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Standard Model 
quarks

leptons Higgs sector

local symmetry:



Facts unexplained by SM

• Observed matter-antimatter asymmetry 
(nonzero barion number) 

!
• Dark matter and Dark energy 
!

• Inflation 



MSM ⇡ 100GeV

Standard Model cd.

• hierarchy of scales: 

vs 



�m2
h = O(�, g2, h2; new physics)⇤2

to keep the Higgs mass low
and to avoid unnatural cancellations



Barnett Newman: Broken Obelisk



Hierarchy problem 

Consider a theory with elementary scalar fields, to start with let’s
consider a single real field

L =
1

2
@µ�@

µ�� m2

2
�2 � �

4!
�4 (1)

Parameters in the Lagrangian run according to

µ
Z

dZ
dµ = �(�) (2)

µ
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µd�
dµ = �(�)

if ⇤ is a cut-o↵, then
Z (µ = ⇤) = Z

0

, m2(µ = ⇤) = m2
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0

are bare
parameters. In a theory with a sti↵ cut-o↵
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16⇡2

µ2 + o(~2) (3)



In the cut-o↵ regularization scheme the running parameters are
quadratically sensitive to the value of the running energy scale µ2.
Let’s solve the above equation (putting ~ = 1)

m2(µ) ⇡ m2(µ
0

)e
�

16⇡2

log(µ/µ
0

) � �

32⇡2

(µ2 � µ2

0

) (4)

Take µ
0

= ⇤cut�o↵

m2(µ) ⇡ m2(⇤)e
�

16⇡2

log(µ/⇤) +
�

32⇡2

(⇤2 � µ2) (5)

This is a classic example of the hierarchy problem: if ⇤ � µ, then

m ⇡ ⇤ unless m2(⇤)e
�

16⇡2

log(µ/⇤) + �
32⇡2

⇤2 ⇡ 0 . This gives a

critical value m2

c(⇤) ⇡ �
32⇡2

⇤2, and to obtain a small value of the
physical mass in the IR limit µ ! 0 one needs to tune the initial
condition at the scale ⇤ to the accuracy
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For the physical Higgs particle this is a very small number, unless
⇤ ⇡ 1TeV



In MS (DR) scheme beta-functions depend only on dimensionless
couplings and the dependence of running parameters on the
renormalizations scale µ is only logarithmic. In this case one can
solve formally the RGE for the scalar mass parameter as follows

m2(µ) = m2(µ
0

)e
R �(µ)
�(µ

0

)

�m(�0)
�(�0) d�0

(7)

At one-loop level in a simple scalar field model one finds

m2(µ) = m2(µ
0

)(1 +
�(µ

0

)

16⇡2

log(µ/µ
0

)) (8)

To obtain a small physical parameter at a low scale one needs to
assume at a high scale µ

0

= ⇤ a boundary condition m2(µ
0

) ⌧ ⇤2.
In general, one would like to set at a high scale f natural boundary
conditions m(f ) ⇠ f , which, ideally, at low energy µ should give
m(µ) ⇠ µ within a few orders of magnitude. However, if there is
no physics setting boundary conditions at the high scale, as in the
Standard Model, one may impose boundary conditions at a low
scale, and consider the high-energy values as a result of the
dynamical flow. In such a case the hierarchy problem does not
arise.



Discovering  supersymmetry

Consider a scalar field �, � = Re((H � v)/
p
2), which has a

coupling L = Hf̄ f �f = �fp
2

�f̄ f + ... (like Higgs particle). The

contribution to the self-energy coming from this coupling reads

⇧��(p = 0) = (�1)2Nf �2
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where the first piece in the last line diverges like ⇤2, and is
independent of mf , m�, while the second goes like log⇤2. The
structure of the second term is interesting, since ⇤ is e↵ectively
replaced by mf , say mt , up to a logarithmic factor of the order
log(⇤/mZ ), which is at most of the order of 30. Such terms appear
in RGEs, including the MS or DR schemes. They look much better
than quadratic terms, as long as the masses of fermions running in
the loop are small. In such a case one could simply neglect
quadratic pieces or use MS/DR and neglect the hierarchy problem.



However, one expects new heavy particles in many BSM theories,
for instance in GUT models. Thus what we really need is a
mechanism, hopefully a symmetry, which would not only cancel
quadratic divergencies at all loops, but would also screen low
energy physics against corrections coming from heavy particles.
This second problem cannot be avoided by simply restricting
oneself to MS/DR regularization schemes.
First of all, let us try to get rid of quadratic divergencies. We are
going to work in the cut-o↵ regularization, but the same conditions
can be obtained in the MS scheme. The point is that in the last
case quadratic divergencies are separated from the logarithmic ones
at each finite order of perturbation theory, but can be seen as
poles in d � (4� 2/L) where d is the dimensionality of space-time
and L is the number of loops. One should notice, that in the limit
L ! 1 quadratic divergencies would reappear as poles in d � 4,
thus cancellation of the poles in d � (4� 2/L) in addition to
cancellation of poles in d � 4 for any L makes sense also in
MS/DR.



