Radiative corrections of the order a (Z a)® for rotational states of two-body systems
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The analytical calculation of the complete o (Z )® one-loop radiative correction to energies of
two-body systems with the angular momenta [ > 0, consisting of a pointlike particle and an extended-
size nucleus with arbitrary masses and spin 1/2, is presented. The obtained results apply to a wide
variety of two-body systems, such as hydrogen, muonium, positronium, and antiprotonic atoms.

I. INTRODUCTION

Hadronic two-body systems, such as antiprotonic
atoms in circular states [ ~ n, give the possibility to
probe the existence of the long-range interactions be-
tween hadrons, which is not possible by other means.
The emission spectroscopy of light antiprotonic atoms
is feasible at CERN [1], and from the theoretical side
these atoms can be very accurately calculated. In fact,
in a highly excited circular state the effective coupling
Z a/n is much smaller than one, and so the nonrelativis-
tic QED (NRQED) approach can be used to obtain the
energy levels even for high Z-nuclei. Such calculations
for an arbitrary mass ratio and arbitrary state up to the
order (Z a)® were recently performed in Refs. [2, 3], and
here we extend this result to the orders a (Z )% and
Z%a(Z a)s.

Other two-body systems, such as hydrogen and
hydrogen-like ions, serve for determination of the fun-
damental physical constants [4], because they can be
measured and calculated with high accuracy. Significant
progress has been achieved in recent years by the inclu-
sion of the nuclear charge radii obtained from muonic hy-
drogen and other light muonic atoms [5-10]. The current
value of the Rydberg constant, based mainly on the pre-
cisely measured 15 — 2S5 transition in H [11] and 25 — 2P
in pH [5, 6], has a relative accuracy of 1.1-10712, limited
by uncertainties in theoretical predictions for H and pH
[4]. These uncertainties mainly come from the two-loop
electron self-energy, the radiative recoil, and nuclear po-
larizability in the case of muonic atoms. The radiative
recoil correction is a topic of this work.

In this paper, employing units A = ¢ = 1 and e? =
47 o, we perform a calculation at the o (Z )% order for
two-body systems with arbitrary masses, including self-
energy of an orbiting particle and with an arbitrary nu-
cleus. In the first step, we consider the states with [ > 0.
The lower-order terms were recently obtained for [ = 0
states in Ref. [12], and for [ > 0 in Refs. [2, 3]. The
a” corrections are currently known only in the nonre-
coil limit [13], and here we derive them for an arbitrary
mass ratio. The results obtained may also find applica-
tions in more complicated few-electron systems such as
the helium atom, where discrepancies between theoretical
predictions and experimental values for the ionization en-
ergies have been observed [14-16], and they might come
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from a similar calculation of radiative o m correction for

triplet states of the He atom [17].

II. RADIATIVE o (Za)® CORRECTION

The radiative (electron self-energy) o (Z )% correction

to energy Er(Z()i of a two-body system can be expressed as
a combination of terms with all possible spin couplings

2],

Za)b . L
@Q:Jféfﬁ4am+L~a&l+L@ﬁ@
+ 51 S Ess + (L'L)) P sish €L, (1)
where p is the reduced mass, Za = —ejeq/(4d7), Z is

the charge number of the nucleus which has a particle
number 2, §; is the spin of the i-th particle, and
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which is a symmetric traceless tensor. The coefficients Ex
in Eq. (1) with different X are functions of the principal

quantum number n and the angular momentum [, and
their calculation is the subject of this work.

At first Eg()i is divided into three parts,

Egg:EL‘FEM"‘EHy (3)

where the low-energy part Ep corresponds to the fre-
quency of the radiative photon w ~ m; &?, the middle-
energy part E); comes from the region of w ~ my «, and
the high-energy part Ep corresponds to w ~ my. We
will use dimensional regularization with d = 3 — 2¢ to
avoid divergences and the 1/e singularity will cancel out
in the sum in Eq. (3).

III. LOW-ENERGY PART E;,

The low-energy contribution of the order o (Za)® is
further divided into three parts,

Ep,=FEpn+FEp+Ers. (4)

These parts will be evaluated in the subsequent sections
as corrections to the leading low-energy contribution Erg
of the order a (Za)*, namely to the Bethe logarithm.



A. FEpo

Let us consider the nonrelativistic Hamiltonian for a
two-body system in d dimensions,

2

. P% P2

He By, )
vin=421) . ®

[l fame o

where 7 = 7 — 7. The leading nonrelativistic (dipole)
low-energy contribution is
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where H is the nonrelativistic Hamiltonian in d dimen-
sions from Eq. (5). The wave function ¢ denotes the non-
relativistic Schrodinger—Pauli wave function in the cen-
ter of mass frame (p; = —p> = p'). In the following, we
will denote the expectation value of an arbitrary operator
@, evaluated with the nonrelativistic Schrodinger—Pauli
wave function, by the shorthand notation (Q).

After the d-dimensional integration with respect to k,
and the expansion in e, Er1o becomes

Ero =
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where we ignore terms of order € and higher. The factor
(47m)°T'(1+¢) appears in all the terms, and thus we will
omit consistently in all matrix elements. The contribu-
tion E'r¢ can thus be rewritten as
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where the last term is the so-called Bethe logarithm [18].

B. En

We consider now all possible relativistic corrections to
Eq. (10) and introduce the notation
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where () is an arbitrary operator. dg involves the first-
order perturbations to the Hamiltonian, to the energy,
and to the wave function. The correction E; is the
perturbation of Ey o by the relativistic Breit Hamiltonian
H™  which in d dimensions is (setting e; = —e, ea = Ze)

HY = g'® 4 g"® (12)
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where 72, is the mean square charge radius, §%(r)

is the Dirac é-function in d dimensions, and ¢% =
[0t, 07]/(24). In d = 3 spatial dimensions, the matrices
% reduce to 0 = €% ¢*_ and the Breit Hamiltonian in
the center of mass frame becomes
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We will use this d = 3 form of H® also later in the
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calculation of the second-order correction. Additionaly,



we note that the first particle is point-like, so %, = 0
and g; = 2. The second particle will be considered with
finite nuclear size, and we will calculate the radiative
corrections only for the first particle. However, in the
case of antiprotonic atoms we will drop these assumptions
for the first particle and include radiative corrections for
the second particle in Sec. VIII.

