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Main topics of the talk

1. Exact discretization.

2. Discrete gradient method.

3. Locally exact discrete gradient schemes: LEX and SLEX.

4. Discrete gradient schemes of N th order: GRAD(N).

5. Locally exact modifications of numerical integrators.

6. Applications.
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Notation

t-derivative is denoted by dot, x-derivative by prime:

ẋ :=
dx

dt
, V ′(x) :=

dV (x)

dx
, ẍ :=

d2x

dt2
.

Vx :=
dV (x)

dx
, Vxx =

d2V (x)

dx2
, Vjx :=

djV (x)

dxj
.

Time step is denoted by h.
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Exact discretizations.

We consider an ODE with a general solution x(t) (satisfying the
initial condition x(t0) = x0), and a difference equation with
the general solution xn. The difference equation is the exact
discretization of the ODE if xn = x(tn).

Theorem. All linear ODE’s admit explicit exact discretizations.

R.B.Potts: “Differential and difference equations”, Am. Math. Monthly 89 (1982) 402-7.

Simple example: ẋ = ax, x(0) = x0.

xn = x(nh) = eahnx0 ⇒ xn+1 = eahxn ,

Exact discretization:
xn+1 − xn

eah−1
a

= axn. Note: lim
a→0

eah
− 1

a
= h.
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Example: harmonic oscillator

ẍ + ω2x = 0, p = ẋ

Exact discretization (i.e., xn = x(nh), pn = p(nh)):

xn+1−2 cos(ωh)xn+xn−1 = 0 , pn =
xn+1 − cos(ωh)xn

sin(ωh)

Equivalent form:
xn+1 − 2xn + xn−1

(

2 sin ωh
2

)2
+ ω2xn + 0

Details, generalizations, applications:

J.L.Cieśliński, “On the exact discretization of the classical harmonic oscillator equation”,

preprint arXiv: 0911.3672 (2009); J. Difference Equ. Appl., in press.
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Discrete gradient method (GRAD)

As an illustrative example we consider the system

ṗ = −V ′(x) , p = ẋ . (Newton)

The discrete gradient method (shortly: GRAD) applied to (Newton),
yields [LaBudde, Greenspan (1974)]:

pn+1 − pn

h
= −

V (xn+1) − V (xn)

xn+1 − xn
,

1

2
(pn+1 + pn) =

xn+1 − xn

h
.

GRAD

Theorem. GRAD preserves the energy integral exactly (up to

round-off errors). Indeed,
1

2
p2
n + V (xn) =

1

2
p2
n+1 + V (xn+1).
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Locally exact modification of the discrete gra-
dient scheme (GRAD-LEX and GRAD-SLEX)

We consider the following extension of the discrete gradient
scheme:

pn+1 − pn

δn
= −

V (xn+1) − V (xn)

xn+1 − xn
,

1

2
(pn+1 + pn) =

xn+1 − xn

δn
,

GRAD-DEL

where δn is an arbitrary positive function of h, xn, pn, xn+1, pn+1
etc. The system GRAD-DEL is a consistent approximation of

(Newton) if we add the condition lim
h→0

δn

h
= 1.
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Theorem. Any numerical scheme of the form GRAD-DEL pre-
serves exactly the energy integral (for any positive function δn).

Proof: Multiplying side by side both equations of (GRAD-DEL)

we obtain:
1

2
p2
n+1 + V (xn+1) =

1

2
p2
n + V (xn).

In order to get locally exact gradient schemes (GRAD-LEX and
GRAD-SLEX) we linearize GRAD-DEL around x = x̄:

ξn+1 − ξn

δn
=

1

2
(pn+1 + pn) ,

pn+1 − pn

δn
= −V ′(x̄) −

1

2
V ′′(x̄) (ξn + ξn+1) .

(LIN)

where ξn := xn − x̄ and ξn+1 = xn+1 − x̄.
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Theorem. The system (LIN) is the EXACT discretization of
the harmonic oscillator equation with a constant driving force:
ẍ + ω2x = g, p = ẋ, provided that

g = −V ′(x̄) , ω2 = V ′′(x̄) , δn =
2

ω
tan

ωh

2
.

The simplest choice is x̄ = 0 (small oscillations around the equi-
librium), then δ = const, and we get MOD-GRAD scheme.

J.L.Cieśliński, B.Ratkiewicz: J. Phys. A: Math. Theor. 42 (2009) 105204.

Choosing x̄ = xn we get GRAD-LEX scheme. The symmetric
(time-reversible) choice x̄ = 1

2(xn + xn+1) yields GRAD-SLEX
scheme (note that in both cases we change x̄ at every step).

J.L.Cieśliński, B.Ratkiewicz: Physical Review E 81 (2010) 016704.
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Locally exact discretizations (LEX). Main idea

1. Take a numerical scheme (applied to a nonlinear system).

2. Modify the scheme by introducing h-dependent parameters
(e.g., δ(h)) in place of h. It is of advantage to preserve geo-
metric properties of the original scheme.

3. Apply the modified scheme to the linearization of the
nonlinear system and require that the obtained discretization
is exact.

4. Either the resulting conditions on δ(h) are contradictory (then
one may try another modification, perhaps with larger number
of parameters), or we get locally exact modifiaction
of the original scheme.
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Gradient schemes

GRAD is of 2nd order,
GRAD-LEX of 3rd order,
GRAD-SLEX of 4th order

All these schemes are extremaly stable.
They have very high accuracy in the region of small oscillations.

