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Abstract

A review is given over some recent theoretical developments in low-x physics and the
Regge limit in QCD.

1. Introduction

The low-x region in deep-inelastic scattering (DIS) has attracted much interest re-
cently. Not only have we obtained from HERA new and exciting data for the proton
structure function in this region [1, 2], but there is also a genuine theoretical interest in
this kinematic limit. The low-x region in DIS lies at the interface between perturbative
and nonperturbative QCD: it can be viewed as a transition from one asymptotic limit to
another, from the Bjorken limit (Q2 →∞, xB fixed and not too small) to the Regge limit
(xB → 0, Q2 fixed and of the order of a typical hadronic scale). For the first of these
limits, QCD provides reliable perturbative predictions, whereas the latter one cannot be
reached whithin perturbation theory. However, in between the two, there is new limit, a
”modified Regge limit”: xB → 0 at Q2 fixed and large. Since αs is small (at least for not
too small xB), one can start from perturbative QCD and then follow how perturbation
theory requires more and more corrections and eventually needs nonperturbative contri-
butions. Usually (and for good reasons) DIS is discussed in terms of the operator product
expansion and, for the leading-twist term, the linear evolution equations of Gribov, Lipa-
tov, Altarelli, and Parisi. In this talk I will take a more unconventual route: I start from
the “modified Regge limit“, for which the leading-logarithmic approximation in QCD is
given by the BFKL-Pomeron [3], and then “return“ to the DIS limit.

One of the motivations for proceeding in this way comes from the present experimental
situation. Let me illustrate this in a few remarks:
(1) The energy dependence of the photoproduction cross section seems to be quite consis-
tent with the (nonperturative) Regge-description of hadronic scattering at high energies.
The simplest way [4] to describe the data seems to be the Pomeron pole with intercept
at 1.08; unfortunately, we still do not know how to derive this simple description from
QCD.
(2) The rise of F2(x, Q2) at low x and Q2 > 8GeV 2 is not simply a straightforward ex-
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trapolation of the nonperturbative behaviour seen at Q2 = 0 to larger Q2-values. On the
other hand, this rise seems to be compatible with the prediction of perturbative QCD; this
I find extremely encouraging, since it provides us with a much more solid start for the
use of perturbative QCD than expected.
(3) At present, data are not yet precise enough to allow a detailed investigation of the
evolution in Q2. So time has not yet come to investigate whether there is space for those
higher twist terms in the Q2-evolution of the structure function, which are expected at
small x. This, in my opinion, seems to put more emphasis on the dependence upon xB

rather then Q2.
(4) In the region of Q2 > 8GeV 2, there are more events with a rapidity gap between the
outgoing proton and the diffractive excitation of the photon than expected on the basis of
standard DIS Monte Carlos. Their contribution to the total cross section is of the same
order as expected from a conventional hadronic triple-Regge analysis. Furthermore, there
is no strong Q2-variation of these events. Since standard DIS Monte Carlo routines seem
not to be capable to account for these events, something must be missing: what is it? In
particular, how is it related to higher order corrections to the leading-logarithmic QCD
predictions?

In respond to these observations, it seems fair to put more emphasis on the Regge
aspects of the low-x region than on the Q2-evolution. As mentioned in (3), the time for a
detailed study of the variation in Q2 has not yet come: the most acute problem, therefore,
seems to be the x-dependence of F2 and the implications of the diffractive events. Apart
from these experimental observations, there are also theoretical reasons to believe that
the calculational techniques which underly the derivation of the BFKL Pomeron may be
better suited for studying the small-x region of DIS scattering than the conventional hard
scattering approach: whereas it sacrifices accuracy in 1/xB (by retaining only the leading
logarithms), it gains in ln(Q2/k2) (by keeping all orders in this variable). This allows to
treat the region of small x but finite transverse momentum more accurately.

The talk will be organized in three parts. First I will comment on the status of
the BFKL Pomeron. Then I discuss what we presently know about corrections beyond
the BFKL Pomeron. In the third part I will try relate these theoretical developments
to experimental signals. Finally I will say a few words about future developments, in
particular about prospects of deriving an effective field theory.

