A-type affine Weyl group symmetry of Desargues maps and of the non-commutative Hirota–Miwa system

Adam Doliwa

doliwa@matman.uwm.edu.pl

University of Warmia and Mazury in Olsztyn

Integrable Systems Banach Center, IM PAN Warsaw June 7-9, 2010

Outline

Motivation – P_{IV} equation

- Desargues maps
 - Multidimensional compatibility of Desargues maps
 - The non-commutative Hirota–Miwa discrete KP system
 - Desargues maps and quadrilateral lattices
- 3 Affine Weyl group symmetry of Desargues maps
 - The A_N root lattice and its affine $W(A_N)$ Weyl group
 - Desargues maps of the $Q(A_N)$ root lattice
 - Action of the affine group $W(A_N)$

Outline

Motivation – P_{IV} equation

- Desargues maps
 - Multidimensional compatibility of Desargues maps
 - The non-commutative Hirota–Miwa discrete KP system
 - Desargues maps and quadrilateral lattices
- 3 Affine Weyl group symmetry of Desargues maps
 - The A_N root lattice and its affine $W(A_N)$ Weyl group
 - Desargues maps of the $Q(A_N)$ root lattice
 - Action of the affine group $W(A_N)$

The symmetric form of $P_l V$

 f_j , j = 0, 1, 2 – unknown functions of t, $' = \frac{d}{dt}$, α_j – parameters

$$f'_0 = f_0(f_1 - f_2) + \alpha_0,$$

$$f'_1 = f_1(f_2 - f_0) + \alpha_1,$$

$$f'_2 = f_2(f_0 - f_1) + \alpha_2,$$

Obvious symmetries

- scaling:
$$t \to t/c$$
, $f_j \to cf_j$, $\alpha_j \to c^2 \alpha_j$

- cyclic permutation: $f_j \rightarrow f_{j+1}, \alpha_j \rightarrow \alpha_{j+1}, j \in \mathbb{Z}/3\mathbb{Z}$

Obvious integral of motion

 $(f_0 + f_1 + f_2)' = \alpha_0 + \alpha_1 + \alpha_2 = k \qquad \Rightarrow \qquad f_0 + f_1 + f_2 = kt + c$

Normalisation for $k \neq 0$

$$\alpha_0 + \alpha_1 + \alpha_2 = 1, \qquad f_0 + f_1 + f_2 = t$$

(scaling + translation in t)

Painlevé equation

Fact (V. E. Adler, 1994)

Under the given normalisation the above system is equivalent to

$$P_{IV}: \qquad y'' = \frac{1}{2y}(y')^2 + \frac{3}{2}y^3 + 4ty^2 + 2(t^2 - \alpha)y + \frac{\beta}{y}$$

$$y = -f_1/\sqrt{2}, t \rightarrow \sqrt{2}t, \alpha = \alpha_0 - \alpha_2, \beta = -2\alpha_1^2$$

Theorem (P. Painlevé, B. Gambier, 1900-1909)

Up to Möbius transformation there exists 50 second order ordinary differential equations whose solutions do not have movable branch oints and essential singularities. Their solutions can be expressed in terms of solutions of linear equations, elliptic functions, and one of six distinguished equations $P_I - P_{VI}$.

Other Painlevé equations

$$\begin{split} P_{I}: & y'' = 6y^{2} + t \\ P_{II}: & y'' = 2y^{3} + ty + \alpha \\ P_{III}: & y'' = \frac{1}{y}(y')^{2} - \frac{1}{t}y' + \frac{1}{t}(\alpha y^{2} + \beta) + \gamma y^{3} + \frac{\delta}{y} \\ P_{V}: & y'' = \left(\frac{1}{2y} + \frac{1}{y-1}\right)(y')^{2} - \frac{1}{t}y' \\ & \quad + \frac{(y-1)^{2}}{t^{2}}\left(\alpha y + \frac{\beta}{y}\right) + \frac{\gamma}{t}y + \delta\frac{y(y+1)}{y-1} \\ P_{VI}: & y'' = \frac{1}{2}\left(\frac{1}{y} + \frac{1}{y-1} + \frac{1}{y-t}\right)(y')^{2} - \left(\frac{1}{t} + \frac{1}{t-1} + \frac{1}{y-t}\right)y' \\ & \quad + \frac{y(y-1)(y-t)}{t^{2}(t-1)^{2}}\left(\alpha + \beta\frac{t}{y^{2}} + \gamma\frac{t-1}{(y-1)^{2}} + \delta\frac{t(t-1)}{(y-t)^{2}}\right) \end{split}$$

