Phase Space Quantum Mechanics Canonical Regime Part 1

Maciej Błaszak Ziemowit Domański

Adam Mickiewicz University, Faculty of Physics Division of Mathematical Physics

June 7, 2010

3

医下子 化

Classical Hamiltonian systems Canonical coordinates Pure states, mixed states and expectation values of observables Time evolution of classical Hamiltonian systems

3

E 5 4

Classical Hamiltonian systems

Phase space

Phase space — a Poisson manifold, i.e. a smooth manifold M endowed with a two times contravariant antisymmetric tensor field \mathcal{P} (a Poisson tensor) satisfying the below relation

$$\mathcal{L}_{\zeta_f}\mathcal{P}=0,$$

for every vector fields ζ_f (Hamiltonian fields) defined as

$$\zeta_f := \mathcal{P} \mathrm{d} f, \quad f \in C^\infty(M).$$

Classical Hamiltonian systems Canonical coordinates Pure states, mixed states and expectation values of observables Time evolution of classical Hamiltonian systems

4 A N 4 A N 4 A N 4

Classical Hamiltonian systems

Phase space

Phase space — a Poisson manifold, i.e. a smooth manifold M endowed with a two times contravariant antisymmetric tensor field \mathcal{P} (a Poisson tensor) satisfying the below relation

$$\mathcal{L}_{\zeta_f}\mathcal{P}=0,$$

for every vector fields ζ_f (Hamiltonian fields) defined as

$$\zeta_f := \mathcal{P} \mathrm{d} f, \quad f \in C^\infty(M).$$

Algebra of observables

Algebra of observables — an algebra $\mathcal{A}_{\mathcal{C}} = \mathcal{C}^{\infty}(M)$, with respect to a point-wise product, of all (complex valued) smooth functions on M.

Classical Hamiltonian mechanics Quantization procedure on a phase space

Classical Hamiltonian systems Canonical coordinates Pure states, mixed states and expectation values of observables Time evolution of classical Hamiltonian systems

(日) (同) (三) (三)

3

Admissible observables

Admissible observables — real valued functions from \mathcal{A}_C . They constitute a real algebra denoted by \mathcal{O}_C .

Classical Hamiltonian systems Canonical coordinates Pure states, mixed states and expectation values of observables Time evolution of classical Hamiltonian systems

Admissible observables

Admissible observables — real valued functions from \mathcal{A}_C . They constitute a real algebra denoted by \mathcal{O}_C .

Lie structure on $C^{\infty}(M)$

A Poisson bracket

$$\{f,g\}_{\mathcal{P}} := \mathcal{P}(\mathrm{d}f,\mathrm{d}g), \quad f,g \in C^{\infty}(M)$$

introduces a structure of a Lie algebra on $C^{\infty}(M)$. Indeed, the Poisson bracket is a properly defined Lie bracket. In fact, it has the following properties

$$\begin{split} \{f,g\} &= -\{g,f\} & (\text{antisymmetry}), \\ \{f,gh\} &= \{f,g\}h + g\{f,h\} & (\text{Leibniz's rule}), \\ 0 &= \{f,\{g,h\}\} + \{h,\{f,g\}\} + \{g,\{h,f\}\} & (\text{Jacobi's identity}). \end{split}$$

The algebra $C^{\infty}(M)$ endowed with the Poisson bracket is called a *Poisson algebra*.

Classical Hamiltonian systems Canonical coordinates Pure states, mixed states and expectation values of observable Time evolution of classical Hamiltonian systems

A B + A B +

< 6 >

-

Classical Hamiltonian system

Classical Hamiltonian system — a triple (M, \mathcal{P}, H) , where $H \in \mathcal{O}_C$ is some distinguished observable called a Hamiltonian.