We now split Er; by introducing an intermediate cut-
off A

B = </ o ) G <5ij_k;§j>

X(SH(4) <p1 mp1> . (16)

After the Z o expansion with A = X\ (Z «)?, one goes
subsequently to the limits € — 0 and A — co. Under the
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assumption that [ ## 0, we may perform an expansion in
1/k in the second part and obtain

20 [N 1
Er1 = P ————— P
=g /0 dkk5H<4><p1EHkp1>
« 5 o 1
+W |:1+E (3—2 IHZ)]A dk k‘1+25
1
4 o -
X {2 <H( )m [P17[H7P1H>
+<[ﬁ1,[H<4>,ﬁln>}. ()

The second-order contribution in braces will vanish for
states with [ # 0. In the calculations, we keep g2 and
r%, arbitrary. After performing the k-integration and
with the help of commutator relations, it reads
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where the expectation value is expressed in the center of mass system. Here, 7 is a dimensionless quantity, defined

as a finite part of the k-integral with divergent terms proportional to A" (n = 1,2,..

large A\ omitted,

.) and In(A/p) in the limit of
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In all integrals with an upper limit A, to be discussed in
the following, the divergent terms in A\ will be subtracted.
In particular, the terms proportional to In(A/u) but not
In(2\/ ,u) are subtracted, which leads to the presence of
factor 1 under the logarlthm in Eq. (18).

C. Ero

The second relativistic correction, Er, is the nonrela-
tivistic quadrupole contribution. Specifically, it comes
from the quadratic in k£ term from the expansion of
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In a similar way as for F1, we split the integration into
two parts, by introducing a cutoff A. In the first part,
with the k-integral from 0 to A, one can set d = 3 and
extract the logarithmic divergence. In the second part,
with the k-integral from A to oo, we perform a 1/k expan-
sion and employ commutator relations, with the intent of
moving the operator H — E to the far left or right where
it vanishes when acting on the Schrodinger—Pauli wave
function. In this second part it is advantageous, instead
of directly expanding the exponentials, at first to use the



identity
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Thus, after expanding the resolvent in 1/k, we get for the
expression in the expectation value
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We expand the bracket and take into account only terms

quadratic in k, contributing at the order 7. This leads
to
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We now pass to the center of mass system, and the re-
sulting expression, after performing k integration and ex-
pansion for small ¢, is
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Here, By = BYS is defined as the finite part of the integral

[see the discussion following Eq. (19)]
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D. Ei3

The third contribution, Er 3, originates from the rela-
tivistic corrections to the coupling of the electron to the

electromagnetic field. These corrections can be obtained
from the Hamiltonian in Eq. (5), and they have the form
of a correction to the current
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with H*) given in Eq. (12), and we keep g; arbitrary for
now. The corresponding correction Ep3 is
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We now perform an angular averaging of the matrix ele-
ment to bring the correction Ep3 into the form
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We again split this integral into two parts. In the first

part, where k < A, one can approach the limit d = 3.
In the second part, with & > A, one performs a 1/k-
expansion and obtains
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The expectation value for states with angular momentum
[ > 0 can be written as
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(%) ven -
(31)

which follows from evaluation of this expression in mo-
mentum representation in d dimensions, namely
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Now we make the transition g7 — 2, but in the case
of antiprotonic atoms, discussed in Sec. VIII we would
keep ¢y arbitrary. This completes the treatment of the
low-energy part in Eq. (4), and the complete Bethe-log-
like contributions are
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IV. MIDDLE-ENERGY PART

In the middle-energy part, the momenta of both the
radiative and the exchanged photon are of the order ma.
This part consists of two diagrams: the triple seagull
contribution and a single seagull with retardation; see
Figs. 1 and 2. We follow the approach used in [17] for
the case of two electrons and extend it to two particles
with arbitrary masses.
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FIG. 1: Time-ordered diagrams contributing to the

middle-energy contribution Fpq.
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FIG. 2: Time-ordered diagrams contributing to the

middle-energy contribution Fpso.



J

86 Z2 ddk‘1 ddkg

A. Triple seagull contribution
The first middle-energy contribution is the triple seag-

ull diagram given by Fig. 1, which is expressed (with k3
being the radiative photon) as

dik;
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where (53{ (k) = 09 — k' kI /E 2. Neglecting E — H in comparison to photon energies, we express the triple seagull

contribution as Eyr; = (Hps1), where

Hy =

e 72 / dek; /
m§765m2 (2m)d 2k, (2m)4 2k

d d _
i [ o ot )
1 1 1 49
(o1 + ko) (oo K3) U + Fia) s+ F2) | (hr + Fa) (R + kBJ ' (42)

% ei(E1+E2)"F|:

The integration over radiative photon k3 is trivial. The
remaining integration is performed in spheroidal coordi-
nates, as explained in Appendix B of Ref. [17]. The result
for the triple seagull contribution is
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B. Single seagull with retardation

The second middle-energy contribution comes from the
diagram with a single seagull and retardation, as de-
picted in Fig. 2. Such diagram contains two photons,
one of which is a transverse photon exchanged between
the electrons, and the other is a radiative photon. The
corresponding contribution to the energy is expressed as
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where j!(k) is the current
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The a” contribution is obtained by expanding the inte-
grand up to the first order in E— H. Because [ d%kk* =



0 in the dimensional regularization, only the terms with
k1 4 ko in the denominator do not vanish, and they can
be cast in the form
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Taking into account that only the spin-independent terms
survive the double commutator and performing the an-
gular average for the radiative photon, we arrive at

Eyo = —

(4ma)? Z (d—l)/ dk, / dks

mi e my  d (2m)d | (2m)d
1 mn il;l-F m an

X mf& (k1)(p| ™" 0" 05V |o) .