Adam Doliwa

Desargues maps

Painlevé equations in physics

- analysis of the correlation functions of two-dimensional lsing model
 - (T. T. Wu, B. M. McCoy, C. A. Tracy, E. Barouch, 1976)
- analysis of the correlation functions of one-dimensional Bose gas

(M. Jimbo, T. Miwa, Y. Môri, M. Sato, 1980)

- two-dimensional quantum gravity (E. Brezin, V. A. Kazakov, 1990)
- random matrices

(C. A. Tracy, H. Widom, 1994)

- reductions of the Einstein equations (K. P. Tod, 1994)
- zeros of the ζ-Riemann function
 (P. J. Forrester, A. M. Odlyzko, 1996)

...

Acrion of the extended affine Weyl group $A_2^{(1)}$ on P_{IV}

$$\begin{split} \widetilde{W} &= \langle r_0, r_1, r_2, \pi \rangle, \qquad r_j^2 = 1, \quad (r_j r_{j+1})^3 = 1, \quad \pi^3 = 1, \quad \pi r_j = r_{j+1} \pi \\ r_i(\alpha_j) &= \alpha_j - \alpha_i a_{ij}, \qquad r_i(f_j) = f_j + \frac{\alpha_i}{f_j} u_{ij}, \quad \pi(\alpha_j) = \alpha_{j+1}, \quad \pi(f_j) = f_{j+1} \\ (a_{ij})_{i,j=0}^2 &= \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}, \qquad (u_{ij})_{i,j=0}^2 = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix} \end{split}$$

Theorem (M. Noumi, Y. Yamada, 1998)

Transformations r_0 , r_1 , r_2 , π described above are automorphisms of the differential field $\mathbb{C}(\alpha_0, \alpha_1, \alpha_2; f_0, f_1, f_2)$ and define representation of the extended affine Weyl group Weyla typu $A_2^{(1)}$. These transformations commute with differntiation given by the normalised symmetric P_{IV} equation.

Poissona structure and Hamiltona function

Twierdzenie (M. Noumi, Y. Yamada, 1998)

The group W act by automorphicms of the Poisson algebra $\mathbb{C}(\alpha_0, \alpha_1, \alpha_2; f_0, f_1, f_2)$ with brackets

$$\{f_i, f_j\} = u_{ij}, \qquad \{\alpha_i, \alpha_j\} = 0, \qquad i, j = 0, 1, 2.$$

$$p = f_1, q = f_2, t = f_0 + f_1 + f_2, \{p,q\} = 1, \{p,t\} = \{q,t\} = 0.$$

Theorem (M. Noumi, Y. Yamada, 1998)

The symmetric P_{IV} is equivalent to the hamiltonian system with the Hamilton function

$$H = (t - q - p)pq + \alpha_2 p - \alpha_1 q + \frac{1}{3}(\alpha_1 - \alpha_2)t.$$

Adam Doliwa

Desargues maps

Multidimensional compatibility of Desargues maps The non-commutative Hirota–Miwa discrete KP system Desargues maps and quadrilateral lattices

Outline

Motivation $- P_{IV}$ equation

2

Desargues maps

- Multidimensional compatibility of Desargues maps
- The non-commutative Hirota–Miwa discrete KP system
- Desargues maps and quadrilateral lattices
- 3 Affine Weyl group symmetry of Desargues maps
 - The A_N root lattice and its affine $W(A_N)$ Weyl group
 - Desargues maps of the $Q(A_N)$ root lattice
 - Action of the affine group $W(A_N)$

Multidimensional compatibility of Desargues maps The non-commutative Hirota–Miwa discrete KP system Desargues maps and quadrilateral lattices

Desargues maps

Definition [AD '10]

Multidimensional compatibility of Desargues maps The non-commutative Hirota–Miwa discrete KP system Desargues maps and quadrilateral lattices

Desargues maps

Definition [AD '10]

Multidimensional compatibility of Desargues maps The non-commutative Hirota–Miwa discrete KP system Desargues maps and quadrilateral lattices

Desargues maps

Definition [AD '10]

Multidimensional compatibility of Desargues maps The non-commutative Hirota–Miwa discrete KP system Desargues maps and quadrilateral lattices

Desargues maps

Definition [AD '10]

Multidimensional compatibility of Desargues maps The non-commutative Hirota–Miwa discrete KP system Desargues maps and quadrilateral lattices

Desargues maps

Definition [AD '10]

Multidimensional compatibility of Desargues maps The non-commutative Hirota–Miwa discrete KP system Desargues maps and quadrilateral lattices

Desargues maps

Definition [AD '10]

Multidimensional compatibility of Desargues maps The non-commutative Hirota–Miwa discrete KP system Desargues maps and quadrilateral lattices

Desargues maps

Definition [AD '10]

Multidimensional compatibility of Desargues maps The non-commutative Hirota–Miwa discrete KP system Desargues maps and quadrilateral lattices

4D compatibility of Desargues maps

Where is the S₅ symmetry group of the Desargues configuration?

