

σ(6,0) 0.000 000 2(2) 0.000 006 5(65) 0.000 012 9(129)
σfs −0.000 000 1 −0.000 006 7 −0.000 013 5(67)

106 σ 17.735 427(3) 35.507 427(10) 59.966 512(24)
Previous 17.735 436(3) 35.507 434(9) 59.967 029(23)

V. SUMMARY

The total magnetic shielding for hydrogen-like ions in-
cluding contributions up to order α6 is (cf. Eq. (25) of
Ref. [2])

σ =
Z α2

3
+

97

108
Z3 α4 +

289

216
Z5 α6 +

8α2

9π
(Z α)3

×
[
ln(Z α)−2 + 2 ln k0 − 3 ln k3 −

221

64
+

3

5

]
+
Z α2

3

[(
1

gN
− 2

)
m

mN
+

(
4Z − 3

gN
− Z

2
+ 3

)
m2

m2
N

]
− Z α2

3

[
2 (Z α)2m2 (r2C + r2M ) + 8 (Z α)3m r̃Z

]
,

(58)

where [17]

ln k0 = 2.984 128 556, (59)
ln k3 = 3.272 806 545 . (60)

Numerical results for all these known contributions to
the magnetic shielding in H, He+, and He are presented
in Table I. The updated values are σ(2,1) for He, where
we corrected the sign error in the last term in Eq. (31).
This leading recoil correction to the magnetic shielding is
about 0.02 ·10−6, which is the relative 2 ·10−8 correction
in the determination of nuclear magnetic moments. The
higher-order recoil correction, the last term in Eq. (35),
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which is also corrected in this work, is much smaller and
thus is negligible at present accuracy of measurements.
The same holds for nuclear finite size effects, described
by Eq. (36); they are negligible for light elements and
can safely be neglected. However, the nuclear finite size
effects can be significant for heavy elements, where they
strongly affect binding energies and hyperfine splitting.

Finally, our recommended values for the nuclear mag-
netic shieldings are in the penultimate row, and they are
compared to previous recommendations from Ref. [3] in
the last row. The largest change of 0.5 · 10−9 is for the
He atom; changes to H and He+ ion are negligible.

We can now use these new shieldings to recalculate the
helion magnetic moment from He+ measurement

µ(3He+) = − 4.255 099 606 9(30)(17)× µN

2
, (61)

namely, it is

µ(3He++) =
µ(3He+)

1− σ(3He+)

= − 2.127 625 350 0(17)µN , (62)

which differs slightly from that in Ref. [1] , while our
recommended value for the atomic 3He magnetic moment
is

µ(3He) = µ(3He+)
1− σ(3He)

1− σ(3He+)

= − 2.127 497 763 7(17)µN , (63)

which can serve as a reference in gaseous NMR mea-
surements [18] because it is the most accurately known
atomic magnetic moment.
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