In addition to fermionic loops, also scalar loops lead to quadratic
divergencies. Hence, let’s consider a Lagrangian with both
fermions and scalars coupled to �

L�˜f = 1

2

�̃f �2(|f̃L|2 + |f̃R |2)

+v �̃f �(|f̃L|2 + |f̃R |2)
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2
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This gives

⇧
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R
d4k
(2⇡)4
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+ terms ⇠ log(⇤). (11)

Quadratic terms cancel if

Nf = N
˜fL
= N

˜fR
; �̃f = ��2

f (12)

It is important to notice, that the above conditions do not touch
dimensionfull parameters of the model. Now, let us impose these
conditions on the sum of the contributions to the scalar self-energy.
Let’s use MS/DR scheme, which means
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Taking for simplicity equal masses of tilded fields one finds
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where one has denoted mf = �f v/
p
2. Now, taking

mf = m
˜f ; Af = 0 (14)

one finds vanishing total correction. This is a strong hint, that
there is a symmetry behind, which becomes exact in the above
limit.



Let us violate ”softly” this symmetry taking m2

˜f
= m2

f + �2 and
�,Af ⌧ mf . In this case

⇧
˜f+f
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The result is, that the possibly large mass of the fermion, mf ,
appears only under the logarithm. In fact, the large cut-o↵ scale ⇤
has been e↵ectively replaced by a small scale �, which measures
the violation of the symmetry that predicts equal masses of
fermions and scalars. These are the crucial observations, which
make the supersymmetry useful for description of the low-energy
phenomenology. Of course, the other supersymmetry violating
term, Af , also needs to stay small. This means that the central
question becomes the question about the origin of the
hierarchically small supersymmetry violation, and we shall come
back to this point.



Let’s construct a Lagrangian, where a symmetry imposing required
relations on masses and couplings can be realized.

S =

Z
d4x(Ls + Lf ) =

Z
d4x(@µ�⇤@µ�+ i  ̄�̄µ ) (16)

Consider the following transformation

�! �+ ��,  !  + � 

�� = ⇠↵ ↵ = ⇠↵✏↵� � , � ↵ = �i�⌫↵↵̇⇠̄
↵̇@⌫� (17)

The variation of the Lagrangia reads

�Ls + �Lf = ⇠̄@µ ̄@µ�+ @µ�⇤⇠@µ � (⇠�⌫ �̄µ@µ )@⌫�⇤

+( ̄�̄µ�⌫ ⇠̄)@µ@⌫� = �@µ( ̄⇠̄@µ�) + @µ( ̄�̄⌫�µ⇠̄@⌫�) (18)

This is a total derivative, hence

�S = 0 (19)

Symmetry of the Lagrangian



In the above action the symmetry between bosons and fermions
holds only on-shell. Since the Weyl equations has a form of a
matrix operator projecting out half of the degrees of freedom,
on-shell one has 2 real scalar and 2 real fermionic degrees of
freedom. To make the symmetry between fermions and bosons
explicit one can introduce an auxiliary complex scalar F

S =
R
d4x(Ls + Lf + Laux) =

R
d4x(@µ�⇤@µ�+ i  ̄�̄µ + F ⇤F )

�F = �i ⇠̄�̄µ@µ 

�� = ⇠↵ ↵ � ↵ = �i�⌫↵↵̇⇠̄
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In addition, one can show that a commutator of two
transformations on any of the bosonic or fermionic fields is a
translation: (�⇠

1

�⇠
2

� �⇠
2
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1
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2

� ⇠
2
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1
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What one needs, is a version of the supersymmetric Lagrangian
which includes interactions. Let’s consider renormalisable
interactions described by terms with dim  4.

Lint = �1

2
W jk i j +W jFj + h.c . (21)

where W jk ⇠ �, �2 and symmetric in flavour indices. A term
U(�,�⇤) (no F s) is forbidden, since its variation does contain
neither derivatives nor F s, while all relevant variations of other
terms do. Cancellation of 4-spinor variations implies

W jk

@�n
totally symmetric,

W jk

@�⇤n
= 0 (22)

Thus one writes

W jk =
@2W

@�j@�k
(23)

for a function W = W (�) known as a holomorphic superpotential.



Cancellation of the 1-derivative variations up to a total divergence
implies in turn

W j =
@W

@�j
(24)

This completes the construction and implies, that renormalizable
interactions of chiral multiplets � = (�, ,F ) depend on a single
holomorphic function W only! Since SUSY relies only on the
holomorphicity of W , the action will be invariant for any W.
Now, one can eliminate the auxiliary field F via its equations of
motion

LF = FiF
⇤i +W iFi +W ⇤

j F
⇤j

@LF
@F⇤i = Fi +W ⇤

i = 0

Fi = �W ⇤
i (25)

This gives
V = W jW ⇤

j � 0 (26)



Let’s take

W =
1

2
M jk�j�k +

1

3!
y jkn�j�k�n (27)

LWZ = Lkin � V (�,�⇤)
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2

y jkn�j k n + h.c . (28)

The EOMS are

@µ@µ�j = �M⇤
jnM

nk�k + ...

i �̄µ@µ j = M⇤
jn ̄

n (29)

This means
M2

sc = M†
f Mf (30)

that is, the same diagonalisation gives eigenstates of the scalar and
fermionic mass matrices (alignment holds for exact SUSY).