(47)

We express this as the expectation value of an effective
operator Hy;s,
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Performing the remaining integrations in the same way
as in Ref. [17], we get the result
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C. Total result for the middle-energy contribution

The total result for the effective operator representing
the middle-energy contribution is
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This needs to be transformed into the coordinate repre-
sentation with the help of
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leading to the middle-energy contribution
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where v is the Euler-Mascheroni constant v = 0.5772. . ..

V. HIGH-ENERGY PART

The high-energy part EFy comes from the momenta of
the radiative photon of the order of electron mass my,
and is split into three parts

Eyg = Eg1 + Ega + Egs, (55)

where FEp; is due to slopes and higher derivatives
of electromagnetic form factors, Egs is due to the
anomalous magnetic moment x; = «/(27), and Egs is
due to QED correction to the polarizability ag of the
first particle beyond k.

A. Em

The first part of the high-energy contribution comes
from the derivatives Fy(0), Fy(0), and F4(0) of elec-
tromagnetic form-factors of the first particle. For the
second particle, we assume s; = 1/2, and an arbitrary
G250, T g0y Tare, and ags. As a starting point we will
use Ref. [3] and the effective Hamiltonian
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where we collected all the terms that contain form-factor 4 15

derivatives, given by expressions 0, — dEy in Egs. (36),
(38), (41), (43), (45), (47)-(48), (53), and (59) of Ref. [3].
The electromagnetic radii are
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For the case of two pointlike particles, we checked this
result also by a complementary method of calculation,
namely the scattering amplitude approach, as was done
for the Ey contribution in Ref. [17]. Generalizing the
derivation in Ref. [17] for arbitrary masses of both par-
ticles and considering also the spin-orbit terms, we get
the result in agreement with Eq. (63) for the pointlike
second particle.

B. FEm:

FEp5 is the contribution due to the anomalous magnetic
moment (amm) k of the pointlike first particle. It can be
obtained by collecting all the x-dependent parts of the
first-order operators dE; — dFy in Ref. [3], where & is
present in the g factor ¢ = 2(1 + k) and in the electric
dipole polarizability
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The derivatives of form-factors are given by
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We shall add a few comments at this point. If we consider
a point particle with the magnetic moment anomaly, then
the electric dipole polarizability includes the first term
in the above equation. The additional radiative correc-
tion, which is not accounted for by the magnetic mo-
ment anomaly, is the second term, which was calculated
in Ref. [13]. Here, we account only for the first term,
and in the next subsection, we will separately address
the second term. This is because, for a non-point parti-
cle such as an antiproton, we will include the first term
in the definition of the electric dipole polarizability, and
the second term will be an additional correction with 1/
infrared singularity to be canceled with a similar term in
the low-energy part.

All these contributions due to the magnetic moments
are finite, and thus we may present them in three-



dimensional form as

Eys = k1 ( (0H;) + Esec) , (66)

1=1...9

where the individual §H; operators were derived in
Ref. [3] and are presented in Appendix A. FEg is a
second-order amm contribution

Feoe = 2 <H(4) v

amm (E— H), H(4)("{1 = 0)>

_ [ENS+ES1

(L-5)+ E32 (L-5)

ESS

56+ B D) st (60
where H;Eﬁzm is the part of H® in Eq. (15) which is linear
in ky, and H® (k1 = 0) is the Breit Hamiltonian with x4
omitted.

C. FEus

This is a correction due to the second term in the elec-
tric dipole polarizability in Eq. (65),

a1 1 = 9
EH3_71'TTL3(6 )(VV),

e (68)

VI. TOTAL ONE-LOOP RADIATIVE

CORRECTION

With the help of the identity derived in Appendix C
valid for I > 0 states,

il Zaf s ripd .
A (-] 2

1 2 -
= Za( - 95) Pam 3 (r) g+ pu (VV)?,

: (69)

all the singularities proportional to 1/e cancel out alge-
braically in the sum of all parts in Eq. (3). We may
therefore pass to three dimensions by setting ¢ — 0 and
replace

pam6(r) p— pan 83 (r) 7, (70)
ol ptam 64 (r)p! = 25, - px Am 83 (r) (71)
o et 40 > 45 x PRSP r) B 5. (72)

The final expression for Eﬁa()j in Eq. (3) for the a7 radia-

tive two-body correction to the energy is

1 - -

S - o B =S (Bxs+L-81Bs+ L5 B+ 5 - 5 Bss
which is con51d§red separately !oe(':ause it is infrared di- iy Lj)(2) st s) ELL>, (73)
vergent. We will assume that it is common to all par-
ticles, including all nuclei, and will exclude it from the
definition of the electric dipole polarizability. where individual coefficients are

Za 31 1 my 779 11
Exs=(—F5—5 |l +-In Za)™? =+ —In z 3
o = (| (o 5[5 s (o 3] )
1 4 1
— (1 3 1 Za) 2 Ymi| pan 83(r) p
+72< +3m2rE2) (5+6n{2’u( a) })ml}p T (r)p+m?m2(ml+m2>
17 2 mq _9 2 2 589 2 2 2
—+-In|—(Z — =1 — +-In 4
X[<12+3n[2ﬂ( @) } 3(nm1r—|—’y)>m1—|— 70 T3 2u( ) m3
317 4 my -2 2 (Za)® ns |, (Za)°p ong
#omma (574 g G0 ] = § (mmr ) )| 50 ) e 0 ()
B { _ (m? —mima+m3) EZa 3 (2m? +myma +2m3) (Za)?
St 2m3 m3 r3 4m3 m3 ré
o 43 1 mq 9 2 23 1 mi -2 3
— ~In|—(Z — +-In|—(Z
T mimd [(144+3 [2u< @) Dm1m2+ a1 T |3, F | ) ma
1 m3m3 Za)6
g4 Lo 2 g+ T2 02 | a5t ) + 5 4 LM gt (75)
16 32 12
Zo 5 mq 9 31 1 mq _ 3
Eso = ——— |l =+=-In|—(Z -1 — +—-In|—(Z 476
o= (- 20 (2 g [ 52z ?] ) - v+ (g + g 522002 ) wma] pnotr)

