Talk at CGPG Feb 2001

Isolated Horizons and Their Secrets.

Jerzy Lewandowski

 Geometry and invariants of non-expanding horizons

-invariant description of data evolving tangentially,

-invariant frame,

-crossover spheres of WIHs and the crossover sphere

- Isolated Horizons
 - -When a non-expanding horizon is isolated?
 -The uniqueness issue -special IHs of 2dimensional symmetry group
 -the Kerr IH: invariant characterizations
- Neighborhood of IH

-invariants,

-Killing vector fields: the existence and nonexistence conditions

Open Problems

-Sufficient conditions for the existence of Killing vector fields

-the degenerate cases,

-absorbing horizons.

Geometry and invariants of non-expandig horizons

Definitions and assumptions.

Definition: Non-expanding horizon \triangle is a null 3-submanifold of M such that:

i) \triangle is diffeomorphic to the product

$$\widehat{\Delta} \times \mathbf{R},$$
 (1)

where $\hat{\Delta}$ is a 2-sphere, and the fibers of the projection

 $\widehat{\triangle} \times \mathbf{R} \to \widehat{\triangle} \tag{2}$

correspond to the null geodesics in \triangle ;

ii) the family of null geodesics tangent to \triangle is non-expanding.

The energy assumptions and consequences. Assumptions:

- $T_{\mu\nu}\ell^{\mu}\ell^{\nu} \ge 0, \quad T_{\mu\nu}\ell^{\nu} \quad \text{causal}$ (3)
- for $\ell, X \in T(\Delta)$, s.t. $\ell^{\mu} \ell_{\mu} = 0.$ (4)

(5)

Consequences:

$$R_{a\nu}\ell^{\nu}X^{a} = 0, \quad X \in T(\triangle).$$
(6)

And ℓ is a double principal direction of the Weyl tensor.

Geometry of \triangle . The induced metric q satisfies

$$\mathcal{L}_{\ell}q = 0 \tag{7}$$

It implies, that ∇ preserves the tangent bundle $T(\triangle)$, and defines a covariant derivative therein,

$$\mathcal{D}_X Y := \nabla_X Y. \tag{8}$$

Definition: The geometry of \triangle is the pair (q, \mathcal{D}) .

 \mathcal{D} is not determined by q, $[\mathcal{L}_{\ell}, \mathcal{D}] \neq 0$ in general.

Rotation of \triangle , the geometry ingreedient. There is a 1-form ω on \triangle s. t.

$$\mathcal{D}\ell = \omega \otimes \ell \tag{9}$$

Definition: ω is called the rotation potential 1-form of (Δ, ℓ) , and the quantity

$$\kappa^{(\ell)} = \ell^a \omega_a \tag{10}$$

the surface gravity of ℓ .

$$\ell' = f\ell \quad \Rightarrow \quad \omega' = \omega + d\ln f$$
 (11)

The invariant 2-form is,

$$d\omega = 2i \mathrm{Im}\Psi_2 \mathrm{vol}^{(2)}, \quad D\mathrm{Im}\Psi_2 = 0.$$
 (12)

can be considered as the angular velocity of \triangle . (blackboard!) The zeroth law:

$$d\kappa^{(\ell)} \hat{=} \mathcal{L}_{\ell} \omega \tag{13}$$

This is a geometric version of the zeroth law of BH termodynamics.

The remaining ingreedients of \mathcal{D} . Deformations of the 2-sphere sections S_v of \triangle as expanded in the

orthogonal-transversal null direction define the remaining components of \mathcal{D} , so called shear and expansion. Those depend on the pullback of Ricci tensor on S_v , and on initial conditions at any fixed crossection of Δ .