2. Status of the BFKL-Pomeron

As it is well-known, the Balitsky-Fadin-Kuraev-Lipatov (BFKL) ladder- approxima-
tion for the Pomeron constitutes the leading-logarithmic approximation of QCD in the
Regge-limit: in order to justify the use of perturbation theory it is necessary to consider
the ”modified” Regge limit, as it was defined above. Since the properties of this approx-
imation have been described in many review talks, I will list only very few of the main
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features: the power behavior of the scattering amplitude

T (s, 0) ∼ const · s1+ωBFKL , ωBFKL =
4Nc ln 2 αs

π
≈ 0.5 (1)

or, in the context of deep inelastic scattering,

F2(x, Q2) ∼ const · x−ωBFKL (2)

This behavior is obtained from the integral equation

f(x, k) = f0(x, k) +
∫ 1

x

dx′

x′

∫
d2k′K(k, k′)f(x′, k′). (3)

where the BFKL-kernel K(k, k′) is proportional to αs(Q
2), and the momentum integration

runs over the full two-dimensional space. In many applications, the fixed coupling αs(Q
2 is

replaced by αs(k
2) or αs(k

′2): strictly speaking, this goes beyond the leading-logarithmic
approximation. Since at this level many other contributions have to be taken into acount
(see below), this procedure alone is not very satisfactory. If the inhomogeneous term in
(3) does not depend upon x, the BFKL equation is equivalent to the evolution equation

∂f

∂ ln 1
x

=
∫

d2k′K(k, k′)f(x, k′). (4)

If one applies this equation to deep inelastic scattering, the structure function F2 is
predicted to grow at small x (cf.(2)). For sufficiently large Q2, one may think of expanding
the solution in inverse powers of Q2 and retaining only the leading term: its x-dependence
is given by

f ∼ exp


√√√√48

β0

ln(
ln Q2/Λ2

ln Q2
0/Λ

2
) ln(

1

x
)

 (5)

This growth in 1/x is slightly weaker than the power law (2); for an intermediate region,
however, the resulting x-distributions may be rather similar. In such a case, only the
evolution in Q2 will be able to distinguish between the two cases. As to the question
which paramtrizations fits the HERA data best, it seems that those fits which are based
on a power-law type behavior (eq.(2)) are generally doing better than those which are flat
at small x; this applies to both the Durham group and the CTEQ group. The fact that
the Dortmund curve is also in good agreement with the data may be explained by the
long Q2-evolution: the resulting x-dependence is of the type (5) which, simultaneously,
represents the small-x tail of the GLAP evolution scheme and the leading-Q2 term of the
BFKL-Pomeron. In any case, it seems fair to say that the observed rise is “close to the
predictions of perturbative QCD“.
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Keeping in mind that the QCD-prediction for the small-x-behavior (to leading order)
is given by the BFKL-Pomeron, it seems natural to ask whether the rise can be taken
already as evidence for having seen the BFKL Pomeron. I would like to express several
caveats. First of all, we do not yet know in what region the BFKL-approximation is valid.
That is to say, the criterion

αs(Q
2)

π
ln

1

x
≤ 1 (6)

which is usually quoted is too crude and needs to be refined. The most natural way
to proceed seems to calculate the first corrections (see below) and then to estimate at
what values of x and Q2 these corrections become as large as the leading-logarithmic
approximation. The breakdown of the leading-logarithmic approximation can be seen in
several places. First of all, unitarity corrections (which will be discussed further below)
are expected to lead to terms which grow faster in 1/x than the BFKL-Pomeron itself.
Since they come with an overall coefficient of the order α2

s(Q̄
2) (where Q̄2 lies somewhere

between the hadronic scale and Q2) they may be small as long as 1/x is not too large.
At sufficiently small x, however, the smallness of α2

s will be compensated by the stronger
growth in 1/x. Since the sign of these unitarity corrections is opposite to that of the
leading BFKL-Pomeron, they will tend to lower the increase in 1/x of F2. At very small
x, they eventually become larger than the BFKL approximation, and we need to sum all
corrections.