K as2
sec ﬁ )

s2 , (Za)'n
+E i
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(592 —6)m1 +5g5m2) (Za)® | Za [(92-2) ,  (g2—1)
E =
58 < 24m?2m3 A m3m3 Lt T s
T2 my _ (Za)b u
+<432+1 [M(ZQ) 2})92”124'187”%7”27”1»12} par 6% (r) >+E§esé Tﬂss’ (77)
B - Za 3(m1+ma —gama) B [(12+gg)m1+(12—7gg)m1 ma + g2 m3] Za
LL= (20 —1)(21+3) \ mim3(mi+ms) 13 4m?2 m3 (my +mo) Tt
1 T(g2—2) 5 5(92—1) 233 5 mi -2 59 m2m2 r2
o2 T ) i PN VA 092
m{’mg’[ T 1 mi1ma + 144-1-3 2M( @) g2m3 + 12 ™My ms g
VA 6
X pam 63(r)15'> + ELL 4 ( a; a BUL . (78)
n
The expectation values of the first-order operators are Eé:i) ES) Sé?) 1 10 p2
evaluated with the help of formulas from Appendix D. Es1 = n3 + nt + s \n3 ﬁ 3 i
The second-order contribution, which comes exclusively 20m3 (2 + 1) A
from the amm contribution, is evaluated in the same way + e T L) In; ) + = Bs1 (86)
as in Ref. [2]. We will now present the final formula for 3 n
the radiative o contribution to energy. £® _ 10 n 191 5835 350 n 133
sU=m\ g T gy Ty g | migg
227 13
VII. RESULTS el 87
+g3m n2<288 M 320> (87)
. i+ ) ) 9
The general result can be cast in the form 5&) = i go+ G2 T —
16 16 32
wa(Za)b - - 25 5
ED = %<ENS+L-§1551+L-§2552 +n1(4—n54> (88)
+ 515 Ess + (L'L) D sis) &), (79 15 125 450
18 Ess + (L'L))? sish Evn) (79) £ — *3+Th+nf = 777f§
where we pulled out the factor A~!, with A = 30 for . 5
I =1, and for [ > 1it is defined in Eq. (E1). We consider _ 3! d 9 9
separately the cases with [ = 1 and [ > 1, where for the 7z 8g2 + 892 ’ (89)
latter case the individual coefficients are lengthy and thus e® g ) A 20121
we move their explicit results into Appendix E. Defining Ego = S—g + 52 4 % + — Bs2 — 31 2 (92 — m2)
1 1 1 2] 11
=, =—,Infj=In|—Z« 80 R
n my 2 ma ' {2771( ) (80) % (n3 n5> Iy, (90)
the results for [ = 1 are 50 13 5h9 133
ES = min3( 5 — 2os03 ) —g2min + 12 oos
€8 W g 5 1 s2. Rl " 32072) 2288 T P88 )
ENS:77,3+77,4+7L5+8771772<3TL5—7L3> (91)
15 5 9
137 n 100 2 n? 4 _ 2 2.2 29 9
(60 oy ln g Za) - L2, €y = g2amnz| 3 TG ) T2 25y (92)
1 1 (6) _ 229 Z 2,2 @ _ § 2
X <n3 = >+1 ny Exg + ﬁNs, (81) 2 = 92771"2<72 Ry) T g T g2
(93)
3 o(81 1081 & ,16 22137
Ens = (6 Sy U ) g (82 £5 & &R A 2092 (1 1
558273“1‘744‘754‘73588“!‘7 3 5
@ ) 29 53 , 3 2 n n n n 9 n n
Eng =mi| — ot — s — 169 (83) ) ) 5
X\ p mn2rae H4ANT N2 Ing ), (94)
5) o 112 221,46
Ens = 1(9+m‘36771 15 (84) 3 _ 47 2170 2 o137
Ess =gamme| — gyt Mo | ~ MM 559
81°g—n2{<11 <34+4n +40“r )+8} 225
NS H\n3 nd 3 9 B2 3nd|’ —mni== 1 (95)



) 5 g2
£ = — R g g g — i ) (96)
5) 1,170 5
8 =92mn2< 3 - o +mn§§, (97)
gy gW g A 10 11
gLL* LL+ +&+76LL+ 92<35)
3 n n
X <u2 M N2 e + 417 02 1111) , (98)

180

5 1171
EY = mnj ( =0 ™70

3697 417
—3m ) —gamne +m—

CpR06TN o 2271201
M7360 ) TRME\ T gy T 900 )
(99)
@ _ o p2d RENL S L
5LL—7)17722+92771772< 8+n24+n24
9 21
2 2
g = 1
+gzn1n2< : n140> (100)
G _ . of 19 153 9
5LL—771772( 5+3771>+92771772<20 m
101 9
—n? == 2(4ny —1 101
) bmBdm -V, oy

where H,, = >_;" | i~ ' gives the n-th harmonic number.
The Bethe logarithmic terms will be calculated after com-
bining them with those from the exchange contribution

t (Za)" order. We now consider special cases of the
general results in Eq. (79).