<u>Invariant choice of ℓ </u>. For every geometry (q, \mathcal{D}) , there is ℓ , s.t.

$$d\kappa^{(\ell)} = \mathcal{L}_{\ell}\omega = 0, \qquad (14)$$

but it is not unique. We call (\triangle, ℓ) a Weakly IH. BLACKBOARD Proposition:For a given value of the surface gravity

$$\kappa^{(\ell)} = \kappa_0 \neq 0, \tag{15}$$

every generic non-expanding horizon (\triangle, q, D) such that

$$DR_{m\bar{m}} = 0 \tag{16}$$

admites a unique null, non-trivial WIH structure (\triangle, ℓ) s. t. for every section S_v of \triangle it is true

that the transport of S_v by the flow of ℓ does not change the corresponding transversal expansion μ . The genericity condition is that 0 is not an eigen value of the following operator $M : L^2(S) \to L^0(S)$,

 $M := \hat{\Delta} + 2\hat{\omega}^{A}\partial_{A} + d\hat{i}v\hat{\omega} + \hat{\omega}_{A}\hat{\omega}_{B}\hat{q}^{AB} - K + R_{m\bar{m}}, \quad (17)$ and the non-triviality is that ℓ can not be identically 0 on a null geodesic.

Geometric version of the proposition: crossover sphere Consider the analytic-geodesic completion of \triangle and (q, D). For every ℓ such that

$$\kappa^{(\ell)} = \kappa_0 \neq 0, \tag{18}$$

The equation

$$\ell = 0, \qquad (19)$$

defines a crossection S_{ℓ} of the completion.

Proposition: A null vector field tangent to \triangle is the invariant vector field ℓ of the previous proposition if

and only if $\kappa^{(\ell)} = \kappa_0$ and the zero set of ℓ has zero expansion.

We will call such crossection the crossover sphere of \triangle .

This solves the issue of invariant evolution of the data: it is

$$\left[\mathcal{L}_{\ell}, \mathcal{D}\right]^{a}_{bc} = \ell^{a} (\dot{\lambda} m_{b} m_{c} + c.c).$$
 (20)

<u>Good cuts foliation.</u> Given (q, \mathcal{D}) consider a spacelike foliation of \triangle preserved by the flow of the invariant vector field ℓ . The pullback of the rotation 1-form potential ω to the slices, defines a unique 1-form $\hat{\omega}$ on S,

$$\hat{\omega} = \hat{*}\hat{d}U + \hat{d}p. \tag{21}$$

The first term is foliation invariant, the second is arbitrary.

DefinitionWe call a foliation the good cuts foliation if

$$\hat{\omega} = \hat{*}\hat{d}U.$$
(22)

For every ℓ such that $\kappa^{(\ell)} = \text{const}$, there is a unique good cuts foliation.

Invariant frame on \triangle . The invariant ℓ and corresponding good cuts foliation uniquely define a transversal, null vector field n, such that

 $n_{\mu}\ell^{\mu} = -1$, *n* orthogonal to the foliation. (23) Finally, we can complete (n, ℓ) to a null frame $(m, \overline{m}, n, \ell)$ by using the Gauss curvature K of the crossections, wherever $dK \neq 0$,

$$(\delta - \overline{\delta})K = 0. \tag{24}$$

Proposition The above invariant null frame is uniquely and naturally defined by the geometry (q, D). (diffeos: blackboard!)

Isolated Horizons.

<u>Definition</u> A non-expanding horizon (\triangle, q, D) and a null, tangent vector field ℓ are called IH if

$$[\mathcal{L}_{\ell}, \mathcal{D}] = 0. \tag{25}$$

The existence Issue:

(i) A non-expanding horizon (\triangle, q, D) admites the IH structure if and only if the invariant vector field ℓ defines it.

(ii) We have also derived the explicite existence conditions.

<u>True degrees of fredom</u> In the $\kappa^{(\ell)} \neq 0$ case, the geometry (q, D) is explicitly given by: Gauss curvature K, the rotation potential U, the Ricci tensor components given by contraction with the vectors tangent to Δ .