To have spontaneously broken supersymmetry one needs to find an
operator A, composite or elementary, such that h�susyAi 6= 0. Let’s
have a look at elementary fields in the WZ model. The �� = ⇠ ,
but an expetation value for the fermionic field would mean
spontaneous breakdown of the Lorentz invariance, which is bad for
phenomenology. The �F contains derivatives, the expectation
value of which would also break the Lorentz invariance. However

� j = ⇠Fj + ... (31)

and Fj can take an expectation value without violating Lorentz
symmetry. This means, that phenomenologically acceptable
supersymmetry breaking is signalled by nonzero expectation values
of certain F-terms. How to initiate SUSY breakdown? Let’s take
W = E�. This gives F ⇤ = �E 6= 0 and broken supersymmetry.



For a general small continuous transformation one can write

�⇠X = ⇠ iTX (32)

where ⇠ is a small transformation ”angle” and T is a generator of
a transformation. In case of supersymmetry T ! Q↵, which is a
(1/2, 0) Weyl spinor, since it turns a spin 0 scalar into a left Weyl
fermion. Abstract N = 1 algebra of generators can be read from
transformations of the fields

{Q↵,Q�} = {Q̄↵̇, Q̄ ˙�} = 0,

[Pµ,Q↵] = [Pµ, Q̄↵] = 0, (33)

{Q↵, Q̄↵̇} = 2�µ
↵↵̇Pµ.

In addition

[Ji ,Q↵] =
⇣
�i

2

⌘�

↵
Q�

[Q↵,T a] = 0 (34)

Supersymmetry algebra



This means that we are going to assume that supersymmetry
generator commute with generators of all internal gauge
symmetries in the models. One consequence of the above is

H = P
0

= 1

4

tr{Q↵, Q̄↵̇}
hany|H|anyi =

P
i

�
||Qi |anyi||2 + ||Q̄i |anyi||2

�
� 0 (35)

This result says, that if supersymmetry stays unbroken, the energy
of the ground state must be zero. Another consequence is

tr[(�1)Nf {Q↵, Q̄↵̇}] = 0 = 2�µ
↵↵̇tr[(�1)Nf Pµ]

tr(�1)Nf = 0 (36)

which means that in a given finite dimensional representation one
finds equal number bosons and fermions.



A useful device which allows to handle general supersymmetric
Lagrangians is the superspace - a 4d Minkowski space-time
supplemented by 4 anticommuting coordinates

✓↵, ✓̄↵̇; {✓↵, ✓̄↵̇} = 0, ↵ = 1, 2 (37)

One can define functions of superspace coordinates, which are
called superfields. Superfields have finite expansion in
anticommuting coordinates, and coe�cients of such expnsion are
standard fields, on which act supersymmetry transformations. One
can define Grassman integrals on superspace,R
d2✓✓2 =

R
d2✓✓↵✓↵ = 1 =

R
d2✓̄✓̄2, which act on superfields as

projection operators - they project out coe�cient of a given power
of anticommuting parameters.

Superspace



Let us define a chiral superfield

�(y) = �(y) +
p
2✓ (y) + ✓2F (y)

= �(x)� i✓�µ✓̄@µ�(x)�
1

4
✓2✓̄2@2�(x)

+
p
2✓ (x) +

ip
2
✓2@µ (x)�

µ✓̄ + ✓2F (x) (38)

where yµ = xµ � i✓�µ✓̄, which includes a scalar field �(x), spinor
field  (x)↵ and an auxiliary scalar F (x). The beauty of the
superspace formalism lies in the fact, that the Wess-Zumino
Lagrangian studied earlier can be written in a imple form

L
0

=

Z
d2✓d2✓̄�i �̄i +

✓Z
d2✓W (�) + h.c

◆
(39)

where W = 1

2

mij�i�j +
1

3!

gijk�i�j�k is the superpotential written
in terms of chiral superfields.



Vector superfield in the Wess-Zumino gauge takes the form

V a = ✓�̄µ✓̄vaµ(x) + i✓2✓̄�̄a(x)� i ✓̄2✓�a(x) +
1

2
✓2✓̄2Da(x), (40)

where Aa
µ(x) is the real vector field, �a

↵(x) is a Weyl spinor
(gaugino) and the auxiliary real fiel is denoted by Da(x).
Consider non-abelian gauge transformations

� ! e i⇤�

V ! V + i(⇤� ⇤†) + . . . (41)

V = T a
ijVa

⇤ = T a
ij⇤a

where ⇤ is a chiral superfield (parameter of the gauge
transformation) and T a s are hermitean generators of the gauge
transformation. Invariant Lagrangian for gauge fields takes the
form

LV = �1

4
F a
µ⌫F

aµ⌫ + i �̄a�̄µDµ�
a +

1

2
DaDa, (42)



where
F a
µ⌫ = @µv

a
⌫ � @⌫v

a
µ � gf abcvbµv

c
⌫ , (43)

and covariant derivatives are

Dµ�
a = @µ�

a � gf abcAb
µ�

c

Dµ�i = @µ�i + igAa
µT

a�i (44)

Dµ i = @µ i + igAa
µT

a i .