Adam Doliwa Desargues maps

Multidimensional compatibility of Desargues maps The non-commutative Hirota–Miwa discrete KP system Desargues maps and quadrilateral lattices

4D compatibility of Desargues maps

Where is the S_5 symmetry group of the Desargues configuration?

Adam Doliwa Desargues maps

Multidimensional compatibility of Desargues maps The non-commutative Hirota–Miwa discrete KP system Desargues maps and quadrilateral lattices

Non-commutative Hirota–Miwa system

In homogeneous coordinates $\phi:\mathbb{Z}^N o \mathbb{D}^{M+1}_*$

$$\phi + \phi_{(i)} \mathbf{A}_{ij} + \phi_{(j)} \mathbf{A}_{ji} = \mathbf{0}, \qquad i \neq j,$$

where $A_{ij} : \mathbb{Z}^K \to \mathbb{D}_*$. The compatibility condition of the above linear system read

$$A_{ij}^{-1}A_{ik} + A_{kj}^{-1}A_{ki} = 1$$

 $A_{ik(j)}A_{jk} = A_{jk(i)}A_{ik},$

where i, j, k are distinct

Multidimensional compatibility of Desargues maps The non-commutative Hirota–Miwa discrete KP system Desargues maps and quadrilateral lattices

Non-commutative Hirota–Miwa system

In homogeneous coordinates $\phi:\mathbb{Z}^N o \mathbb{D}^{M+1}_*$

$$\phi + \phi_{(i)} A_{ij} + \phi_{(j)} A_{ji} = 0, \qquad i \neq j,$$

where $A_{ij} : \mathbb{Z}^K \to \mathbb{D}_*$. The compatibility condition of the above linear system reads

$$A_{ij}^{-1}A_{ik} + A_{kj}^{-1}A_{ki} = 1,$$

 $A_{ik(j)}A_{jk} = A_{jk(i)}A_{ik},$

where i, j, k are distinct

Multidimensional compatibility of Desargues maps The non-commutative Hirota–Miwa discrete KP system Desargues maps and quadrilateral lattices

The Hirota system gauge

One can find homogeneous coordinates such that $A_{ij} = -A_{ji}$

$$\phi_{(i)} - \phi_{(j)} = \phi U_{ij}, \qquad 1 \le i \ne j \le N,$$

where the functions $U_{ij} = A_{ji}^{-1}$ satisfy the non-commutative Hirota–Miwa system

$$U_{ij} + U_{ji} = 0, \qquad U_{ij} + U_{jk} + U_{ki} = 0$$
$$U_{ij}U_{ik(j)} = U_{ik}U_{ij(k)}, \qquad i, j, k \text{ distinct}$$

[Nijhoff '85, Nimmo '07]

The second set of equations implies existence of potentials $\rho_i : \mathbb{Z}^K \to \mathbb{D}_*, i = 1, \dots, K$, such that

$$U_{ij} = \rho_i^{-1} \rho_{i(j)}$$

Multidimensional compatibility of Desargues maps The non-commutative Hirota–Miwa discrete KP system Desargues maps and quadrilateral lattices

The Hirota system gauge

One can find homogeneous coordinates such that $A_{ij} = -A_{ji}$

$$\phi_{(i)} - \phi_{(j)} = \phi U_{ij}, \qquad 1 \le i \ne j \le N,$$

where the functions $U_{ij} = A_{ji}^{-1}$ satisfy the non-commutative Hirota–Miwa system

$$U_{ij} + U_{ji} = 0, \qquad U_{ij} + U_{jk} + U_{ki} = 0$$
$$U_{ij}U_{ik(j)} = U_{ik}U_{ij(k)}, \qquad i, j, k \text{ distinct}$$

[Nijhoff '85, Nimmo '07]

The second set of equations implies existence of potentials $\rho_i : \mathbb{Z}^K \to \mathbb{D}_*, i = 1, \dots, K$, such that

$$U_{ij} = \rho_i^{-1} \rho_{i(j)}$$

Multidimensional compatibility of Desargues maps The non-commutative Hirota–Miwa discrete KP system Desargues maps and quadrilateral lattices