Classical Hamiltonian systems Canonical coordinates Pure states, mixed states and expectation values of observables Time evolution of classical Hamiltonian systems

3

- **F** - **F**

Canonical coordinates

Local coordinates q^i, p_i (i = 1, ..., N) in which a Poisson tensor \mathcal{P} have (locally) a form

$$\mathcal{P} = \frac{\partial}{\partial q^{i}} \wedge \frac{\partial}{\partial p_{i}} = \frac{\partial}{\partial q^{i}} \otimes \frac{\partial}{\partial p_{i}} - \frac{\partial}{\partial p_{i}} \otimes \frac{\partial}{\partial q^{i}} \quad \text{i.e.} \quad \mathcal{P}^{ij} = \begin{pmatrix} \mathbf{0}_{N} & \mathbb{I}_{N} \\ -\mathbb{I}_{N} & \mathbf{0}_{N} \end{pmatrix}$$

are called canonical coordinates.

Classical Hamiltonian systems Canonical coordinates Pure states, mixed states and expectation values of observables Time evolution of classical Hamiltonian systems

< 回 > < 三 > < 三 >

3

Canonical coordinates

Local coordinates q^i, p_i (i = 1, ..., N) in which a Poisson tensor \mathcal{P} have (locally) a form

$$\mathcal{P} = \frac{\partial}{\partial q^{i}} \wedge \frac{\partial}{\partial p_{i}} = \frac{\partial}{\partial q^{i}} \otimes \frac{\partial}{\partial p_{i}} - \frac{\partial}{\partial p_{i}} \otimes \frac{\partial}{\partial q^{i}} \quad \text{i.e.} \quad \mathcal{P}^{ij} = \begin{pmatrix} \mathbf{0}_{N} & \mathbb{I}_{N} \\ -\mathbb{I}_{N} & \mathbf{0}_{N} \end{pmatrix}$$

are called canonical coordinates.

In the canonical coordinates a Hamiltonian field $\zeta_{\rm f}$ and a Poisson bracket take a form

$$\zeta_{f} = \frac{\partial f}{\partial p_{i}} \frac{\partial}{\partial q^{i}} - \frac{\partial f}{\partial q^{i}} \frac{\partial}{\partial p_{i}},$$
$$\{f, g\} = \frac{\partial f}{\partial q^{i}} \frac{\partial g}{\partial p_{i}} - \frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q^{i}}.$$

A B > A B >

3

Pure states, mixed states and expectation values of observables

Lets restrict to the case of the Hamiltonian systems without any constrains, i.e. the case when $M = \mathbb{R}^{2N}$.

イヨト・イヨト

3

Pure states, mixed states and expectation values of observables

Lets restrict to the case of the Hamiltonian systems without any constrains, i.e. the case when $M = \mathbb{R}^{2N}$.

Pure states

Pure states — points in the phase space M.

Pure states, mixed states and expectation values of observables

Lets restrict to the case of the Hamiltonian systems without any constrains, i.e. the case when $M = \mathbb{R}^{2N}$.

Pure states

Pure states — points in the phase space M.

Mixed states

Mixed states — probability distribution functions defined on the phase space, i.e. functions $\rho \in C^{\infty}(M)$ such that

•
$$0 \le \rho(\xi) \le 1$$
 for $\xi \in M$,
• $\int_M \rho(\xi) d\xi = 1$.

くぼう くほう くほう

Pure states, mixed states and expectation values of observables

Lets restrict to the case of the Hamiltonian systems without any constrains, i.e. the case when $M = \mathbb{R}^{2N}$.

Pure states

Pure states — points in the phase space M.

Mixed states

Mixed states — probability distribution functions defined on the phase space, i.e. functions $\rho \in C^{\infty}(M)$ such that

•
$$0 \leq
ho(\xi) \leq 1$$
 for $\xi \in M$,

•
$$\int_{M} \rho(\xi) d\xi = 1.$$

In this picture pure states can be defined as Dirac delta distributions, i.e.

$$\xi_0 \in M \longleftrightarrow \delta(\xi - \xi_0).$$

イロン イボン イヨン イヨン

3

Expectation values of observables

Expectation value of observable $A \in A_C$ in a state ρ :

$$\langle A \rangle_{\rho} := \int_{M} A(\xi) \rho(\xi) \mathrm{d} \xi \,.$$

For a pure state $\rho(\xi) = \delta(\xi - \xi_0)$:

$$\langle A \rangle_{
ho} = \int_{M} A(\xi) \delta(\xi - \xi_0) \mathrm{d}\xi = A(\xi_0)$$