To obtain auge invariant version of the Wess-Zumino model one
replaces in the WZ derivatives by covariant derivatives and adds
interaction terms supersymmetrizing this replacement

L = LWZ+LV�
p
2g

⇥
(�̄T a )�a+�̄a( ̄T a�)

⇤
+g(�̄T a�)Da. (45)

With the help of EOMs for auxiliary fields

Da = �g�⇤T a�,

Fi = �W̄i , (46)

F̄i = �Wi ,



where

Wi =
@W (�)

@�i
, (47)

one can finally write down the scalar potential in terms of
propagating fields

V (�, �̄) = F̄iFi +
1

2
DaDa = W̄iWi +

1

2
g2(�̄T a�)2. (48)

Note that

��a
↵ = ...+

1p
2
⇠↵D

a (49)

Hence, if there exists a Da such that

hDai 6= 0 (50)

then supersymmetry becomes spontaneously broken. Actually, this
condition is meaningfull only for Abelian factors. For nonabelian
gauge group, one can show, that if all Fi vanish, then also all Das
can be made vanish by a suitable field transformation



With exact supersymmetry there exists a conserved supercurrent,
which takes the form

Jµ↵ = (�⌫ �̄µ i )↵D⌫�⇤i � i(�µ ̄i )↵Wi

� 1

2

p
2

(�⌫ �̄⇢�µ�̄a)↵F a
⌫⇢ � ip

2

g�⇤T a�(�µ�̄a)↵ (51)

The conservation of this current implies

@µJ
µ
↵ = 0 = i�µ@µ

✓
F ⇤
i  ̄

i +
Da

p
2
�̄a

◆
+ ... (52)

which means that there is in the spectrum a massles Weyl fermion,
the Goldstino

⇧̄ =
F ⇤
i  ̄

i + Da
p
2

�̄a
p

|F i |2 + Da2/2
(53)

where the normalisation factor F⇡ =
p

|F i |2 + Da2/2 is called the
Goldstino decay constant.

Goldstino



The supercurrent may be written as Jµ↵ = iF⇡(�µ⇧̄)↵ + jµ↵ , and an
e↵ective Lagrangian can be written down, which reproduces the
vanishing of the divergence of the supercurrent as the EOM for
Goldstino:

L
⇧

= i⇧�µ@µ⇧̄+
1

F⇡
⇧@µj

µ
↵ + h.c . (54)

The current jµ↵ contains chiral and gauge/gaugino fields. Using
EOMs for these fields one finds explict form of the interactions of
the Goldstino. In particular, interactions with chiral multiplets take
the form

L
⇧�

=
(m2

 i
�m2

�i
)

F⇡
⇧̄ i�

⇤i + h.c . (55)

This is an interesting relation, which tells one how to search for
Goldstinos and superpartners, hence how to test supersymmetry.



Actually, massless Goldstinos are at odds with phenomenology, and
one expects that a superHiggs e↵ect takes place. After making
supersymmetry a local symmetry, supergravity, there appears in the
theory the superpartner of graviton, gravitino, which plays the role
of the gauge field. Massless gravitino combines with Goldstino into
a massive gravitino. Then the above Lagrangian describes the
direct non-gravitational coupling of the helicity ±1

2

components of
the gravitino to chiral matter.



General supersymmetric action can be written down with the help
of the superspace formalism as follows

S =

Z
d4x

Z
d4✓

h
K (�†, eV�) + 2⇠VU(1)

i
+

+

Z
d4x

Z
d2✓

2

4YW (�) +
⌧

16⇡i
W ↵(V )W↵(V ) +

X

n�2

Xn (W
↵W↵)

n

3

5+h.c .

(56)

In this action gauge coupling has bee promoted to a chiral
superfield and gauginos are not canonically normalized. The
holomorphic coupling constant includes the theta-angle ✓YM and is
defined as

⌧ =
✓YM
2⇡

+
4⇡i

g2

(57)

This definition is not equivalent to the standard defiition of the
”physical” gauge coupling measuring interactions of canonically
normalized fields, gc .

Nonrenormalization theorem



The parameter ⇠ denotes here the Fayet-Iliopoulos term, which is
gauge invarint only for abelian U(1)s. The real, gauge invariant,
function K is called the Kähler potential and describes general
kinetic terms for chiral supefields. The Y denotes a spurion, which
scales uniformly all couplings in the superpotential, and W a↵ is a
chirl superfield which contains field strength of a gauge boson Aa.
The tree level action is invariant under a number of symmetries,
which must be respected in perturbative calculations

I supersymmetry itself, gauge symmetries

I continuous R-symmetry, which is broken via the fixing of Y

I Peccei-Quin symmetry ⌧ ! ⌧ + r

In addition, the structure of the action is fixed by taking the limits
⌧ ! 1, Y ! 0.



The nonrenormalization theorem says

I The structure and coe�cients of the superpotential are not
changed by radiative corrections

I holomorphic coupling is renormalized at 1-loop order only

I coe�cients Xn are not renoralized

I Fayet-Illiopoulos terms gets renormalized at 1-loop order only,
if anomaly cancellation for the U(1) factor fails

I Kähler potential gets renormalized at all orders

In particular, this means that supersymmetric masses are
renoralized only due to wave function renormalizations, that is only
logarithmically.