A. Positronium

First, we will examine the case of a positronium atom,
i.e., the two-body system of bound electron and positron.
To achieve this, we treat the nucleus as pointlike by set-
ting go = 2, 7%, = r3;, = 0, m; = my = m, and include
the corresponding result for the radiative correction of
the second particle, where we make the exchange (1 <> 2).
For the | = 1 states we get the result

a(Za)m
E{Q(n"Py) = % [5(7)("513")
1 1 n
- = g . =
+(30n3 45n5>( ntl nZa)]’
(102)
where
pos(1p)) 73 1 A7
D pipy = 2o C P _ _
£ (n h) nd 14077 20n1 360000
3 19
2 VI [(Za) 2
* (40n3 36On5) n[(Ze)™7],
(103)
pos(3p)) 101 3 307
D3y = P CR) _
£ (" R) n3 96013 100t T 2400717

11

29 79
=Y Vi [(Za)
+<120n3 360n5>n[( Ak

(104)
pos(3p) 181 73 877
D (3pP,) = pre(Cpy _ _
£ ) w8 T 172808 960n%  21600n5
A7 13 .
* (360n3 - 120n5)ln ().
(105)
Pos(3P,) 491 41 67
D (n3py) = P _ _
ENM ) = =+ 500m® ~ 160001 90017
3 19 L
* (40n3 N 360n5)ln [(Ze)~F],
(106)
BPO (> P;) = Brs(1) + F (Bs1(1) + Bs2(1))
2s5(s+1)—3
+ (“%) Bss(1)
1
+[3F(+2F) —4s(s+1)] BLle( ) ,
(107)
1
F=5[i0+1)—s(s+1) -2, (108)
where we introduced notation f;(z) = §; with =z =

ml/mz.

B. Hydrogenlike atoms

For hydrogenlike atoms, we begin with the nonrecoil
limit, assuming the nuclear mass mo to be infinitely
heavy. We consider the case of [ = 1 while the [ > 1
case is presented in Appendix E. We obtain the result

7.0 mya(Za)® , 7.0)  # o (1.0
Ejal(nP) = —— == (" + L-5167") . (109)
£(10) _ 1319 1 1687
NS 3600n3 24nt 540015
( B > 2, 5Ns
1
+h'l 5 ZO( 3 45n0
4 2 2
+ 55 o7 MiTE2\ 75~ E ) (110)
1 5 23
8(770) — - —
St 8008 T 240t 13500
1/1 1 B(O)
“o\ T
2/1 1
-9 (nd n5>1 [3(Za)7?], (111)
where
Bi(z) = B9 + 2 M + 22 8P + (112)



This result is in agreement with the one from Ref. [13] for
a pointlike nucleus. For the leading recoil contribution

we get
2
71 mia(Za)® | 71 2D LTz
El(lydr)(np) :TT@( '+ L5 é1 '+ L5 S2
+ 515G + (L) st sh ey,
(113)
) _ W - B 4913 19 1243
NS n3 5400n3  60m4  1350n5
4 8 n
— — — ) (Hys1 —In—
+(15n3 45n5>( + n22a>
3871 1Y\ 4, 23 9
ECACERE) A FEr i
20 11 _
- ﬁmf 2, (n3 - n5>} In[3(Za)™?],
(114)
1) _ $-88 228 5 .2
S n3 108003 12 n4 45 ns
401 1\ 4, 1
+§ nd nd e T _n5
xIn[§(Za)™?], (115)
(7.1) Bﬁ 559 229
by = “’2( 864072 32n4 T 2160
2/1 1 _
—gzg(ns—rﬁ)ln[;( 0. (116)
5(771)7§+ 203 1 367
S8 3 162003 18n* 162075

2 /1 1\ ,
+922*7 R mi i,

+ g2 2% (1 - 1) In[3(Za)7?],

n3  nd
(117)
s _ AL (5069 T
LL n3 2160013 240 n4

649 1/1 1\ o,
T 5200m5 ) TR\ E s ) M2

otz o

VIII. ANTIPROTONIC ATOMS

We may apply the results of our calculation also to
highly excited rotational states of antiprotonic atoms. In
the case of a two-body system consisting of two hadronic
particles, one has to include the strong interaction effects.
However, for highly excited rotational states, these effects
are negligible due to their short range. We may also
omit all the other local interaction terms, but we have

12

to keep the g factor of the first particle in the general
form, and include also the radiative contribution for the
second (heavy) particle. As a result, only the low-energy,
middle-energy, and Fp3 contributions have to be taken

5(7,1) into account.

For antiprotonic atoms, the low-energy contribution
« 1 5
Epn=-—- { + - +In

ELliS
M (Za)~2
3mmi (2 6 2n

Lz (8 ey
my Mo r3 ).
a (Za)b
Lo Z0)
T n

phBi(x) + Z2(1 < 2,0 < 2 1).

(119)

In the Bethe logarithm contribution the perturbation of
the expectation value by the Breit Hamiltonian H® has
to include g-factors of both particles.

The low-energy contribution Eps is for antiprotonic
atoms of the form

Yt e

a (Za)s
+ n3

Erp =

phBe(x) + Z2(1 < 2,0 <> 27 1).
(120)

where a <> b denotes replacement of a with b.
The final low-energy contribution is given by
Ers=—— <+ +71
0

3e 9 3 {Q,U(Za)_ﬂ)
(- B (o)) 4 22 s
., (121)

o 1 5

+ 7221 &2,z <27 h).

The middle-energy contribution for antiprotonic sys-
tems is obtained in a straightforward way as

a 17 2 4 -
Ey=-——s—|———--(1 VV)?
M QWm%m2{9 3¢ 3<nm”+7)}( )
+ 7272 (1+2). (122)

The only high-energy part that will contribute is given
by Epus,

a1 72 1 1
Ers = T (mi’ + m%) (6 3€>(VV)
The other terms go to polarizability of both particles,
and they are already included in the o i contribution in
Ref. [2].
After summing all the contributions, the singularities
exactly cancel each other, which leads to

(123)



m  pa(Za)? /1
B = pAZa)

90 7 mi m3 rd (105 m +170my my + 68 m3 — 60 m1 (m1 + ms) (1n(m1 )+ ,y)
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Evaluating the expectation values, we obtain

+60 (my +my)? Iny )> + %w“(m +L-5 8% () + L- 5 p%(x)
+ 5815 B%(@) + (L'L)P st 5] B (2)) + 22 (1 > 2,0 v 27 1). (124)
Eg) = %ZAO[)G o {2 72 (l(l;, D _ :3> (szz + Hay3 — Hpq1 +1In 2Z7;771>
+;5<l(l+1)<—6+771298—7ﬁl25 +n2§)] +%§f)6<ﬁ“(x)+i-§1531(@
+ L5 %% (x) + 515 B55(@) + (LL) P st s) Bl x)) + 22 (1 & 2,2 > 27 1), (125)

The final result for antiprotonic atoms is thus very sim-
ple and compact.