Classical Hamiltonian systems Canonical coordinates Pure states, mixed states and expectation values of observables Time evolution of classical Hamiltonian systems

3

Time evolution of classical Hamiltonian systems

The Hamiltonian H governs the time evolution of the system:

$$H \longrightarrow \zeta_H \longrightarrow \Phi_t^H$$

$$\begin{split} \xi(t + \Delta t) &= \Phi_{\Delta t}^{H}(\xi(t)) \\ & \uparrow \\ \dot{\xi} &= \zeta_{H} \\ & \uparrow \\ \dot{q}^{i} &= \frac{\partial H}{\partial p_{i}}, \quad \dot{p}_{i} &= -\frac{\partial H}{\partial q^{i}} \end{split} \qquad \qquad \rho(t) &= (\Phi_{\Delta t}^{H})^{*}\rho(t + \Delta t) \\ & \uparrow \\ L(H,\rho) &:= \frac{\partial \rho}{\partial t} - \{H,\rho\} = 0 \\ \text{(Liouville equation)} \end{split}$$

(Hamilton equations)

For $\rho(\xi) = \delta(\xi - \xi_0)$ the Liouville equation induces the Hamilton equations.

- 4 回 ト - 4 回 ト

3

Time dependent expectation value of observables

A time dependent expectation value of an observable $A \in A_C$ in a state $\rho(t)$, i.e. $\langle A \rangle_{\rho(t)}$, fulfills the following equation of motion

$$\langle A \rangle_{L(H,\rho)} = 0 \iff \frac{\mathrm{d}}{\mathrm{d}t} \langle A \rangle_{\rho(t)} - \langle \{A,H\} \rangle_{\rho(t)} = 0.$$

(日) (同) (三) (三)

÷.

Time development of observables

An automorphism of the algebra of observables $\mathcal{A}_{\mathcal{C}}$:

$$U_t^H = (\Phi_t^H)^* = e^{t\mathcal{L}_{\zeta_H}}.$$

(日) (同) (三) (三)

3

Time development of observables

An automorphism of the algebra of observables \mathcal{A}_C :

$$U_t^H = (\Phi_t^H)^* = e^{t\mathcal{L}_{\zeta_H}}.$$

Time development of $A \in A_C$:

$$A(t) = U_t^H A(0) = e^{t\mathcal{L}_{\zeta_H}} A(0) = e^{t\zeta_H} A(0) \iff \frac{\partial A}{\partial t}(t) - \{A(t), H\} = 0.$$

3

.

Time development of observables

An automorphism of the algebra of observables $\mathcal{A}_{\mathcal{C}}$:

$$U_t^H = (\Phi_t^H)^* = e^{t\mathcal{L}_{\zeta_H}}.$$

Time development of $A \in A_C$:

$$A(t) = U_t^H A(0) = e^{t\mathcal{L}_{\zeta_H}} A(0) = e^{t\zeta_H} A(0) \iff \frac{\partial A}{\partial t}(t) - \{A(t), H\} = 0.$$

Both presented approaches to the time development yield equal predictions concerning the results of measurements:

$$\langle A(0) \rangle_{
ho(t)} = \langle A(t) \rangle_{
ho(0)}$$

Classical Hamiltonian mechanics Quantization procedure on a phase space

Basics of deformation quantization

Space of states and properties of canonical $\star_{\sigma,\alpha,\beta}$ -products Pure states, mixed states and expectation values of observables Time evolution of quantum Hamiltonian systems

3

E 5 4

Basics of deformation quantization

Let (M, \mathcal{P}) be an arbitrary Poisson manifold.

Basics of deformation quantization

Space of states and properties of canonical $\star_{\sigma,\alpha,\beta}$ -products Pure states, mixed states and expectation values of observables Time evolution of quantum Hamiltonian systems

3

- A I - A I

Basics of deformation quantization

Let (M, \mathcal{P}) be an arbitrary Poisson manifold.