Minimal Supersymmetric 	


Standard Model 	



(MSSM)



Guge group of the SM is GSM = SU(3)⇥ SU(2)⇥ U(1)Y . The
spectrum contains 3 chiral families of quarks and leptons, gauge
bosons - gluons, W±,B , and a single scalar Higgs doublet

V (H, H̄) = µ2H̄H +
�

2
(H̄H)2, (58)

which implies spontaneous breaking of the electroweak symmetry
down to U(1)em of electromagnetism provided that µ2 < 0 and
� > 0. One needs to add a superpartner to each known particle,
including the Higgs scalars. Higgs particles and chiral fermions fit
into chiral superfields, while vector bosons belong to vector
superfields together with their superpartners - gauginos.



One needs to add a second Higgs doublet even in the minimal
model, since

I adding new charged fermions - higgsinos - spoils anomaly
cancellation in SM, which is restored by adding still new
fermions from the second doublet,

I superpotential is holomorphic in chiral fields, so one cannot
simply conjugate the original doublet, as this would produce
an ati-chiral multiplet.

The superpotential in MSSM takes the form

WMSSM = URhuQHu + DRhdQHd + ERheLHd + µHuHd , (59)

where UR ,DR ,Q,ER ,L,Hu,Hd are all chiral superfields (see the
Table), Yukawa couplings h are actually 3⇥ 3 matrices in flavour
space.





There are couplings which are allowed by supersymmetry and by
gauge symmetries, which should better stay supressed, or absent

HuL, LQD,DDU, LLE . (60)

These terms violate barion number or lepton number and may lead
to phenomenological disaster. To suppress such terms one invokes
R-parity, a discrete symmetry with charges assigned according to
the rule

PM = (�1)F (�1)3(B�L), (61)

where B and L are barion and lepton numbers.



None of the superpartners has been observed so far. This means
that supersymmetry is broken, and it should be broken
spontaneously. However, one can easily convince oneself, that this
spontaneous breaking cannot take place in the SM sector. The
argument relies on the supersymmetric sum rule

X

spin zero

mass

2 � 2
X

spin 1/2

mass

2 + 3
X

spin 1

mass

2 = �2
X

a

D

a
Tr(Ta)

(62)
In the MSSM the RHS is zero, and the vanishing of the LHS must
hold in each sector with given unbroken quantum numers (colour
and electric charge) since mass matrices must be block diagonal in
these labels. For instance, in the colour triplet sector with
Qe = �1/3

m2

d +m2

s +m2

b = (5GeV)2 (63)

If there are no other fermions with this colour and charge this
implies that there exist squarks with a mass smaller than 7 GeV,
which is ruled out experimentally.



One needs to create a separate sector designed to break
supersymmetry. Then, supersymmetry breakdown should be
transmitted, via the messenger sector, to the SM particles. The
result seen from within the SM are terms that violate
supersymmetry explicitly, but without introducing quadratic
divergencies. We had already examples of such terms: explicit,
nonholomorphic mass terms for scalars and the A-terms. Full set of
such terms in the context of MSSM looks as follows:

Lsoft = � 1

2

⇣
M

3

g̃ g̃ +M
2

W̃ W̃ +M
1

B̃B̃ + h.c.

⌘

�
⇣
˜̄UauQ̃Hu +

˜̄DadQ̃Hd + ˜̄EaeL̃Hd + h.c.

⌘
(64)

� Q̃†m2
QQ̃ � ˜̄Um2

U
˜̄U† � ˜̄Dm2

D
˜̄D† � L̃†m2

LL̃� ˜̄Em2
E
˜̄E †

� m2

Hu
H†
uHu �m2

Hd
H†
dHd + (bHuHd + h.c.)

where m2
Q,m

2
U,m

2
D, m

2
L,m

2
E are 3⇥ 3 matrices in family space,

related to sfermion mass matrices, au,ad,ae, are 3⇥ 3 matrices in
family space, w przestrzeni rodzin related to the matrices h in the
superpotential.



Terms containing M
3

,M
2

,M
1

are gluino, wino and bino mass
terms. The terms m2

Hu
, m2

Hd
and b are susy breaking terms in the

Higgs sector.
The scalar mass matrix looks as follows

L
mass f = �

�
f̃ ⇤L f̃ ⇤R

�
m2

f

✓
f̃L
f̃R

◆
, (65)

which is non-diagonal and. Because of soft terms
m2

Q
3

,m2

U
3

,m2

D
3

,m2

L
3

,m2

E
3

, At ,Ab,A⌧ this matrix is also non-aligned
with the fermion mass matrix - they cannot be diagonalized
simultaneously.