IX. SUMMARY

We have derived a complete o (Z )% and Z%a (Z a)®
one-loop self-energy correction to the energy levels of a
two-body system with angular momentum [ > 0. The
obtained results are valid for constituent particles of ar-
bitrary masses and spin 1/2, with the nucleus being either
pointlike or of extended-size. For [ = 1, the results are
presented in Eqgs. (81-101), while for { > 1 they are in
Eqgs. (E2-E21), and these results are presented in Math-
ematica format in the Supplemental Material [20]. For
the case of positronium, the results for [ = 1 are pre-
sented in Eq. (102-108), and those for rotational states
of antiprotonic atoms are in Eq. (125). For hydrogenlike

(

atoms in the nonrecoil limit, our results agree with the
former calculation in the literature [13] in the case of a
point nucleus. We present also the first-order recoil cor-
rection in Eq. (113) for I = 1 and in Eq. (E27) for I > 1,
which to our knowledge have not yet been considered in
the literature.

What is yet unknown is the pure exchange contribution
of order (Z «)7. Once it is completed, we aim to perform
numerical calculation of relativistic Bethe logarithms and
the electron (muon) vacuum polarization contributions.
This will eventually allow for very accurate results for
Il > 0 states of arbitrary two-body systems, including
muonic and antiprotonic atoms.

Finally, we note that using the operator form of the
a(Z a)® correction in Eq. (73) we found a small mistake
in the previous calculation of a similar correction to He
ionization energies, which we describe in detail in Ap-
pendix B.
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Appendix A: Operators contributing to Ez2

Individual first-order operators that come from the anomalous magnetic moment of the first particle are

Za - 1 1
0H, = ——L-5 (p* =+ =p° Al
1 4m% S1 (p 7"‘3+7'3p)’ ( )
Zo e ripd 9 , Za 3
6Hy= —5—5 (92— 1) (B x p)'| = —3— + 47 d° 51 % p)’ —(2 —)4 V26
1= g 0= 1) G ) (g =30 4 B An 00 ) G X Y + oy (Bt o) 4792 8()
Za [3(g2—1) 9 3 30 =
+ Gm%[ 4m3 2+<TE2+477”L%)51 px 4w (r) p, (A2)
Za - S XT §1 X T 1 - -
0H; = ——— 2 5 X Vy- AP - Vi X P8
5= Ty 3 ({p 52 273 } {P Pr—3 + 4m;{{19 1 X et Ay, p- 51}
Za(ge—2) (. SIXT . Za L 3\ oL P
Fym——; x Vo D 5 8m§m2(181 PXAwo°(r)p— go §o X pdAdmwd°(r) 51 xp)
Zo (92—2)\ . .
Gy (92 T2 Ty z 8o x pdm§°(r) 51 x P, (A3)
Za - 8 XT
(5H4 = mom 62./42' 7"3 5 (A4)
1 M2
1 (Za)?
6Hs = A5
5 8m3 rt 7 (43)
(Za)2 (92—1) §2 X T §1 X 7 ZO(_, 7 -
0Hg = — ——— — — 3§ - —= xe Ay, A6
6 2my m3 r3 r3 m? S e (A6)
Za 7\ p? ] i Zar? p? 7\ p? »
5H = T 5 X — ) 9 ) 5 X — ) ) '
T Amyme ({[(sl r) 2m1] 73 }—’_{{ng e 2my P
Zoagy [ o4 o o 2 ;1 ripd  §i
- — Sy —+ 88— — — — . A7
8 m2 m3 [p, P s 523r+51522r 72 3 (A7)
Za 7 - 7 - (ZO[)2 (92 — 1) §2 X T §1 X T
0Hs= — — §-—= xe A1 + — Ay, x5}, p? .
s m2 51 3 e1A; + P [{61 1, X 81},p }4' 2my m3 r3 3
YA (gg — 1) §1 X 7 I 2
— X . A8
8m1 mg r3 Y S2 05D ( )
Z o 2 3(g2—2)\ .. 300\ Z o Lo o 30,0\ 7 =2 3
Oy = Gy (e = gz ) 150 PXARE0) 7+ o (100 P Am ()74 20 8). - (A9)
[
where are static vector potentials.
: Zoo o 4o riri\ ph Z 5y x )"
e di = — 29 (g5 T &_ﬂw,
2r T mo 2meo r
(A10) Appendix B: Comparison with helium o radiative
o i ; corrections
. Zo [ .. ripd Za (s X7
62,412:—2(5”4— 2)ZH+W’
r r myoomy T We can compare our results with electron-electron
(A11) operators derived for helium centroid triplet states in



Ref. [17], given by the expression EE, in Eq. (156) of
that work. It can be transformed into the form

7
p o/ (1039 49 oy o0\ g
Egp = — < (1350 + I In (a2 | pan6°(r)p

03 4 4 2 1
+(90—|—21n[; }—31nr—3’y—31n2>7#1>.
(B1)

This result can be checked against our two-body first-

order operators derived here. We obtain it from the gen-

eral result E(()i in Eq. (73) by setting go = 2, 1%, =

35 = 0, my = me = 1, adding the corresponding re-
sult for the second particle where we make the exchange
(1 +» 2), setting 571 - 5o = 1/4, omitting fine structure and
hyperfine structure tensor terms, and transforming into
atomic units by r — r/a. We obtain

7
=g al /(1039 49 o o0\ L gL
Egy = — < (1350 + I In[$a™?] ) pdn 6°(r)p

851 4 4 2 1
+(180—|—21n[§ 2}—lnr—’y—1n2>r4>.
(

We observe a discrepancy between these results. It can
be traced to the contribution F5 in Ref. [17], given by
Egs. (102), (103), and (104). There is a missing overall
factor of 2 in this term, which would lead to an additional
contribution in helium results equal to

o’

Correcting for this mistake, we would get a perfect agree-
ment between the two results. The numerical change
from this correction amounts only to 2 kHz for the 239
state and 3 kHz for the 23P state, and thus does not
explain discrepancies for ionization energies [14, 15].