Secondly, with growing 1/x the high energy behaviour of the BFKL-ladders becomes
increasingly sensitive to the infrared region where perturbation theory becomes unreliable.
Formally the BFKL-approximation is infrared finite (that is why, in (3) the momentum
integration extends down to k′ = 0). In a given application, for example the structure
function F2 at Q2 = Q2

0, the dominant region of integration inside the ladder diagrams
is centered around the external momentum scale, Q2

0, but as the evolution in 1/x gets
longer and longer, it diffuses more and more into both the infrared and ultraviolet regions.
Obviously, even in a truly deep inelastic situation with a large Q2

0, the calculation of the
BFKL-ladders will eventually reach the “dangerous“ infrared region, and that is where
the application becomes unreliable. Obviously, the smaller Q2

0 is, the worse the situation
becomes. A numerical calculation of the k′2 distribution inside F2 has recently been
performed [5] (similar to the one presented in [6]), and the contribution of momenta
below, say, 1 GeV 2 is not small: the theoretical prediction, therefore, will depend on
how we are dealing with the “dangerous region“. The customary way to improve on
the leading-logarithmic BFKL-approximation is the use of the running coupling constant
inside the ladders rather than the fixed one. Although this leaves the leading-logarithmic
approximation (see above), it is felt that this modification will at least lead closer to the
“true“ QCD prediction. As a result of this, the k′-integral has to stop at some minimal
value k2

0 > Λ2
QCD, and all numerical results will be sensitive to the choice of this parameter.

This has been clearly demonstrated in [7]. As a further improvement, one can define some
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sort of continuation below this infrared cutoff; as shown in [8], this makes the resulting
power of 1/x less dependent on k2

0, but the overall strength still varies with k2
0. In brief, we

are not really testing any more the BFKL-Pomeron but a phenomenological modification
of it.

Before concluding this section it should be mentioned that there are other reactions
where the BFKL-Pomeron can be tested more safely, for example the Mueller-Navelet [9]
jets in hadron-hadron collisions or the associated jet production (“Hot Spots“) at HERA
[10]. The latter process has been studied by several groups [10]. The cross section reads:

xk2d4σ

dxdk2dxBdy
=

4πα2

2Q2

∑
e2

(
yΦ1(Q

2, k2,
x

xB

) +
1− y

y

pq

M2xB

Φ2(Q
2, k2,

x

xB

)

)
12αs(k

2)

4π

(
xG(x, k2) +

4

9

∑
q(x, k2)

)
(7)

Calculations of the cross section have been presented in [10, 11], and a numerical com-
putation of the k-distribution inside the ladders is contained in [6]. The latter one shows
that the infrared region plays an unimportant role. As a consequence, there is obviously
no need to use a running coupling constant inside the BFKL evolution equation, and this
measurement looks like an excellent tool for “seeing“ the BFKL-Pomeron. First experi-
mental results have been reported in [12], and the event rates are in qualitative agreement
with the theoretical BFKL-predicitions.

3. First Corrections

From what has been said above it follows that we have to go beyond the BFKL-
approximation in order to know where it is applicable. Generally speaking, one may
think of two different strategies for approaching the full QCD theory in the Regge limit.
First, one may start by finding corrections to the BFKL-kernel: this implies that one
stays in the framework of ladder diagrams and computes contributions which are down
by one power of ln 1/x compared with the leading logarithmic aproximation. This involves
diagrams which belong to vertex corrections, self energies, and the production of two-gluon
states with a small rapidity gap. At this stage also fermions will come in: the fermion box
diagrams which are known from the tower diagrams in QED [13, 14]. One consequence
of all these contribution will be that they provide the first logarithmic correction to the
fixed coupling constant. One also expects that the power of s (or 1/x) which governs the
high energy behaviour will receive corrections of the order α2

s. This line of calculations
is being persued by Fadin and Lipatov, and recent results have been published in [15].
Another important benefit from this line of attacking non-leading contributions is the
possibility of obtaining higher order contributions to the gluon anomalous dimension. In
analogy to [16] where the eigenvalues of the BFKL kernel have been used to calculate all
terms of the form ( αs