Scalar potential in the Higgs sector takes the form

V = (µ2 +m2

Hu
)(|H0

u |2 + |H+

u |2) + (µ2 +m2

Hd
)(|H0

d |2 + |H�
d |2)

+ [b(H+

u H�
d � H0

uH
0

d) + h.c]

+
1

2
g2|H+

u H0

d
⇤
+ H0

uH
�
d
⇤|2

+
1

8
(g2 + g 02)

�
|H0

u |2 + |H+

u |2 � |H0

d |2 � |H�
d |2

�
2

. (66)

To find the minimum one notes first, that the SU(2) invariance of
the Lagrangian allows one to make H+

u = 0. Then the condition
@V /@H�

d = 0 gives H�
d = 0. Hence one can assume

H+

u = 0 , H�
d = 0 , H0

d = Hd , H0

u = Hu which gives a simpler
expression for neutral components of the doublets

V = (µ2 +m2

Hu
)|Hu|2 + (µ2 +m2

Hd
)|Hd |2 + (bH0

uH
0

d + h.c)

+
1

8
(g2 + g 02)

�
|Hu|2 � |Hd |2

�
2

. (67)

MSSM Higgs sector



The mass of the Z can be expressed via the expectation values of
the Higgs fields

v2u + v2d = v2 =
4m2

Z

g2 + g 02 , (68)

and the minimization condition @V /@Hd = @V /@Hu = 0 can be
written as

µ2 =
1

2

⇥
tan 2�

�
m2

Hu
tan� �m2

Hd
cot�

�
�m2

Z

⇤

b = Bµ =
1

2
sin 2�

�
m2

Hu
+m2

Hd
+ 2µ2

�
, (69)

which allows to express µ and B in terms of soft masses, � angle
and the mass of Z . The � angle is defined as follows

tan� =
vu
vd

=
hH0

ui
hH0

di
. (70)



Two Higgs doublets contain 4 complex fields.
Out of these 3 (G 0 , G±) are swallowed by massive bosons Z
and W±. The remaining ones are a pseudoscalar with the mass

m2

A = 2µ2 +m2

Hu
+m2

Hd
, (71)

two charged bosons with masses

m2

H± = m2

A +m2

W , (72)

and two neutral scalars h i H, whose masses can be found upon
diagonalization of the matrix

Mh,H =

✓
m2

A sin2 � +m2

Z cos2 � �(m2

Z +m2

A) sin� cos�
�(m2

Z +m2

A) sin� cos� m2

A cos2 � +m2

Z sin2 �

◆
,

(73)



with eigenstates of the form

✓
H
h

◆
=

✓
cos↵ sin↵
� sin↵ cos↵

◆✓
Hd

Hu

◆
. (74)

This gives the mass of the light Higgs boson (the little higgs)

m2

h =
2m2

Zm
2

A cos2 2�

m2

A +m2

Z +
q�

m2

A +m2

Z

�
2 � 4m2

Zm
2

A cos2 2�
. (75)

This expression gives the upper limit on the tree level mass of the
light Higgs

m2

h  m2

Z cos2 2�  m2

Z . (76)

Fortunately, this limit can be significantly increased by radiative
corrections.



A model of supersymmetry breaking gives us an energy scale Mu,
below which supersymmetry is broken and the soft terms at this
scale. Determination of the parameters at lower scales requires
solving the renormalization group equations for the MSSM. In
practice, the low scale, MEWSB , is taken to be the geometric mean
of the masses of the 3rd generation squarks (called stops)

MEWSB =
q
m

¯t
1

(MEWSB)m¯t
2

(MEWSB). (77)

At this scale one minimizes 1-loop corrections to the e↵ective
potential. This way one supposedly achieves fast convergence of
the loop-series of radiative corrections, which should make 1- and
2-loop corrections dominant. As we already know the form of
RGEs depends on the regularization scheme. We shall use the
dimensional reduction (DR) scheme. This procedure respects
supersymmetry during the calculations.

RGE running



In MSSM RGEs for gauge couplings assume the form

d

dt
gi =

1

16⇡2

big
3

i , bi = (
33

5
, 1,�3), (78)

where t = ln(Q/Q
0

) , Q is the renormalizations scale and Q
0

is a
reference scale. One often uses ↵i = g2

i /4⇡
2, for which the

equations read

d

dt
↵�1 =

bi
2⇡

. (79)

It is interesting to note, that in MSSM one finds, to an accuracy
much higher than in the SM, that the couplings run towards a
common value at certain energy scale





RGEs for gaugino masses are

d

dt
Mi =

2

16⇡2

Mibig
2

i , bi = (
33

5
, 1,�3). (80)

In these equations derivatives are proportional to the masses
themselves, which means, that in order to fulfill increasing
experimental lower limits at low scales one needs large soft terms
at the high scale.
Masses generated for quarks and leptons as a result of the Higgs
mechanism depend on matrices h. In the leading approximation
one can neglect small Yukawa couplings of the 1st and 2nd
generations and approximate Yukawa matrices by

ht =

0

@
0 0 0
0 0 0
0 0 ht

1

A , hb =

0

@
0 0 0
0 0 0
0 0 hb

1

A , h⌧

0

@
0 0 0
0 0 0
0 0 h⌧

1

A .