The Hirota–Miwa discrete KP system

When $\mathbb{D} = \mathbb{F}$ is comutative then the functions ρ_i can be parametrized in terms of a single potential $\tau : \mathbb{Z}^K \to \mathbb{F}$

$$\rho_i = (-1)^{\sum_{k < i} n_k} \frac{\tau_{(i)}}{\tau}$$

The linear problem

[Date-Jimbo-Miwa '82]

$$\phi_{(i)} - \phi_{(j)} = \frac{\tau \tau_{(ij)}}{\tau_{(i)} \tau_{(j)}} \phi, \qquad 1 \le i < j \le K$$

The nonlinear system

[Hirota '81], [Miwa '82]

$$au_{(i)} au_{(jk)} - au_{(j)} au_{(ik)} + au_{(k)} au_{(ij)} = 0, \qquad 1 \le i < j < k \le K$$

Multidimensional compatibility of Desargues maps The non-commutative Hirota–Miwa discrete KP system Desargues maps and quadrilateral lattices

The Hirota–Miwa discrete KP system

When $\mathbb{D} = \mathbb{F}$ is comutative then the functions ρ_i can be parametrized in terms of a single potential $\tau : \mathbb{Z}^K \to \mathbb{F}$

$$\rho_i = (-1)^{\sum_{k < i} n_k} \frac{\tau_{(i)}}{\tau}$$

The linear problem

[Date-Jimbo-Miwa '82]

$$\phi_{(i)} - \phi_{(j)} = \frac{\tau \tau_{(ij)}}{\tau_{(i)} \tau_{(j)}} \phi, \qquad 1 \le i < j \le K$$

The nonlinear system

[Hirota '81], [Miwa '82]

$$\tau_{(i)}\tau_{(jk)} - \tau_{(j)}\tau_{(ik)} + \tau_{(k)}\tau_{(ij)} = 0, \qquad 1 \le i < j < k \le K$$

Multidimensional compatibility of Desargues maps The non-commutative Hirota–Miwa discrete KP system Desargues maps and quadrilateral lattices

The Hirota–Miwa discrete KP system

When $\mathbb{D} = \mathbb{F}$ is comutative then the functions ρ_i can be parametrized in terms of a single potential $\tau : \mathbb{Z}^K \to \mathbb{F}$

$$\rho_i = (-1)^{\sum_{k < i} n_k} \frac{\tau_{(i)}}{\tau}$$

The linear problem

[Date-Jimbo-Miwa '82]

$$\phi_{(i)} - \phi_{(j)} = \frac{\tau \tau_{(ij)}}{\tau_{(i)} \tau_{(j)}} \phi, \qquad 1 \le i < j \le K$$

The nonlinear system

[Hirota '81], [Miwa '82]

$$\tau_{(i)}\tau_{(jk)} - \tau_{(j)}\tau_{(ik)} + \tau_{(k)}\tau_{(ij)} = 0, \qquad 1 \le i < j < k \le K$$

Multidimensional compatibility of Desargues maps The non-commutative Hirota–Miwa discrete KP system Desargues maps and quadrilateral lattices

The Hirota–Miwa system in combinatorics

3D Hirota–Miwa (equation) is the same as the so called octahedron recurrence in combinatorics

[Bobenko–Suris, Schief '09]

On the level of the τ -function the 4D compatibility of the Hirota–Miwa equation involves the graph of the Desargues configuration

Multidimensional compatibility of Desargues maps The non-commutative Hirota–Miwa discrete KP system Desargues maps and quadrilateral lattices

Quadrilateral lattices

Definition [AD-Santini '97]

A quadrilateral lattice is a map $x : \mathbb{Z}^{K} \to \mathbb{P}^{M}(\mathbb{D}), 3 \leq K \leq M$, whose all elementary quadrilaterals are planar.

Three planes in \mathbb{P}^3 intersect generically at one point.

Adam Doliwa Desargues maps

Multidimensional compatibility of Desargues maps The non-commutative Hirota–Miwa discrete KP system Desargues maps and quadrilateral lattices

Quadrilateral lattices

Definition [AD-Santini '97]

A quadrilateral lattice is a map $x : \mathbb{Z}^{K} \to \mathbb{P}^{M}(\mathbb{D}), 3 \leq K \leq M$, whose all elementary quadrilaterals are planar.

Three planes in \mathbb{P}^3 intersect generically at one point.