<u>The crossover sphere</u> Proposition: If $(\triangle, [\ell])$ is an isolated horizon, then the crossover sphere of the completion of \triangle has zero shear and expansion in any orthogonal null direction. Conversely, if the completion of a non-expanding and shear free horizon \triangle containes a crossection that is shear free and non-expanding in every orthogonal null direction, then, the corresponding null vector field ℓ is an isolated horizon.

<u>The uniqueness issue</u> Given an isolated horizon $(\triangle, q, \mathcal{D})$, are there ℓ and $\ell' = f\ell$ ($df \neq 0$) such that $[\mathcal{L}_{\ell}, \mathcal{D}] = 0 = [\mathcal{L}_{\ell'}, \mathcal{D}].?$ (26)

Results: (i) The general case: we derived necessary non-uniqueness conditions (a non-uniqueness test).

(ii) Special cases in which the uniqueness has been proven:

(a) If the geometry of an isolated horizon is sufficiently close to that of the Kerr-Nrewman horizon

(b) If an isolated horizon \triangle is non-rotating and the Ricci tensor vanishes on \triangle

(c) If the Ricci tensor vanishes on an isolated horizon \triangle , and the geometry (q, \mathcal{D}) is not the one characterized below.

The isolated horizon of 2-dim null symmetry group. The only non-unique IH structures are define on the following non-expanding horizon $(\triangle, q, \mathcal{D})$. Consider a vacuum isolated horizon $(\triangle, q, \mathcal{D})$ and its null symmetry $\ell = \ell_0$ such that

$$\kappa^{(\ell)} = 0 \tag{27}$$

and it admites a crossection of the zero expansion and shear in each orthogonal null direction. This horizons geometry (q, \mathcal{D}) has 2- dimensional group of null symmetries. Proposition (Pawlowski):In the cylindrically symmetric case, the only non-unique IH structures come from the modification of the external Kerr data.

Geometric characterization of the Kerr horizon.

Proposition: Each of the below conditions 1) and 2) is necessary and sufficient for an axially symmetric IH to be the Kerr IH:

1. Let Φ be the rotation Killing vector,

$$d(\Psi_2^{-\frac{1}{3}}) = a_0 \Phi_{\perp} \epsilon^{(2)}$$
 (28)

2. $R_{\mu\nu}|_{\triangle} = \partial R_{\mu\nu}|_{\triangle}$ and the Weyl tensor is of the type D at \triangle .

Neighborhood of IH

The unique extension of the good cuts foliation, invar Given a horizon (non-expanding or isolated), the invariant null vector field ℓ , and the corresponding good cuts foliation we extend it in the following way: (blackboard)

(i) the good cuts foliation by the family of the orthogonal null geodesics

(ii) The vector field n, by

$$\nabla_n n = 0, \tag{29}$$

(iii) The vector field ℓ , to ξ , s.t

$$\xi|_{\triangle} = \ell, \ \mathcal{L}_n \xi = 0. \tag{30}$$

The vector field ξ is not any longer null out of \triangle .

PropositionIf \triangle is a Killing horizon, then ξ is the Killing vector field.

The unique extension of the null frame By

$$\nabla e^{\mu} = 0. \tag{31}$$

<u>The Gauss coordinates</u> A coordinates system (x^A, v) compatible with the good cuts foliation is naturally extended by

$$n^{\mu}\partial_{\mu}x^{A} = n^{\mu}\partial_{\mu}v = 0 \tag{32}$$

and completed by r,

$$n^{\mu}\partial_{\mu}r = -1, \ r|_{\triangle} = 0.$$
 (33)

to coordinates (x^A, v, r) .

The invariants:

(i) The curvature of the 2-spheres r = const, v = const

(ii) the products $\xi^{\mu}\ell_{\mu}$, $\xi^{\mu}n_{\mu}$, $\xi^{\mu}m_{\mu}$

(iii) Any geometric tensor components.