(81)



RGEs for these couplings read:

d

dt
ht =

ht
16⇡2

✓
6|ht |2 + |hb|2 �

16

3
g2

3

� 3g2

2

� 13

15
g2

1

◆
,

d

dt
hb =

hb
16⇡2

✓
6|hb|2 + |ht |2 + |h⌧ |2 �

16

3
g2

3

� 3g2

2

� 7

15
g2

1

◆
,

d

dt
h⌧ =

hb
16⇡2

✓
4|h⌧ |2 + 3|hb|2 � 3g2

2

� 9

5
g2

1

◆
. (82)

The assumption about proportionality of soft terms a to Yukawa
couplings allows us to write down RGEs for At , Ab i A⌧

8⇡2

d

dt
At = 6|ht |2At + |hb|2Ab +

16

3
g2

3

M
3

+ 3g2

2

M
2

+
13

15
g2

1

M
1

,

8⇡2

d

dt
Ab = 6|hb|2Ab + |ht |2At + |h⌧ |2A⌧ +

16

3
g2

3

M
3

+ 3g2

2

M
2

+
7

15
g2

1

M
1

,

8⇡2

d

dt
A⌧ = 4|h⌧ |2A⌧ + 3|hb|2Ab + 3g2

2

M
2

+
9

5
g2

1

M
1

. (83)



Because of positive contributions from gaugino masses the
parameters A tend to decrease towards low energy scales
In the RGEs for scalar masses there are contributions proportional
to quares of the mass terms and to the respecctive hypercharge

X = m2

Hu
�m2

Hd
+ Tr[m2

Q +m2
D +m2

E � 2m2
U �m2

L], (84)

and contributions related to 3rd family Yukawa couplings

Xt = 2|ht |2(m2

Hu
+m2

Q
3

+m2

U
3

+ A2

t ),

Xb = 2|hb|2(m2

Hd
+m2

Q
3

+m2

D
3

+ A2

b), (85)

X⌧ = 2|ht |2(m2

Hd
+m2

L
3

+m2

E
3

+ A2

⌧ ).

(86)



RGEs for squark and slepton masses of the first two generations
take the form

16⇡2

d

dt
m2

f = �8
3X

i=1

Ci (f )g
2

i M
2

i +
6

5
Yf g

2

1

X , (87)

here Yf is the hypercharge of the respective field from the table
given earlier, and coe�cients C are

C
1

(f ) =
3

5
Y 2

f ,

C
2

(f ) =

⇢
3

4

dla f = Q, L,Hu,Hd

0 dla f = U,D,E
(88)

C
3

(f ) =

⇢
4

3

dla f = Q,U,D
0 dla f = E , L,Hu,Hd ,



For the 3rd generation

16⇡2

d

dt
m2

Q
3

= �32

3
g2

3

M2

3

� 3g2

2

M2

2

� 2

15
g2

1

M2

1

+ Xt + Xb +
1

5
g2

1

X ,

16⇡2

d

dt
m2

U
3

= �32

3
g2

3

M2

3

� 32

15
g2

1

M2

1

+ 2Xt �
4

5
g2

1

X ,

16⇡2

d

dt
m2

D
3

= �32

3
g2

3

M2

3

� 8

15
g2

1

M2

1

+ 2Xb +
2

5
g2

1

X , (89)

16⇡2

d

dt
m2

L
3

= �6g2

2

M2

2

� 6

5
g2

1

M2

1

+ X⌧ �
3

5
g2

1

X ,

16⇡2

d

dt
m2

E
3

= �24

5
g2

1

M2

1

+ 2X⌧ +
6

5
g2

1

X .

Negative contributions from gaugino masses allow to obtain large
masses at the electroweak scale even with small initial values at
the high scale.



Equatons which describe running in the Higgs sector are

16⇡2

d

dt
m2

Hu
= �6g2

2

M2

2

� 6

5
g2

1

M2

1

+ 3Xt +
3

5
g2

1

X ,

16⇡2

d

dt
m2

Hd
= �6g2

2

M2

2

� 6

5
g2

1

M2

1

+ 3Xb + X⌧ �
3

5
g2

1

X ,

16⇡2

d

dt
µ = µ

✓
3|ht |2 + 3|hb|2 + |h⌧ |2 � 3g2

2

� 3

5
g2

1

◆
, (90)

16⇡2

d

dt
B = 6|ht |2At + 6|hb|2Ab + 2|h⌧ |2A⌧ + 6g2

2

M
2

+
6

5
g2

1

M
1

.

In the above equations the most important contribution to
derivatives of scalar masses comes from Xt , since Xb i X⌧ are
proportional to squares of the respective Yukawa couplings
ht , hb < ht . To the contrary, X doesn’t play a role since soft
masses of squarks and sleptons typically are of the same order and
their contributions tend to cancel each other in X . It is clear, that
the mass which which su↵ers the fastes decrease with lowering the
energy scale is m2

Hu
.

Electroweak breaking



This is important, since due to the change of the sign of m2

Hu
from

positive to negative the electroweak symmetry breaks down at low
energies, giving masses to the gauge bosons. In the figure one can
watch how the renormalized parameter (m2

Hu
+ µ2)

1

2 from the
Higgs potential evolves with energy scale. The point is that
popular theories of soft masses produce positive mass squares at
high energies (but there may be negative contributions from
D-terms, from anomaly mediation or from Seiberg duality).
Such a phenomenon, known as radiative symmetry breaking,
doesn’t occur in the SM - the mass parameter from the SM Higgs
potential changes by about 4 percent over 16 decades in energy.
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Neutral part of the scalar potential in MSSM:

V = (µ2 +m2Hu)|Hu|
2 + (µ2 +m2Hd )|Hd |

2 + (bHuHd + h.c)