n−1
)k in the gluon anomalous dimension, one expects to obtain, from
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[15], the contributions of the form αs(
αs

n−1
)k. It has been argued [17] that these terms are

extremely important in the GLAP evolution of flat (in xB) input distributions.
It is, however, clear that these corrections to the BFKL-kernel are not enough. In

particular, they will not help to cure the violation of unitarity which manifests itself
in the power of s (eq.(1)). The restauration of unitarity requires contributions which go
beyond the one-ladder structure: diagrams with more than two (reggeized) gluons in the t-
channel. In a naive picture, one may think of these diagrams as resulting from a s-channel
iteration of the exchange of BFKL-ladders. However, from general considerations (gauge
invariance, cancellations of infrared divergencies) it immediately follows that, for example,
two BFKL-ladders in the t-channel would represent a too crude approximation: instead of
two isolated ladders one needs all pairwise interactions between all four gluon lines. More
precisely, such contributions are obtained from multiple energy discontinuities of inelastic
multiparticle amplitudes: the theoretical background has been laid down in [18], and a
systematic way how to obtain these amplitudes in practice has been defined in [19]. In the
present context, the first “unitarity“ corrections are those with two or four gluons in the
t-channel, and their analytic form is given in [20]. The numerical evaluation has turned
out to be rather involved; in particular, the most interesting numbers (in particular ω4,
the location of the leading angular momentum plane singularity) have not been calculated
yet. Attempts to compute the energy spectrum of the n-gluon state in the large-Nc limit
have been reported in [21, 22]. The short distance limit of these QCD-diagrams has
been investigated in [20], and, as a quantitative result, the anomalous dimension of the
four-gluon operator has been obtained [20, 23]. For the remainder of this section we shall
limit ourselves to the short distance aspects of the unitarity corrections.

So far all the discussion has been about the “modified“ Regge limit 1/xB → ∞ at
fixed (but not too small) Q2. The aspect to be discussed in the following is the connection
with the DIS limit Q2 → ∞ at fixed (not too small) xB: when taking the large-Q2 limit
(also referred to as the small-distance limit) of the BFKL-Pomeron and the unitarity
corrections to it, one recovers the usual twist-expansion (to be more precise: the leading-
log 1/x approximation to it). Let us discuss this term by term.

To begin with the BFKL-approximation and F2, it has the following expansion in
powers of k2/Q2:

Φ(ω,Q2, k2) = Q2
∑
l,n

C(l,n)e
inθ

(
k2

Q2

)l+1−γ(ln)

(8)

where ω = n− 1 is the variable conjugate to ln 1/xB, and the anomalous dimensions are
of the form

γ(ln) =
Ncαs

ωπ
+ O(

αs

ω

2

) (9)

The leading term (l = 0) coincides with the two-gluon operator, whereas the higher order
terms are related to derivatives (trace terms) of the two gluon operator. So the BFKL-
amplitude provides, not only for the leading-twist but also for a subset of nonleading-twist
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contributions, the most singular (in ω) part of the anomalous dimension. At large Q2,
the BFKL-approximation coincides with the small-xB limit of the GLAP gluon structure
function, but, in addition to that, it contains nonleading powers of k2/Q2.

The first unitarity correction are analysed most easily if we cut the diagrams with
4 t-channel gluons across the four-gluon state: the upper part then defines a four-gluon
amplitude, and one has to study the limit k2

i /Q
2 → 0 (ki denote the momenta of the

gluons). As a result of the reggeization of the gluon, there is a leading term which
contributes to twist two [29]. The next-to-leading term, twist four, has been investigated
in [24, 23], and the anomalous dimension of the four-gluon operator has been calculated:

γ4 = 4
Ncαs(1 + δ1)

ωπ
, δ1 = 0.0123 (10)

Recently it has been found [25] that this twist-four term of the four gluon amplitude has
a very rich structure, which can be interpreted most easily in terms of operator product
expansions. There is also mixing between the twist-four piece of the BFKL-Pomeron and
the twist-four four gluon operator [20]. In analogy with the BFKL-Pomeron, the four-
gluon amplitude allows for expansions in powers of k2

i /Q
2, and there is a correspondence

between the nonleading terms and higher order derivatives (trace terms) of the four-gluon
operator.