Adam Doliwa Desargues maps

Multidimensional compatibility of Desargues maps The non-commutative Hirota–Miwa discrete KP system Desargues maps and quadrilateral lattices

Laplace transformations of quadrilateral lattices

[Sauer '37], [AD '97]

$$\mathcal{L}_{ij} \circ \mathcal{L}_{ji} = \mathsf{id} \;, \qquad \mathcal{L}_{jk} \circ \mathcal{L}_{ij} = \mathcal{L}_{ik}, \qquad \mathcal{L}_{ki} \circ \mathcal{L}_{ij} = \mathcal{L}_{kj}.$$

Laplace transformations of generic *K*-dimensional quadrilateral lattices are parametrized by points of the root lattice $Q(A_{K-1})$

$$egin{aligned} \mathcal{Q}(\mathcal{A}_{K-1}) &= \{(\ell_1,\ldots,\ell_K) \in \mathbb{Z}^K | \ell_1 + \cdots + \ell_K = 0\} \ \mathcal{L}_{ij} : \ell_i &\mapsto \ell_i + 1, \quad \ell_j \mapsto \ell_j - 1 \end{aligned}$$

[AD-Santini-Mañas '00]

Multidimensional compatibility of Desargues maps The non-commutative Hirota–Miwa discrete KP system Desargues maps and quadrilateral lattices

Laplace transformations of quadrilateral lattices

[Sauer '37], [AD '97]

$$\mathcal{L}_{ij} \circ \mathcal{L}_{ji} = \mathsf{id} \;, \qquad \mathcal{L}_{jk} \circ \mathcal{L}_{ij} = \mathcal{L}_{ik}, \qquad \mathcal{L}_{ki} \circ \mathcal{L}_{ij} = \mathcal{L}_{kj}.$$

Laplace transformations of generic *K*-dimensional quadrilateral lattices are parametrized by points of the root lattice $Q(A_{K-1})$

$$egin{aligned} \mathcal{Q}(\mathcal{A}_{\mathcal{K}-1}) &= \{(\ell_1,\ldots,\ell_{\mathcal{K}}) \in \mathbb{Z}^{\mathcal{K}} | \ell_1 + \cdots + \ell_{\mathcal{K}} = \mathbf{0} \} \ \mathcal{L}_{ij} &: \ell_i \mapsto \ell_i + \mathbf{1}, \quad \ell_j \mapsto \ell_j - \mathbf{1} \end{aligned}$$

[AD-Santini-Mañas '00]

Multidimensional compatibility of Desargues maps The non-commutative Hirota–Miwa discrete KP system Desargues maps and quadrilateral lattices

Desargues maps and quadrilateral lattices

Proposition [AD '10]

The theory of *K*-dimensional quadrilateral lattices and their Laplace transformations is the same as the theory of 2K - 1 dimensional Desargues maps

the change of variables: $n \in \mathbb{Z}^{2K-1}$ and $(m, \ell) \in \mathbb{Z}^K \times Q(A_{K-1})$

$$n_{2i-1} = m_i, \qquad n_{2i} = -m_i - \ell_i, \qquad i = 1, \ldots, K,$$

where $n_{2K} = -n_1 - n_2 - \cdots - n_{2K-1}$

Adam Doliwa Desargues maps

The A_N root lattice and its affine $W(A_N)$ Weyl group Desargues maps of the $Q(A_N)$ root lattice Action of the affine group $W(A_N)$

Outline

Motivation – P_{IV} equation

- 2 Desargues maps
 - Multidimensional compatibility of Desargues maps
 - The non-commutative Hirota–Miwa discrete KP system
 - Desargues maps and quadrilateral lattices
- 3 Affine Weyl group symmetry of Desargues maps
 - The A_N root lattice and its affine $W(A_N)$ Weyl group
 - Desargues maps of the $Q(A_N)$ root lattice
 - Action of the affine group $W(A_N)$

The A_N root lattice and its affine $W(A_N)$ Weyl group Desargues maps of the $Q(A_N)$ root lattice Action of the affine group $W(A_N)$

The A_N root lattice

 $Q(A_N)$ is the lattice generated by vectors along the edges of regular *N*-simplex. If we take the vertices of the simplex to be the vectors of the canonical basis in \mathbb{R}^{N+1}

$${m e}_i = (0, \dots, \stackrel{i}{1}, \dots, 0), \qquad 1 \le i \le N+1,$$

then the generators are

$$arepsilon_j^i = oldsymbol{e}_i - oldsymbol{e}_j, \qquad 1 \leq i
eq j \leq N+1.$$