+
1
8
(g2 + g Õ2)

1
|Hu|2 ≠ |Hd |2

22
.

which after spontaneous symmetry breaking

< Hu >= vu , < Hd >= vd

v2 = v2u + v
2
d , tg — =

vu
vd
, m2Z =

v2

2
(g2 + g Õ2),

gives:

at tree level mh < mZ
m2Z = tg 2—

1
m2Hu tg — ≠m

2
Hd
ctg —

2
≠ 2µ2 ¥ ≠2(m2Hu + µ

2)
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Pushing light Higgs mass to the observed value of 126GeV
requires large radiative corrections, the biggest one comes
from top-stop loop

”m2h =
3g2m4t
8fi2m2W

C

log

A
M2S
m2t

B

+
X 2t
M2S

A

1≠ X 2t
12M2S

BD

,

where M2S = mt̄1mt̄2 and Xt = mt(At ≠ µ ctg —).
Parameters giving us Z mass also receive top-stop loop
corrections

”m2Hu |stop = ≠
3Y 2t
8fi2
1
m2Q3 +m

2
U3 + |At |

2
2
log
3
Mu
TeV

4
,

where m2Q3 m
2
U3 and At are soft terms that predict the stop

mass, and Mu is a scale at which soft masses are generated.
So requiring correct Higgs mass gives large corrections that
have to cancel out to give the correct mZ .
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We use the usual definition of fine-tuning with respect to
parameter a

�a =

-----
ˆ lnm2Z
ˆ ln a

----- .

which can be rewritten as

”m2Z
m2Z

= �a
”a
a
.

And fine-tuning coming from a whole set of parameters ai

� = max
ai

�ai .



�m2

m2
=

3

64⇡2

�
3g2 + g02 + 8�� 8h2

t

� ⇤2
cut�off

m2

FT in SM

Casas,  Espinosa, 	


Hidalgo



SUSY breaking mediation

Supergravity
No control over mixing between families æ to lagre FCNC

Gauge mediation
SUSY is spontaneously brokenæ singlet ÈX Í = X + ◊2F
breaking is transmitted through messengers W = ⁄�̄X�
messengers �̄,� interact with MSSM fields only via gauge
interactions

Hidden sector

X

Visible sector

MSSM
�̄,�



Gauge mediated soft terms

�

�

⁄ ⁄ =∆ Mi =
–i
4fi
F
X

�

f̃ f̃

+

�

f̃ f̃

+ . . .

=∆ m2f = 2
ÿ

i

Ci (f )
1 –i
4fi

2
2

----
F
X

----
2



GGM soft terms

Meade, Shih and Seiberg 0801.3278
Gauge mediated soft terms can be expressed by just six parameters

Three gaugino masses

M
1

=
–
1

4fi
mY , M2 =

–
2

4fi
mw , M3 =

–
3

4fi
mc ,

Three parameters determining scalar masses ⇤2c , ⇤
2

w , ⇤
2

Y
which give

m2f = 2

C

C
3

(f )
3
–
3

4fi

4
2

⇤2c + C2(f )
3
–
2

4fi

4
2

⇤2w + C
1

(f )
3
–
1

4fi

4
2

⇤2Y

D

,

Only negligible A-terms are generated.



Implementations

Two specific models Carpenter et al. 0805.2944

GGM1
WGGM1 = Xi (y i Q̄Q + r i ŪU + s i ĒE ),

with three independent parameters ⇤Q ,⇤U ,⇤E

GGM2

W
2

= Xi (y i Q̄Q + r i ŪU + s i ĒE + ⁄iq q̃q + ⁄
i
l l̃ l),

with five independent parameters ⇤Q ,⇤U ,⇤E ,⇤q,⇤l



FT in mSUGRA
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FT in GGM
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fine-tuning from only gauge mediated soft terms
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Conclusions

1 GGM predicts smaller fine-tuning than mSUGRA
2 for mh = 126GeV fine-tuning always larger than 100 unless
one includes only gauge mediated soft terms

3 including gµ ≠ 2 raises fine-tuning about four times, but its
still possible to obtain gµ ≠ 2 within 1‡ bound

4 decrease of the Higgs mass down to 123 GeV reduces the
fine-tuning by a factor of 2.



https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults 



⇤NP

⇤NP > 1 � 3TeV

t̃L, t̃R, b̃L, H̃ light ⇠ 600� 700 GeV

!74

CURRENT LHC BOUNDS	


ON NEW PHYSICS PROVIDING 

Extra dimensions:  ADD, RS, 	


TC, Z’, W’

Supersymmetry: 

⇤NP ⇠ 1 TeV
mass splitting 	



in the smultiplets

But: 



Summary 

• Superpartners heavy, and one may need to invoke next-next-to-
minimal models	



• But: supersymmetry is an unique theory, which offers consistent 
perturbative extension of the Standard Model                                     
to very-very high energy scales                                             
(assuming such an extension is needed - that is, if there exists any BSM 
physics)	



• Fine-tuning in minimal susy models is large, but smaller than in the  
cut-off  SM	



• It is important to continue the search for supersymmetry, to see 
whether hierarchy and naturalness are really good guides in searches 
for new/deeper physics	



• New avenues - flavour?	
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