Quantization of the Poisson algebra of observables

Quantization of (M, \mathcal{P}) :

Deformation with respect to \hbar of the classical algebra of observables A_C to some noncommutative quantum algebra of observables A_Q , i.e.

$$\begin{array}{c} \cdot \longrightarrow \star, \\ \{ \cdot , \cdot \} \longrightarrow [| \cdot , \cdot |] = \frac{1}{i\hbar} [\cdot , \cdot], \end{array}$$

where $[\cdot, \cdot]$ is a \star -commutator.

Space of states and properties of canonical $\star_{\sigma,\alpha,\beta}$ -products Pure states, mixed states and expectation values of observables Fime evolution of quantum Hamiltonian systems

(日) (同) (三) (三)

÷.

*-product

The deformed noncommutative multiplication on $\mathcal{A}_{\textit{Q}}$ should satisfy such natural conditions

1
$$f \star (g \star h) = (f \star g) \star h$$
 (associativity),
2 $f \star g = fg + o(\hbar)$,
3 $[|f,g|] = \{f,g\} + o(\hbar)$,
3 $f \star 1 = 1 \star f = f$,
4 $f \star g = \sum_{k=0}^{\infty} \hbar^k B_k(f,g)$,
where $f, g, h \in \mathcal{A}_Q$ and $B_k : \mathcal{A}_Q \times \mathcal{A}_Q \to \mathcal{A}_Q$ are bilinear operators.

Space of states and properties of canonical $\star_{\sigma,\,\alpha,\,\beta}$ -products Pure states, mixed states and expectation values of observables Time evolution of quantum Hamiltonian systems

3

*-product

The deformed noncommutative multiplication on $\mathcal{A}_{\mathcal{Q}}$ should satisfy such natural conditions

•
$$f \star (g \star h) = (f \star g) \star h$$
 (associativity),
• $f \star g = fg + o(\hbar)$,
• $[|f,g|] = \{f,g\} + o(\hbar)$,
• $f \star 1 = 1 \star f = f$,
• $f \star g = \sum_{k=0}^{\infty} \hbar^k B_k(f,g)$,
where $f, g, h \in \mathcal{A}_Q$ and $B_k : \mathcal{A}_Q \times \mathcal{A}_Q \to \mathcal{A}_Q$ are bilinear operators.

From the construction of the *-product it can be immediately seen that in the limit $\hbar \to 0$ the quantized algebra of observables reduces to the classical algebra of observables.

Space of states and properties of canonical $\star_{\sigma,\alpha,\beta}$ -products Pure states, mixed states and expectation values of observables Time evolution of quantum Hamiltonian systems

(日) (同) (三) (三)

Ξ.

The bracket $[|\,\cdot\,,\,\cdot\,|]$ is a well-defined Lie bracket. In fact, it satisfies

$$\begin{split} [|f,g|] &= -[|g,f|] & (\text{antisymmetry}), \\ [|f,g \star h|] &= [|f,g|] \star h + g \star [|f,h|] & (\text{Leibniz's rule}), \\ 0 &= [|f,[|g,h|]|] + [|h,[|f,g|]|] + [|g,[|h,f|]|] & (\text{Jacobi's identity}). \end{split}$$

(日) (同) (三) (三)

3

Lets restrict to the case of the Hamiltonian systems without any constrains, i.e. the case when $M = \mathbb{R}^{2N}$.

Classical Hamiltonian mechanics Quantization procedure on a phase space Basics of deformation quantization Space of states and properties of canonical $\star_{\sigma,\alpha,\beta}$ -products Pure states, mixed states and expectation values of observables Time evolution of quantum Hamiltonian systems

(日) (同) (三) (三)

3

Lets restrict to the case of the Hamiltonian systems without any constrains, i.e. the case when $M = \mathbb{R}^{2N}$.

In this case

$$\mathcal{P} = \sum_{i=1}^{N} X_i \wedge Y_i = \sum_{i=1}^{N} (X_i \otimes Y_i - Y_i \otimes X_i),$$

where X_i, Y_i (i = 1, ..., N) are some pair-wise commuting vector fields on M.