Within the usual approach towards DIS, the twist expansion is usually truncated, and
only the first term is kept. The reason why at small xB this neglect of higher-twist terms is
no longer justified can be seen very easily. The standard operator product expansion leads
to the following expansion of the moments of the DIS structure function (for simplicity,
we restrict ourselves to gluons only):

µ(n,Q2) =
∫ 1

0
dxxn−1F (x, Q2)

= C2(Q
2/µ2; g)a2 +

M2

Q2
C4(Q

2/µ2; g)a4 + ..., (11)

and the renormalization group analysis of the coefficient functions implies that

C2(Q
2/µ2; g) ∼ exp

∫
dt′γ2(g(t′)) , γ2 =

Ncαs

(n− 1)π

C4(Q
2/µ2; g) ∼ exp

∫
dt′γ4(g(t′)) , γ4 = 4

Ncαs(1 + δ1)

(n− 1)π
(12)

The small-xB limit probes the moments near n = 1, where the anomalous dimensions
become singular. Since the strength of this singularity grows quadratically with the
number of gluons, the higher-twist terms become as important as (or even more important
than) the leading term. This is why we are forced to investigate the singular parts of the
nonleading-twist anomalous dimensions and coefficient functions.

106



Higher order unitarity corrections which lead to amplitudes with 2k gluon lines have
not been constructed or analysed yet. Nevertheless, a first attempt has been made for
calculating the anomalous dimension of the 2k-gluon operator [26]. Making certain
simplifications and using a Bethe ansatz it has been found that

γ(2k) = k2Ncαs(1 + δk)

ωπ
, δk = (k2 − 1)

1

3(N2
c − 1)2

. (13)

There is no doubt that besides the leading anomalous dimensions there will be an ex-
tremely rich spectrum; an attractive way to attack this difficult problem seems to be the
use the 1/Nc- expansion. The first step in this direction has been done in [25], and further
work is in progress [27].

It would certainly be extremely important if one could find a way to obtain the sum of
these nonleading twist contributions, at least their most singular parts. Several years ago
it has been suggested [28] that - under assumptions which are quite analogous to those
underlying the eikonal approximation in high-energy hadron-hadron scattering - a nonlin-
ear term, added to the rhs of the linear GLAP evolution equation, would effectively take
into account not only all these higher twist contributions but also screening corrections to
the leading twist. Unfortunately, the results on the anomalous dimension (10), (13), are
in conflict with this equation, and a recent numerical estimate [25] indicates that that
the disagreemet is not a small effect. The problem of finding a way to sum the nonleading
twist contributions, therefore, remains one of the important tasks in low-x physics.

4. What can be seen in Deep Inelastic Scattering at small x?

After this slightly theoretical discussion let me adress the more “pragmatic“ question
what are the prospects of seeing experimental signals of these nonleading corrections. To
start with the rise in F2: the unitarity corrections to the BFKL-ladders which we have
discussed before are expected to contain t-channel singularities to the right of ωBFKL. For
example, there is the contribution of the state consisting of two BFKL-Pomerons which
is located at ω = 2ωBFKL. There are, however, reasons to expect there will be a new
singularity even further to the right at ω = ω4 > 2ωBFKL. Together with the overall
coefficient of the order α2

s, the small-x behavior takes the form:

F2 ∼ (
1

x
)ωBFKL

(
1−O(α2

s)(
1

x
)ω4−ωBFKL

)
(14)

A very crude estimate shows that the correction term does not have to be small in the
HERA region 1: for a precise estimate we need the number ω4 as well as the coefficient
in front (the latter contains both a perturbative and a nonperturbative part).