The degrees of freedom: Friedrich's reduced data. The degrees of freedom (q,U) in the geometry (q,\mathcal{D}) are compatible with the Friedrich-Rendall reduced data and provide true degrees of freedom for a neighborhood of \triangle . In the $\kappa^{(\ell)} \neq 0$, vacuum case, they are:

(i) Geometry (q, \mathcal{D}) of \triangle freely parametrized by q, U

(ii) R_{nmnm} on two transversal half-leaves of the invariant null foliation.

Symmetric horizons and the existence of the Killing vector fields conditions.

Symmetries of \triangle .

Definition A vector field $k \in T(\triangle)$ generates a symmetry of \triangle , if

 $\mathcal{L}_k q = 0, \quad L_k \mathcal{D} = 0.$

Proposition The invariant null vector field ℓ , the corresponding good cuts foliation, and the ingreedients we use to describe (q, \mathcal{D}) are preserved by the symmetries of Δ .

Every symmetry generating $k \in T(\triangle)$ is given by a Killing vector field of a sigle slice, and a constant a_0 ,

 $k = a_0 \ell + Y, \quad \mathcal{L}_{\ell} Y = 0, \mathcal{L}_{Y} q = 0.$

It follows from the evolution of \mathcal{D} along the null generators, that:

PropositionSuppose $k = a_0 \ell + Y$; then then both the vector fields $a_0 \ell$ and Y generate symmetries of \triangle . (blackboard)

Classification of the symmetries of \triangle :

Class 1. $k = \ell$. Isolated horizon

Class 2. k = Y. Axially symmetric non-expanding horizon.

Class 3. $k_1 = \ell$, $k_2 = Y$, Axially symmetric isolated horizon

Class 4. $k_1 = \ell$ and 3-dim rotation symmetry group.

Killing vector fields: possible candidates.

PropositionSuppose K is a Killing vector field tangent to \triangle and defined in a neighborhood of \triangle . Then:

1.K preserves the invariant foliation of the neighborhood, the vector field ξ and the invariant null frame.

2. K is uniquely determined by a symmetry k of \triangle it generates, by

 $\mathcal{L}_n K = 0, \quad K_{|\triangle} = k.$

Therefore, given a non-expanding horizon \triangle , the natural null vector field ℓ , the good cuts foliation and the corresponding Gauss coordinates, the only possible candidates for a Killing vector field are,

$$K = \begin{cases} a_0 \partial_v = \xi, \\ b_0 \partial_{\varphi}, \\ a_0 \partial_v + b_0 \partial_{\varphi}, \end{cases}$$
(34)

the 2-sphere $\widehat{\Delta}$ of the null generators cordinates $(x^A) = (\theta, \varphi)$ are adjusted to a Killing vector field of $\widehat{\Delta}$.

Killing vector fields: the existence conditions, the vacu

1. Axial symmetry:

(i) Necessary condition at \triangle : the axial symmetry of (q, D)

(ii) Necessary and sufficient: the axial symmetry of the reduced data. trivial

2. The Killing horizon case:

(i) Necessary conditions at \triangle : the functions $\partial_r^N R_{nmnm}$, N = 0, 1, 2, 3, 4, ... at a fixed crossection of \triangle are determined by (q, D) in an explicite way.

(ii) Necessary and sufficient: the following equation to be satisfied by $\Psi_4 := \overline{R_{nmnm}}$ on a fixed lief of the invariant foliation,

 $(X^A \partial_A + H \partial_r) \Psi_4 = (\rho - 4\epsilon) \Psi_4 + (\overline{\delta} + 4\pi + 2\alpha) \Psi_3 - 3\lambda \Psi_2.$

3. The cross diagonal case $(K = a_0 \ell + \partial_{\varphi})$

The necessary conditions: both, the necessary conditions 1. and 2. above.

Since R_{mnmn} is free, in this way we control the nonexpanding (isolated) horizons which do NOT admit ani Killing vector field.