 $Q(A_N) = \{(n_1, \ldots, n_{N+1}) \in \mathbb{Z}^{N+1} | n_1 + \cdots + n_{N+1} = 0\}$

The A_N root lattice and its affine $W(A_N)$ Weyl group Desargues maps of the $Q(A_N)$ root lattice Action of the affine group $W(A_N)$

Tiles (Delunay polytopes) of the A_N root lattice

Holes - points locally maximally distant from the lattice Delaunay polytope - convex hull of the lattice points closest to the hole

The Delaunay polytopes of $Q(A_N)$ are called regular "hypersimplices" P(k, N), k = 1, 2, ..., NP(1, N) - regular *N*-simplex P(k, N) - truncation of order k - 1 of the regular *N*-simplex

The A_N root lattice and its affine $W(A_N)$ Weyl group Desargues maps of the $Q(A_N)$ root lattice Action of the affine group $W(A_N)$

The A_N Weyl group

The Weyl group $W_0(A_N)$ is generated by the reflections r_i , $1 \le i \le N$, $2(\mathbf{v}|\alpha_i)$

$$r_i: \mathbf{V} \mapsto \mathbf{V} - \frac{\mathbf{L}(\mathbf{V} | \alpha_i)}{(\alpha_i | \alpha_i)} \alpha_i$$

 $\alpha_i = \boldsymbol{e}_i - \boldsymbol{e}_{i+1}$ - simple root vectors $W_0(A_N) \equiv S_{N+1}, r_i \equiv (i, i+1)$ ω, α, r_0 r_2 Adam Doliwa Desargues maps

The A_N root lattice and its affine $W(A_N)$ Weyl group Desargues maps of the $Q(A_N)$ root lattice Action of the affine group $W(A_N)$

The A_N affine Weyl group

The *affine Weyl group* $W(A_N)$ is generated by the reflections r_i , $1 \le i \le N$, and by the affine reflection r_0

$$r_0: \mathbf{v} \mapsto \mathbf{v} - \left(1 - \frac{2(\mathbf{v}|\tilde{lpha})}{(\tilde{lpha}|\tilde{lpha})}
ight) \tilde{lpha}$$

 $ilde{lpha} = -lpha_0 = lpha_1 + \dots + lpha_N = oldsymbol{e}_1 - oldsymbol{e}_{N+1}$ - the highest root vector

$$W(A_N) = Q(A_N) \rtimes W_0(A_N)$$

Theorem (Coxeter)

The affine Weyl group acts on the Delaunay tiling by permuting tiles within each class P(k, N).

The A_N root lattice and its affine $W(A_N)$ Weyl group Desargues maps of the $Q(A_N)$ root lattice Action of the affine group $W(A_N)$

Affine Weyl group symmetry of the Desargues maps

Proposition

Under the identification $\mathbb{Z}^N = \sum_{i=1}^N \mathbb{Z} \varepsilon_i^{N+1} = Q(A_N)$ the Desargues maps are maps $\phi : Q(A_N) \to \mathbb{P}^M$ such that the vertices of any *N*-simplex P(1, N) are mapped into collinear points.

Theorem

If $\phi : \sum_{i=1}^{N} \mathbb{Z} \varepsilon_i^{N+1} \to \mathbb{P}^M$ is a Desargues map then also for any element g of the affine Weyl group $W(A_N)$ the map $\phi \circ g$ is a Desargues map.

The A_N root lattice and its affine $W(A_N)$ Weyl group Desargues maps of the $Q(A_N)$ root lattice Action of the affine group $W(A_N)$

Images of P(K - 1, K) under the Desargues maps

P(K-1,K) has exactly $\begin{pmatrix} K+1\\ 2 \end{pmatrix}$ vertices and $\begin{pmatrix} K+1\\ 3 \end{pmatrix}$

2-facets P(1,2). Under Desargues map it gives a configuration of $\binom{K+1}{2}$ points and $\binom{K+1}{3}$ lines such that: (i) every line is incident with exactly three points; (ii) every point is incident with exactly K - 1 lines

K = 3 – the Veblen configuration – definition [Schief '09] of the Laplace–Darboux maps of $FCC = Q(A_3)$ lattice in \mathbb{R}^3

K = 4 - the Desargues configuration

The A_N root lattice and its affine $W(A_N)$ Weyl group Desargues maps of the $Q(A_N)$ root lattice Action of the affine group $W(A_N)$

Images of P(K - 1, K) under the Desargues maps

$$P(K-1,K) \text{ has exactly } \binom{K+1}{2} \text{ vertices and } \binom{K+1}{3}$$