1As an example: taking ω4 = 3/2 and making the assumption that at x0 = 10−2 the suppression
factor is O(α2

s) = ( 0.2
π )2, at x = 10−4 the second term in (14) has reached already 40%.
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However, even if these corrections to the BFKL-approximation are non-negligeable
in the HERA region, the measurement of F2 alone will, most likely, not be sufficient to
establish their existence. All the uncertainties mentioned in connection with the BFKL-
approximation become even bigger if we start to consider nonleading corrections. Hence
one is lead to look into final state, in particular into those configurations which cannot
be produced within the standard one-ladder picture. Most promising candidates are the
events with large rapidity gaps which have been observed by both Zeus [34] and H1
[35]: within the standard one-ladder picture which underlies both the GLAP-evolution
equations and the BFKL- approximation the final states are produced via color exchange,
and large rapidity gaps are suppressed by color correlations. Therefore, if one tries to
explain the HERA rapidity gap events within perturbative QCD one is lead to generalize
the one-ladder picture in such a way that final states can be produced with color singlet
exchange. This requires two-gluon pairs on both sides of the ladder, and we arrive at
QCD diagrams with (at least) four gluons in the t-channel. A sytematic study of these
(perturbative) contributions leads exactly to what I have discussed in the previous section.
Therefore one is lead to the conclusion that, if the rapidity gap events (or part of them)
can be explained within perturbative QCD, they provide evidence for the presence of
nonleading corrections to the one-ladder picture (i.e.the BFKL Pomeron).

Reality is, of course, much more complicated [36], and a careful study of the rapidity
gap events has to decide which part of them can be explained within perturbative QCD
and which part requires the non-perturbative (soft) Pomeron. As a first example, let us
look at the diffractive production of qq̄ pairs with invariant mass M (the proton remains
intact). The Pomeron which is exchanged between the quark pair and the proton can
be soft or hard (e.g.BFKL), depending upon whether the quarks coming from the virtual
photon are hard or soft. In the first case one expects, for fixed M2, the W 2 dependence
(1/x ≈ W 2/Q2):

d2σ

dtdM2
∼ (

1

x
)0.16, (15)

in the latter case

d2σ

dtdM2
∼ (

1

x
)2ωBFKL . (16)

It is therefore important to separate the “soft“ from the “hard“ contribution: a possible
handle might be the transverse momentum of the quark which is closer to the rapidity
gap. The observed W 2 behaviour [34] of the ratio r = σDD/σtot(γ

∗p) indicates that not
all events can be of the type (15).

Most interesting, at least from the theoretical viewpoint, are events where the diffrac-
tively excited photon contains, in addition to the qq̄-pair, also gluons. Such events are
expected to contribute to the region of large M . Again, we have to distinguish between a
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“hard“ and a “soft“ Pomeron across the rapidity gap. The W 2-dependence (at fixed M)
is again given by (15) and (16). The dependence on M2, on the other hand, depends upon
the internal structure of the qq̄ − gluon system: if the exchanged Pomerons are “hard“,
i.e. of the BFKL-type, the perturbative triple-Pomeron vertex appears which has been
derived recently [29, 30], and the cross section is predicted to have the form:

d2σ

dtdMm2
∼ (

1

x
)2ωBFKL

(
M2 + Q2

Q2

)ω4−2ωBFKL−1

(17)

where ω4 is the new singularity of the four gluon state mentioned before. Also the obser-
vation has been made that the behavior near t = 0 may be quite interesting [30, 31]: the
conformal invariance of the BFKL-Pomeron leads to a decoupling at t = 0 of coupling
between three BFKL-singularities.

As another example of diffraction scattering in DIS, one might consider [32] the
diffractive production of vector mesons at large momentum transfer (the proton can ei-
ther scattered elastically or, alternatively, produce a diffractive final state): here the
momentum transfer across the Pomeron provides the large momentum scale which allows
the use of the BFKL Pomeron. In [33] it has been shown that in DIS also the cross section
of the forward diffractive production of vector mesons is calculable within perturbative
QCD.