Classical Hamiltonian mechanics Quantization procedure on a phase space Basics of deformation quantization Space of states and properties of canonical $\star_{\sigma,\alpha,\beta}$ -products Pure states, mixed states and expectation values of observables Time evolution of quantum Hamiltonian systems

(日) (同) (三) (三)

3

Lets restrict to the case of the Hamiltonian systems without any constrains, i.e. the case when $M = \mathbb{R}^{2N}$.

In this case

$$\mathcal{P} = \sum_{i=1}^{N} X_i \wedge Y_i = \sum_{i=1}^{N} (X_i \otimes Y_i - Y_i \otimes X_i),$$

where X_i, Y_i (i = 1, ..., N) are some pair-wise commuting vector fields on M.

Also

$$\{f,g\}_{\mathcal{P}} = f\left(\sum_{i=1}^{N} (X_i \otimes Y_i - Y_i \otimes X_i)\right)g = f\left(\sum_{i=1}^{N} (\overleftarrow{X}_i \overrightarrow{Y}_i - \overleftarrow{Y}_i \overrightarrow{X}_i)\right)g$$
$$= \sum_{i=1}^{N} (X_i(f)Y_i(g) - Y_i(f)X_i(g)).$$

Space of states and properties of canonical $\star_{\sigma,\alpha,\beta}$ -products

In the rest of the presentation the case of $\star_{\sigma,\alpha,\beta}$ -products related to the canonical Poisson tensor $\mathcal{P} = \partial_x \wedge \partial_p$ on a manifold $M = \mathbb{R}^2$ will be considered.

Space of states and properties of canonical $\star_{\sigma,\alpha,\beta}$ -products

In the rest of the presentation the case of $\star_{\sigma,\alpha,\beta}$ -products related to the canonical Poisson tensor $\mathcal{P} = \partial_x \wedge \partial_p$ on a manifold $M = \mathbb{R}^2$ will be considered.

Canonical $\star_{\sigma,\alpha,\beta}$ -products

The $\star_{\sigma,\alpha,\beta}$ -product takes the form

$$f \star_{\sigma,\alpha,\beta} g = f \exp\left(i\hbar\sigma\overleftarrow{\partial}_{x}\overrightarrow{\partial}_{p} - i\hbar\overline{\sigma}\overleftarrow{\partial}_{p}\overrightarrow{\partial}_{x} + \hbar\alpha\overleftarrow{\partial}_{x}\overrightarrow{\partial}_{x} + \hbar\beta\overleftarrow{\partial}_{p}\overrightarrow{\partial}_{p}\right)g$$
$$= \sum_{n,m,r,s=0}^{\infty} (-1)^{m}(i\hbar)^{n+m}\hbar^{r+s}\frac{\sigma^{n}\overline{\sigma}^{m}\alpha^{r}\beta^{s}}{n!m!r!s!}$$
$$\cdot (\partial_{x}^{n+r}\partial_{p}^{m+s}f)(\partial_{x}^{m+r}\partial_{p}^{n+s}g).$$

Basics of deformation quantization Space of states and properties of canonical $\star_{\sigma, \alpha, \beta}$ -products Pure states, mixed states and expectation values of observables Time evolution of quantum Hamiltonian systems

イボト イラト イラト

-

Particular cases of the $\star_{\sigma,\alpha,\beta}$ -product

The well-known particular cases of the $\star_{\sigma,\alpha,\beta}$ -product are

§ for σ = α = β = 0, the Kupershmidt-Manin product,
 § for σ^{ij} = ½δ^{ij}, α = β = 0, the Moyal (or Groenewold) product

$$f \star_{\frac{1}{2}} g = f \exp\left(\frac{1}{2}i\hbar(\overleftarrow{\partial}_{x}\overrightarrow{\partial}_{p} - \overleftarrow{\partial}_{p}\overrightarrow{\partial}_{x})\right)g$$
$$= f \exp\left(\frac{1}{2}i\hbar\partial_{x}\wedge\partial_{p}\right)g.$$