However, it is possible to constuct gradient schemes of higher
orders, GRAD(N), without the loss of excellent qualitative prop-
erties of the gradient method.
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Taylor expansion of the exact solution

We expand x(t + h) and p(t + h) in Taylor series:

x(t + h) =

∞
∑

k=0

hk

k!

dkx(t)

dtk
,

p(t + h) =

∞
∑

k=0

hk

k!

dkp(t)

dtk
,

where all derivatives can be replaced by functions of x, p using
(Newton) and its differential consequences, e.g.,

p̈ ≡
d2p

dt2
= −V ′′(x)ẋ = −V ′′(x)p.
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The Taylor expansion can be represented in the form

x(t + h) =
∞

∑

k=0

hk

k!
bk(x, p) , p(t + h) =

∞
∑

k=0

hk

k!
ck(x, p) ,

where ck = bk+1, b0 = 0, and

bk+1 =
d

dt
bk =

∂bk

∂x
ẋ +

∂bk

∂p
ṗ = p

∂bk

∂x
− V ′(x)

∂bk

∂p
.

Corollary. The Taylor series of the exact solution:

x(t + h) = x + ph −
1
2V

′h2
−

1
6pV

′′h3

+ 1
24

(

V ′V ′′
− V ′′′p2

)

h4 + . . .

p(t + h) = p − V ′h −
1
2
pV ′′h2 + 1

6

(

V ′V ′′
− V ′′′p2

)

h3

+ 1
24

(

3pV ′V ′′′ + p(V ′′)2 − p3V (4)
)

h4 + . . .

(Taylor)
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Discrete gradient schemes of Nth order
We proceed to consider the family GRAD-DEL of numerical

schemes (parameterized by a single function δ):

xn+1 − xn

δ
=

1

2
(pn+1 + pn) .

pn+1 − pn

δ
= −

V (xn+1) − V (xn)

xn+1 − xn
,

GRAD-DEL

where δ can depend on h, xn, pn, xn+1, pn+1.

This family contains GRAD (2nd order), GRAD-LEX (3rd or-
der) and GRAD-SLEX (4th order) schemes. We are able to con-
struct discrete gradient schemes of any order: GRAD(N).
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The system GRAD-DEL (where xn ≡ x, pn ≡ p are given and
δ is a small parameter) implicitly defines xn+1 and pn+1. Using
implicit differentiation, we write down the Taylor series:

xn+1 = x + pδ − 1
2Vxδ

2
−

1
4pVxxδ

3 + 1
24

(

3VxVxx − 2p2V3x

)

δ4 + . . . ,

pn+1 = p − Vxδ −
1
2
pVxxδ

2 + 1
12

(

3VxVxx − 2V3xp
2
)

δ3

−
1
24

(

4pVxV3x + 3pV 2
xx − p3V4x

)

δ4 + . . . .

We assume that xn+1 and pn+1 are of N th order, i.e., their Tay-
lor expansions have at least N first terms identical with (Taylor).

This assumption fix first N terms of δ ≡
2(xn+1 − xn)

pn+1 + pn
.
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The first N terms of δ form a polynomial δN

δN = δN (x, p, h) = h +

N
∑

k=2

ak(x, p)hk

where few first coefficients ak read

a2 = 0 , a3 =
1

12
Vxx , a4 =

1

24
pVxxx ,

a5 =
1

240

(

2V 2
xx − 4VxVxxx + 3p2V4x

)

,

a6 =
1

1440

(

(5VxxVxxx − 15VxV4x)p + 4V5xp
3
)

,

The gradient scheme GRAD-DEL with δ = δN is called GRAD(N).
Its order is at least N , sometimes higher (e.g., the order of
GRAD(1) is 2, actually: GRAD(1) = GRAD(2)=GRAD).
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Figure 1: Simple pendulum. Discrete gradient schemes of high accuracy
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Extensions and generalizations
1. One-dimensional Hamiltonian systems

1

2
p2 + V (x) −→ T (p) + V (x)

A family of discrete gradient integrators (GRAD-DEL) preserving exactly all

trajectories of the Lotka-Volterra system.

2. Multidimensional Hamiltonian systems. δ is a matrix! To be

published soon.

3. ODE with integrals of motion
d

dt
x = f(x), I1, I2, . . . , Ik − integrals of motion

Generalized discrete gradient method (McLachlan, Quispel, Robidoux) pre-

serves all integrals of motion. GRAD-DEL type integrators: in preparation.
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Conclusion.
Modified gradient schemes GRAD-LEX, GRAD-SLEX, GRAD(N) have impor-
tant advantages:

• conservation of the energy integral (up to round-off errors)

• high stability, exact trajectories in the phase space,

• high accuracy (third, fourth and N th order, respectively), ,

• very good long-time behaviour of numerical solutions.

Future directions
• multi-dimensional cases

• locally exact modification of the implicit midpoint rule and some other
numerical schemes

• locally exact variable time-step integrators

• PDE’s (e.g., wave equation and Fourier transform)
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Figure 2: Simple pendulum. Relative error of the period T as a function of p0 for ε = 0.02.

White triangles: LEAP-FROG, white diamonds: GRAD, black diamonds: MOD-GRAD

(δ = const), black squares: GRAD-LEX, grey squares: GRAD-SLEX.
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Figure 3: Relative error of the period T as a function of ε for p0 = 1.8. Symbols: see figure ??.
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Figure 4: xn as a function of n, very near the separatrix (p0 = 1.9999999999), for ε = 0.9.

Symbols: see figure ??. The solid line corresponds to the exact (continuous) solution.
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