5. Future prospects: towards an Effective Field Theory

Finally a few words should be said about future developments in this field, in partic-
ular about theoretical ideas on the Regge limit. Presently, the most attractive program
consists of the derivation and solution of an effective 2+1 dimensional field theory. The
underlying idea looks simple and attractive: in a high energy scattering process with zero
or small momentum transfer the two transverse degrees of freedom (two-dimensional im-
pact parameter or its conjugate, the transverse momentum) and the longitudinal degree
of freedom (rapidity or angular momentum of the cross channel) play completely different
roles. Therefore it appears to be an attractive idea to formulate an effective field theory
which lives in the two-dimensional transverse space (with rapidity as the time variable).
Several attempts in this direction have already been made before [37]. But as it has been
said before, the low-x limit of DIS provides a new direction of attacking the Regge limit;
it is therefore necessary to review the idea of such a lower-dimensional field theory in this
new context.

Starting point for the formulation of such a field theory are the Green’s functions
Gn→m(ρ1, ..., ρn; ρ′1, ..ρ

′
m) which describe the transition: n reggeized t-channel gluons →

m reggeized t-channel gluons. They live in the two-dimensional impact parameter space
and also depend upon angular momentum ω. The simplest example for such a Green’s
function is G2→2, the BFKL-Pomeron. The first nontrivial generalization to this is the
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function G2→4 which has been derived in [20] and contains, as a new kernel, a 2 → 4 gluon
transition vertex [29]. For the former case it has been shown in [38] that it is invariant
under Moebius transformations; an analogous investigation of the latter one is in progress
[39]. The (perturbative) dynamics of these Green’s functions can be used in order to
study their short distance behavior (anomalous dimensions, fusion coefficients): examples
are again the two Green’s functions G2→2 and G2→4. As a result of the investigations in
[38] and [20] it seems possible to define short distance expansions which allows to identify
the Green’s functions as vacuum expectation values of some (possibly: conformal) field
theory:

Gn→m(ρ1, ..., ρn; ρ′1, ..., ρ
′
m) ∼< φ(ρ1)...φ(ρn)φ(ρ′1)...φ(ρ′m > (18)

(note that these fields cannot be identified with the QCD-gluon field operators; the prop-
erty of being “reggeized“ makes the gluons already somewhat “composite“). The short
distance behavior of this field theory has to be derived by extending the perturbative
analysis of QCD which has been scetched in the second part of this talk.

Clearly, presently we are still at a very early stage of this program. It will be very
interesting to see how far this approach will take us.

References

[1] ZEUS Collab. (M.Derrick et al.) Phys.Lett. B 316 (1993) 412 and DESY-94-143.

[2] H1 Collab. (I.Abt et al.) Nucl.Phys.B 407 (1993) 515 and (V.Brisson et al.) DESY-
94-187.

[3] E.A.Kuraev, L.N.Lipatov, V.S.Fadin, Sov.Phys.JETP 45 (1977) 45; Ia.Ia.Balitski,
L.N.Lipatov, Sov.J.Nucl.Phys.28 (1978) 822.

[4] A.Donnachie, P.V.Landshoff, Phys.Lett.B 296 (1992) 227; DAMTP 93-23.

[5] J.Bartels and M.Vogt, in preparation.

[6] J.Bartels and H.Lotter, Phys.Lett.B 309 (1993), 400; J.Bartels, Journ.Phys.G19
(1993), 1601.

[7] J.Kwiecinski, A.D.Martin, P.J.Sutton, Phys.Lett. B 287(1992) 254; Phys.Rev.D 46
(1992) 921.

[8] A.J.Askew, J.Kwiecinski, A.D.Martin, P.J.Sutton, Durham preprint 1993 DTP-93-
28.

110



[9] A.H.Mueller and H.Navelet, Nucl.Phys.B 282 (1987) 727; V.Del Duca, M.E.Peskin,
and W.-K.Tang, Phys.Lett.B 306 (1993) 151; V.Del Duca and W.-K.Tang
Phys.Lett.B 312 (1993) 225; V.Del Duca SLAC-preprints SLAC-PUB 6309, 6310.