 $\textbf{ o for } \sigma=\tfrac{1}{2}\text{, } \alpha=\tfrac{2\lambda-1}{2\omega}\text{, } \beta=\omega^2\alpha \text{ where } \omega,\lambda\in\mathbb{R} \text{ and } \omega>0$

$$f \star g = f \exp\left(\hbar\lambda \overleftarrow{\partial}_{a} \overrightarrow{\partial}_{\bar{a}} - \hbar\bar{\lambda} \overleftarrow{\partial}_{\bar{a}} \overrightarrow{\partial}_{a}\right) g,$$

where the new coordinates $a(x, p) = (\omega x + ip)/\sqrt{2\omega}$, $\bar{a}(x, p) = (\omega x - ip)/\sqrt{2\omega}$ called *holomorphic coordinates* were used.

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Theorem

Let $f, g \in A_Q$ be such that $f \star_{\sigma,\alpha,\beta} g$ and $g \star_{\sigma,\alpha,\beta} f$ are integrable functions. Then there holds

$$\iint (f \star_{\sigma,\alpha,\beta} g)(x,p) \mathrm{d} x \, \mathrm{d} p = \iint (g \star_{\sigma,\alpha,\beta} f)(x,p) \mathrm{d} x \, \mathrm{d} p.$$

Moreover, for the Moyal *-product (the case of $\sigma = \frac{1}{2}$ and $\alpha = \beta = 0$) there holds

$$\iint (f \star_{\frac{1}{2}} g)(x,p) \mathrm{d} x \, \mathrm{d} p = \iint f(x,p) g(x,p) \mathrm{d} x \, \mathrm{d} p$$

Basics of deformation quantization Space of states and properties of canonical $\star_{\sigma,\alpha,\beta}$ -products Pure states, mixed states and expectation values of observables Time evolution of quantum Hamiltonian systems

(日) (同) (三) (三)

-

Space of states

Space of states — in the case $\alpha = \beta = 0$ the Hilbert space $L^2(\mathbb{R}^2)$.

3

法国际 化原油

Space of states

Space of states — in the case $\alpha = \beta = 0$ the Hilbert space $L^2(\mathbb{R}^2)$. It is possible to extend the \star_{σ} -product to the \star_{σ} -product between functions from $L^2(\mathbb{R}^2)$, as to make from $L^2(\mathbb{R}^2)$ a Hilbert algebra with respect to the \star_{σ} -multiplication.

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Space of states for the general $\star_{\sigma,\alpha,\beta}$ -multiplication

For $\alpha \neq 0, \beta \neq 0$ the space of states for the general $\star_{\sigma,\alpha,\beta}$ -multiplication can be defined by

$$\mathcal{H} = S_{lpha,eta}(L^2(\mathbb{R}^2)).$$

where for appropriate $f \in L^2(\mathbb{R}^2)$:

$$S_{\alpha,\beta}f(x,p) = \frac{1}{2\pi\hbar\sqrt{\alpha\beta}} \iint f(x',p')e^{-\frac{1}{2\hbar\alpha}(x-x')^2}e^{-\frac{1}{2\hbar\beta}(p-p')^2}\mathrm{d}x'\,\mathrm{d}p'\,.$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Space of states for the general $\star_{\sigma,\alpha,\beta}$ -multiplication

For $\alpha \neq 0, \beta \neq 0$ the space of states for the general $\star_{\sigma,\alpha,\beta}$ -multiplication can be defined by

$$\mathcal{H} = S_{lpha,eta}(L^2(\mathbb{R}^2)).$$

where for appropriate $f \in L^2(\mathbb{R}^2)$:

$$S_{\alpha,\beta}f(x,p) = \frac{1}{2\pi\hbar\sqrt{\alpha\beta}} \iint f(x',p')e^{-\frac{1}{2\hbar\alpha}(x-x')^2}e^{-\frac{1}{2\hbar\beta}(p-p')^2}\mathrm{d}x'\,\mathrm{d}p'\,.$$

(日) (同) (三) (三)