Appendix C: Derivation of identities

To derive Eq. (69), we start with the identity
P’ VPl
=p*Vp?+ %pi . V. lp' = %{ﬁ,ﬁ Vil
= TP VR 50 VP % 5 VAT
(C1)

For states with I > 0 the third term in the last equality
vanishes. With the help of the expectation value identity

P, [V.p*) = 4u(VV)?, (C2)

and relation
', [V.p']] = [fa (5” J)} —I—%Zoﬂlw&d(r),
) (C3)

15

with d =3 — 2¢, we arrive at Eq. (69).
We will also present the evaluation for the expectation
value of the operator in the first term of Eq. (A2),

1] 7 ©j
(G (5 o5+ S am ')} 51 <)

(C4)

First, we need to isolate the traceless part of this oper-

ator, which is contracted with spin vectors. The expec-

tation value of the traceless part will be proportional to

((L'L7)® s} s)), while the trace part will result in terms

involving (8] - §3). For the non-local term we get

(x5 =350 ) s )

= ((AL'L)® + B§Y)sis)).  (C5)
Coefficients A and B are obtained by projecting the ex-
pression on both sides of the equation, which is con-
tracted with spin operators, either to (L’LJ)(Q) or 6.
After lengthy angular momentum algebra, this leads to

1 10 _12pFE
e Ar 63 (r) @
(21—1)(21+3)<3p GOl
16 pZa
T4 >’ (C6)
_ 1/1 3. Mo
B= 3(6p47r6 7+ T4). (C7)

For the local interaction part we would proceed in a sim-
ilar way, leading to

<(§2 x p) 4w 63 (r) (5] x ﬁ)l> = (pan 5*(r) p)

. . 2
X <(LZL3)(2) sish + 35 §2> : (C8)

Appendix D: Expectation values of first-order
operators

We employ the following identities to evaluate the ex-
pectation values with hydrogenic wave functions [18, 19]:

1 2(pnZa)?
<7‘3>: I(I+1)(2l+ 1)n?
1 4(pZa)* (3n? —1(1+1))
<7~4> e
(D2)

(D1)

<1nm1r+'y>_ (uZa)?
rd LI+ (2L - 1) (2t + 1) (20 + 3) nB

X [4 (3 n? — (1 + 1)) (szz + Hojp3 — Hpqy

nmy 1> 2(1-320+1)n+4n?)],

1
+ HQMZoz 2
(D3)
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(pdr 53(7") 7) = 4 (ﬂSZOé)5 (13 B 15> 5in. (D4) Appendix E: General results for states with [ > 1
nd n
In this section, we will present the results for arbitrary
angular momentum [ > 1. Defining
A=1(1+1)20—1)20+1)(2l+3), (E1)
we obtain the following results for the coefficients in
Eq. (79):
Q) gl 8, 8(l(+1)-3n?) A
Ens = w3 T a Tt T P (Hy—2 4+ Hajy3 — Hyqy +1n T Za) t3 BNs (E2)
113 3 3 4 79 3 3 2
EQ = (8 +—> + = — -——= -
ns S et o y t a2 T T T Ty T @2
2 3 3 3 3 3
2 2.2 2
z _ 2 _ - E
m 5) RIRE ( 160 T160+ D) T6@—1) 8@+1)Z 162+ 3)) 92 (E3)
3(20+1) 3 1920 + 1) 3 9
5(4) _ 2| _ . 2,2 2
Ns = 4 PSS 1 @+1))] P IsEi ) (B4)
8 11 4 4 28 4 4 2
EOW) 211+ -2y —— = L e
ns =l D —gl-o At g gty T n Ty T T (E5)
The following coefficient is
5(3) 5(4) 5(5) A
581=%+%+%+55L17 (E6)
: 3 3 8 g2 3 13 3 13
e =62 - —6 — 4+ ) (= - =
st =m 6T ag Ty T e St \mn =D+ 9E — o T ogg e T e
_ L 4 2 42 i _ i + 3 =+ ! + 3 1 3
@ +12)| TR 162 T 16 T 160+ 1)2 1601+ 1) 420 —1) 2020+ 1)2 420 +3)
YA R S TR M )
PAT162 7160 160112 16(0+1) 42 —1) 2@+ 12 T 4@2+3))]
9 9 12 g\ (9 9 24
&Y =m|3— o +6l- S 1+m= ) (5 -
su= P T T Ty Ty TR TR s gy T @y
PUNPOPI R SR RN A (AN /N i (E8)
M6 T 160+ 1) 4@i+1) P\ 160 160+1)  4@+1))]

9 9 3 9 3
EX = mll+1)| -84 = — ——— 64—+ —6+— - 5= (92— 93).
st =mll+1) o T agen T R R 6+ ; D) +mnzg (92— 92)
(E9)
For coefficient £go we obtain
(3) 5(4) 8(5) A
313 3 13 4
5(3) = 12 p,(3 T —
s2 =B 9 ~ gt g T Tsien T @ ie
9 27 9 27 3 9 3
2,2 2
9 _ — El1
IR 92 (16z2 160 TT60+12 T T6(+ 1) A@—1) 20412 42 +3)> ’ (E11)
£ _ w2 18 (9 9 6
s2 TR TG T Ra ) T @) P8 81 (@)
27 27 27
2.2 of 2 _
I 92 (16l T ETRR e 1)) ’ (E12)
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9 3 3
£ =} nzgz( g 8) + i3 3 92 - (E13)

The scalar spin-spin coefficient is

5(3 5(4) 5(5) A
Esg = rsLs n ss + SS +*ﬁss, (E14)

X =mn3 (2 1+ L -8 - R .
ss =M 15 I Ur)  3@rnz) TR T T T 0 T 3@ 1)