[10] A.H.Mueller, Nucl.Phys.B (Proc.Suppl.) 18C (1991) 125; J. Bartels, A.DeRoeck,
M.Loewe, Z.Phys. C54 (1992) 635; J.Bartels, M.Besancon, A.De Roeck,
J.Kurzhoefer, in Proceedings of the HERA Workshop 1992 (eds.W.Buchmüller and
G.Ingelman), p.203; J.Kwiecinski, A.D.Martin, P.J.Sutton, Phys.Lett. B 287 (1992)
254; Phys.Rev. D 46 (1992) 921; W.-K.Tang, Phys.Lett. B 278 (1991) 363.

[11] H.Lotter, Diplomarbeit Hamburg 1993, unpublished.

[12] A.DeRoeck, in the Proceedings of the International Workshop on Deep Inelastic
Scattering, February 1994, Eilat, Israel.

[13] V.N.Gribov, C.V.Frolov, L.N.Lipatov, Phys.Lett.B 31 (1970) 34;
Sov.Journ.Nucl.Phys.12 (1970) 994.

[14] H.Cheng and T.T.Wu, Phys.Rev.D1 (1970) 2775.

[15] V.S.Fadin and L.N.Lipatov, Nucl.Phys.B 406 (1993) 259.

[16] T.Jaroscevicz, Phys.Let.B 116 (1982) 291.

[17] K.Ellis, Z.Kunszt, E.Levin, Nucl.Phys.B 420 (1994) 517.

[18] A.R.White J.Mod.Phys.A 11 (1991) 1859; ANL-HEP-PR-93-16.

[19] J.Bartels, DESY 91-074 (unpublished)

[20] J.Bartels, Zeitschr.Phys.C 60 (1993) 471.

[21] L.N.Lipatov, Phys.Lett. B 309 (1993) 394; Padua-preprint DFPD-93-TH-70 and
JETP Lett. 59 (1994) 596.

[22] L.D.Faddeev, G.P.Korchemsky, L.N.Lipatov, unpublished.

[23] E.M.Levin, M.G.Ryskin and A.G.Shuvaev, Nucl. Phys.B 387 (1992) 589.

[24] J.Bartels, Phys. Lett. B 298(1993) 204.

[25] J.Bartels, M.G.Ryskin, Zeitschr.Phys.C 60 (1993) 751.

[26] E.Levin, E.Laenen, A.G.Shuvaev, Nucl.Phys. B 419 (1994) 39.

[27] A.G.Shuvaev, in preparation.

111



[28] L.V.Gribov, E.M.Levin, M.G.Ryskin, Phys.Rep. 100 (1983) 1.

[29] J.Bartels, M.Wuesthoff, DESY-94-016, Zeitschr.Phys.C, in print.

[30] A.H.Mueller, B.Patel, Nucl.Phys.B 425 (1994) 471.

[31] J.Bartels, H.Lotter, M.Wuesthoff, in preparation.

[32] J.R.Forshaw, M.G.Ryskin, DESY-94-058.

[33] S.J.Brodsky, L.Frankfurt, J.F.Gunion, A.H.Mueller, M.Strikman, Phys.Rev. D 50
(1994) 3134.

[34] ZEUS Collab. (M.Derrick et al.) Phys.Lett. B 315 (1993) 481 and Phys.Lett. B 332
(1994) 228.

[35] H1 Collab. (T.Ahmed et al.) DESY-94-133 and (T.Greenshaw at al.) DESY-94-112.

[36] Some recent studies are contained in: N.N.Nikolaev, B.G.Zakharov, Preprint KFA-
IKP(TH)-1993-17 and references therein (to appear in Zeitschr.Phys.C); M.Diehl,
DAMTP-94-60 (to appear in Zeitschr.Phys.C).

[37] W.A.Bardeen, R.B.Pearson, E.Rabinovici, Phys.Rev. D 21 (1980) 1037; L.N.Lipatov,
Zh.Eksp.Teor.Fiz.90 (1986) 1536; L.N.Lipatov, Nucl.Phys.B365 (1991) 641;
R.Kirschner, in the Proceedings of the Workshop on Quantum Field Theory at High
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