2-facets $P(1,2)$. Under Desargues map it gives a configuration
of $\binom{K+1}{2}$ points and $\binom{K+1}{3}$ lines such that:
(i) every line is incident with exactly three points;
(ii) every point is incident with exactly $K-1$ lines

K = 3 – the Veblen configuration – definition [Schief '09] of the Laplace–Darboux maps of $FCC = Q(A_3)$ lattice in \mathbb{R}^3

K = 4 - the Desargues configuration

The A_N root lattice and its affine $W(A_N)$ Weyl group Desargues maps of the $Q(A_N)$ root lattice Action of the affine group $W(A_N)$

Images of P(K - 1, K) under the Desargues maps

$$\begin{array}{l} P(K-1,K) \text{ has exactly} \begin{pmatrix} K+1\\ 2 \end{pmatrix} \text{ vertices and} \begin{pmatrix} K+1\\ 3 \end{pmatrix} \\ 2 \text{-facets } P(1,2). \text{ Under Desargues map it gives a configuration} \\ \text{of} \begin{pmatrix} K+1\\ 2 \end{pmatrix} \text{ points and} \begin{pmatrix} K+1\\ 3 \end{pmatrix} \text{ lines such that:} \\ \text{(i) every line is incident with exactly three points;} \\ \text{(ii) every point is incident with exactly } K-1 \text{ lines} \end{array}$$

K = 3 – the Veblen configuration – definition [Schief '09] of the Laplace–Darboux maps of $FCC = Q(A_3)$ lattice in \mathbb{R}^3

K = 4 -the Desargues configuration

The A_N root lattice and its affine $W(A_N)$ Weyl group Desargues maps of the $Q(A_N)$ root lattice Action of the affine group $W(A_N)$

The linear problem of the Hirota-Miwa system on the root lattice

By the identification
$$\mathbb{Z}^N = \sum_{i=1}^N \mathbb{Z} \varepsilon_i^{N+1} = Q(A_N)$$
 we have the linear problem

$$\phi^{N+1}(n+\varepsilon_i^{N+1})-\phi^{N+1}(n+\varepsilon_j^{N+1}) = \phi^{N+1}(n)U_{ij}^{N+1}(n), \quad 1 \le i \ne j \le N$$
$$U_{ij}^{N+1}(n) = \left[\rho_i^{N+1}(n)\right]^{-1}\rho_i^{N+1}(n+\varepsilon_j^{N+1})$$

Observation: There are N + 1 equivalent choices of \mathbb{Z}^N coordnates in $Q(A_N)$ (with fixed origin) respecting geometrically the Desargues map condition!

The A_N root lattice and its affine $W(A_N)$ Weyl group Desargues maps of the $Q(A_N)$ root lattice Action of the affine group $W(A_N)$

The "rotated" linear problems

Theorem

The functions
$$\phi^i: \mathbb{Z}^N = \sum_{j=1}^N \mathbb{Z} \varepsilon^i_j o \mathbb{D}^{M+1}_*$$
 given by

$$\phi^{i}(n) = (-1)^{(n|\varepsilon_{i}^{N+1})}\phi^{N+1}(n)\left[\rho_{i}^{N+1}(n)\right]^{-1}$$

satisfy the linear system

$$\phi^{i}(n+\varepsilon^{i}_{j})-\phi^{i}(n+\varepsilon^{i}_{k})=\phi^{i}(n)U^{i}_{jk}(n), \qquad i,j,k \quad distinct,$$

where

$$U_{jk}^{i}(n) = \left[\rho_{j}^{i}(n)\right]^{-1} \rho_{j}^{i}(n + \varepsilon_{k}^{i}),$$

$$\rho_{j}^{i}(n) = \begin{cases} \rho_{j}^{N+1}(n) \left[\rho_{i}^{N+1}(n)\right]^{-1}, & j \neq N+1, \\ \left[\rho_{i}^{N+1}(n)\right]^{-1}, & j = N+1. \end{cases}$$

The A_N root lattice and its affine $W(A_N)$ Weyl group Desargues maps of the $Q(A_N)$ root lattice Action of the affine group $W(A_N)$

Geometric description of symmetries of the \mathbb{Z}^N -Desargues maps and of the non-comutative Hirota–Miwa system

- translations of the origin
- "rotations" of the \mathbb{Z}^N basis in $Q(A_N)$
- permutation of indices with fixed basis

The A_N root lattice and its affine $W(A_N)$ Weyl group Desargues maps of the $Q(A_N)$ root lattice Action of the affine group $W(A_N)$