1 1 1 1 1
2.2 2f L _ _ E15
RRGRCEE < vy w@—n 2t Taas 3)) ’ (E15)
(4) _ - B 4 2.2 3 2 El
Esg = mn2 (M2 — go) <2l +1 [CF) 1)> WGy %2 (E16)
1(0+1
gé? =Mmrn2 g o) (6 ) . (EH)

Finally, for the tensor spin-spin coefficient we obtain

8(3) 5(4) 5(5 A
gLL:%‘i‘&‘F LL+7/BLL7 (E18)

3 A
5() 771772(—3‘*‘13— N + . + 2 )+77177292[772(9+27
200 (14+1)2 (I+1) " (2-1)  (2A+1)2  (201+3) 2\22 " 20 +1)
9 9 9 36 21 9 27 18 18
U1 T w3 T2 @ 2z)+’72<212+2(z+1)+21_1_21+3
9 36 27\ 15 17 17 24 24 15 16
+2(l+1)2(2l+1)221)412+414(l+1)21—1+2l+34(l+1)2+(21+1)2}
, L3 1 1 1 1 3 3 6 3
+””7292{2z2_2z+2(z+1)+2(2z—1)_2(2z+3)+2(z+1)2_(2z—1)2_(2z+1)2_(2z+3)2
15 29 29 29 15 3 24 3 29
+”2(_4z2_4(z+1)_4(21—1)+4(2z+3)_4(z+1)2+(2z-1)2+(2z+1)2+(21+3)2+41”’
(E19)
] 45 45 24 o1 27 54
553:”1”292{_41_4(z+1)*(2z+1)+"2(1+”2)(2z (z+1)_(2z+1)>}
, o[ 2127 27 45 45 9 36 9
+n1n292{_4l_4(l+1)+(2l+1)+ <4l+4(l+1)_2(21—1)_(2l+1)_2(21+3))]
9 9 18
+n1n§<l(l+1)+(2l+1))’ (E20)

5(5)_ 2 9 _ 9 +6 + 9 _ 9 -6 +L_L+£
L = IR G2\ yor3) T 42— 1) \22+3) 20 -1) 20—1 2043 4
9 9 9 9
2 4 -1 2 _ 2 _ 9 _ . E21
Ty (42 = 1) g (16(21 1) 162 +3)) o 12 —1) T a2 +3) (E21)

Further, for the positronium atom [ > 1 states we obtain

Za) , oo - e e o o
E() = %@g? + L (514 5) EPS + 51 - 52 E8S + (L L)@ sl sd EP7%Y (E22)
where
gps_ L(247T 15 15 3 2 3 (BB, 6
NS T3\ 80 64l 64(1+1) 64(20—1)  32(20+1)2 ' 64(20 +3) n4 32 16 (2l+1)

LA 1791(1 + 1) N (3n2 —1(1+1))
n® \ 6 180 3nb

<2ln [(Za)™?] — Hy—2 — Hap3+ Hypy —In Z”) + —5 Axs(1),
(E23)
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gros _ L(9_ 3 1 3 1w .38 19 3
LS 7 p3\8 812 " 160 8(1+1)2 16(+1)  16(21—1) 8(20+1)2 16(21+3)
1/3 9 3l 9 57 57 131(1+1) A
+n4(4_8l+2_8(l+1)+16(2l+1)>+ <64 8 )+7ﬁBLS(1)’

gps _ L ( 5 5 1 7T 1 N 1/ 3 3 2
S8 T p3 160 16(1+1) 16(20—1) ' 8(21+1)2 " 16(21+3) n4 8 4 ' 16(20+1)

(41 A

25 T Bss(1), (E24)
gs_ L (.3 1 3 1 3 109 3 B 3 109
LL ™ 3 42 4 41+1)2 0 4(4+1)  40-1)2 16(20—1)  2(20+1)2  4(20+3)2  16(20 + 3)

1 9 9 9 9 9 L/, 51 51
+n4(_4l C4(l+1)  8(20—1) + 420+1) 8(2l+3)) +n5( + 32020 —1) 32(21+3))
+%5LL(1)' (E25)

For hydrogenlike atoms with [ > 1, in the limit of an infinitely heavy nucleus, we get the result

E(7o>_m1a(Za)6 l(o 3 3 2 (.3 8, 3 _ 22710 +1)
hydr T A 15 4l 4(1+1)  (20+1)? n4 4 2 (20+1) 90n5
8(3n2 —1(1+1)) ., N A 3 7 3 7 8
+ 35 In[5(Za)~?] + (L - 5) (Tlg<6—2l2+21—2(l+1)2—2(l+1)+(21+1)2>

+ 7114(3 2%+6l (li 0 + (zzli 1)> + n15<g —8I(l+ 1))) + % (Bns(0) + <E-§1>551(0))} , (E26)

and for the leading recoil correction we get

EY) _%@@ui-a 5&’) HEGY + 5 HEGY + (UL sish LYY, (E27)
&y = n3<163 3z+(2zi1 2l+ ) < +5+(2zi1))+;5<§+37l(j;1)>

(l(l +31725_ 3n ) <3 In [% 2] + Ho_ o+ Hopyz3 — Hpyy +1n 2;@) + % ( 1(\115) — I(\?S)) (E28)
‘Sg’l):nl?)<_18+z32_; T (z+1) (zzfn>+nl4(_6+?_12l+(zi1)_(21211))

3
+
1
+n5(—12+22ll+1>+ )

et g [L( 9 3 39 12 N 1/ 2 2w 18\ 9
IR PR TERY 8(l+1) T80+ T @nz) Tt T8 80+ (2+1)) 8w
A a
+ 505 (E29)
(1 5 1 1 8 1 4 (+1)] A o
e =g = -2+ 1 - —(—1-2 = B E30
PIE\ 2T T Ty T3y z) T Tarn) T Tew | Tl (E30)
(7 1) [1 15 17 15 17 24 16 24 1 45 45
et — g, -+ - - + + e (e
B\ A2 T W A0 0?2 A+ @—1) @12 @+3)) TwA\ W aur

24 A7 6 6 )
+(2[—|—1)>+n5( +(21—1) (2l+3)>}+6 (E31)

(