The affine Weyl group action on the edge potentials

- $E(A_N) = \{[n, n + arepsilon_j^i] | n \in Q(A_N)\}$ oriented edges of $Q(A_N)$
- $\rho: E(A_N) \rightarrow \mathbb{D}$ the oriented edge potentials

$$\rho([n, n + \varepsilon_j^i]) = \rho_j^i(n)$$

Define the action of the affine Weyl group on the functions ρ_j^i through its action on the oriented edges of the root lattice

$$[g(
ho)]([n,n+arepsilon_j^i])=
ho(g^{-1}[n,n+arepsilon_j^i]),\qquad g\in W(A_N)$$

The A_N root lattice and its affine $W(A_N)$ Weyl group Desargues maps of the $Q(A_N)$ root lattice Action of the affine group $W(A_N)$

The simple root potentials

$$\rho^{i}(n) = \rho^{i}_{i+1}(n)$$
 - the simple root potentials

$$\rho_{j}^{i} = \rho^{j-1} \dots \rho^{i}, \qquad \rho_{j}^{j} = (\rho_{j}^{i})^{-1}, \qquad i < j$$

Define also the α_0 potential

$$\rho^{0} = (\rho^{N} \rho^{N-1} \dots \rho^{1})^{-1}$$

Motivation - P_{IV} equation
Desargues mapsThe A_N root lattice and its affine $W(A_N)$ Weyl group
Desargues maps of the $Q(A_N)$ root latticeAffine Weyl group symmetry of Desargues mapsAction of the affine group $W(A_N)$

Theorem

The action of the generators r_i , i = 0, ..., N, of the affine Weyl group on the functions ρ^j , j = 0, ..., N, is given by

$$[r_i(\rho^j)](n) = [(\rho^i)^{-a_{ji}^U}\rho^j(\rho^i)^{-a_{ji}^L}](r_i(n)),$$

where a_{ji}^U and a_{ji}^L are the "upper" and the "lower" parts of the Cartan matrix of the affine Weyl group $W(A_N)$

$$a_{ij}^{L} = \begin{bmatrix} 1 & 0 & & -1 \\ -1 & 1 & 0 & & \\ & -1 & 1 & \ddots & \\ & & \ddots & \ddots & 0 \\ 0 & & -1 & 1 \end{bmatrix}, a_{ij}^{U} = \begin{bmatrix} 1 & -1 & & 0 \\ 0 & 1 & -1 & & \\ & 0 & 1 & \ddots & \\ & & \ddots & \ddots & -1 \\ -1 & & 0 & 1 \end{bmatrix}$$

The A_N root lattice and its affine $W(A_N)$ Weyl group Desargues maps of the $Q(A_N)$ root lattice Action of the affine group $W(A_N)$

The non-commutative τ -functions

$$\rho_j^i(n)\rho_i^k(n) = \rho_j^k(n), \quad \text{where} \quad \rho_i^i = 1.$$

implies existence of N + 1 τ -functions $\tau_i : Q(A_N) \rightarrow \mathbb{D}$

$$\rho_j^i(n) = \tau_j(n) \left[\tau_i(n)\right]^{-1}$$

The action of the affine Weyl group on the edge potentials ρ_j^i follows from the action on the τ -functions by transpositions

$$r_i(\tau_j) = \begin{cases} \tau_{i+1} & j = i \\ \tau_i & j = i+1 \\ \tau_j & j \neq i, i+1 \end{cases}, \quad \text{with} \quad n \mapsto r_i(n)$$

indices are considered modulo N + 1 within their range.

For \mathbb{D} commutative, i.e. a field, one can find simple expressions for all τ -functions in terms of one of them, e.g.

$$\begin{aligned} \tau_i(n) &= (-1)^{\sum_{\ell < i} n_\ell^{N+1}} \tau_{N+1}(n + \varepsilon_i^{N+1}), \qquad i \neq N+1 \\ n &= \sum_{\ell=1}^N n_\ell^{N+1} \varepsilon_\ell^{K+1} \end{aligned}$$

The A_N root lattice and its affine $W(A_N)$ Weyl group Desargues maps of the $Q(A_N)$ root lattice Action of the affine group $W(A_N)$

- A. Doliwa, *Desargues maps and the Hirota–Miwa equation*, Proc. R. Soc. A **466** (2010) 1117–1200.
- A. Doliwa, The affine Weyl group symmetry of Desargues maps and of the non-commutative Hirota–Miwa system, arXive soon