3

The scalar product and the $\star_{\sigma,\alpha,\beta}$ -product on $\mathcal H$ can be defined by

$$\begin{split} \langle \Psi | \Phi \rangle_{\mathcal{H}} &= \langle S_{\alpha,\beta}^{-1} \Psi | S_{\alpha,\beta}^{-1} \Phi \rangle_{L^{2}}, \quad \Psi, \Phi \in \mathcal{H}, \\ \Psi \star_{\sigma,\alpha,\beta} \Phi &= S_{\alpha,\beta}^{-1} \Psi \star_{\sigma} S_{\alpha,\beta}^{-1} \Phi, \quad \Psi, \Phi \in \mathcal{H}. \end{split}$$

Hence, \mathcal{H} is also a Hilbert algebra.

Theorem

The scalar product on ${\mathcal H}$ can be written in a form

$$\langle \Psi | \Phi \rangle_{\mathcal{H}} = \iint \left(\mathcal{F} \Psi(\xi, \eta) \right)^* \mathcal{F} \Phi(\xi, \eta) \mathrm{d} \mu(\xi, \eta) \,,$$

where

$$\mathrm{d}\mu(\xi,\eta) = e^{\frac{1}{\hbar}\alpha\xi^2} e^{\frac{1}{\hbar}\beta\eta^2} \mathrm{d}\xi \,\mathrm{d}\eta\,.$$

- A - D

3

- **F** - **F**

It is possible to define a left and right $\star_{\sigma,\alpha,\beta}$ -product of a function $A \in \mathcal{A}_Q$ with functions from some subspace of \mathcal{H} receiving again a function from \mathcal{H} .

イロン イボン イヨン イヨン

It is possible to define a left and right $\star_{\sigma,\alpha,\beta}$ -product of a function $A \in \mathcal{A}_Q$ with functions from some subspace of \mathcal{H} receiving again a function from \mathcal{H} .

Theorem

For any function $A \in \mathcal{A}_Q$ there holds

$$egin{aligned} &\mathcal{A}_L\star_{\sigma,lpha,eta}\,=\,\mathcal{A}_{\sigma,lpha,eta}(\hat{q}_{\sigma,lpha},\hat{p}_{\sigma,eta}),\ &\mathcal{A}_R\star_{\sigma,lpha,eta}\,=\,\mathcal{A}_{\sigma,lpha,eta}(\hat{q}^*_{ar{\sigma},lpha},\hat{p}^*_{ar{\sigma},eta}), \end{aligned}$$

where

$$\begin{aligned} \hat{q}_{\sigma,\alpha} &:= x + i\hbar\sigma\partial_{p} + \hbar\alpha\partial_{x} = x_{L}\star_{\sigma,\alpha,\beta}, \\ \hat{p}_{\sigma,\beta} &:= p - i\hbar\bar{\sigma}\partial_{x} + \hbar\beta\partial_{p} = p_{L}\star_{\sigma,\alpha,\beta}, \end{aligned}$$

and

$$\begin{split} \hat{q}^*_{\bar{\sigma},\alpha} &:= x - i\hbar\bar{\sigma}\partial_p + \hbar\alpha\partial_x = x_R\star_{\sigma,\alpha,\beta}, \\ \hat{p}^*_{\bar{\sigma},\beta} &:= p + i\hbar\sigma\partial_x + \hbar\beta\partial_p = p_R\star_{\sigma,\alpha,\beta}. \end{split}$$

- 4 回 ト - 4 回 ト

-

(σ, α, β) -ordered operator functions

The symbol $A_{\sigma,\alpha,\beta}(\hat{q},\hat{p})$ denotes a (σ,α,β) -ordered operator function defined by

$$\mathsf{A}_{\sigma,\alpha,\beta}(\hat{q},\hat{p}) := \mathsf{A}(-i\hbar\partial_{\xi},i\hbar\partial_{\eta}) e^{\frac{i}{\hbar}(\xi\hat{q}-\eta\hat{p}+(\frac{1}{2}-\sigma)\xi\eta)+\frac{1}{2\hbar}(\alpha\xi^{2}+\beta\eta^{2})}\bigg|_{\xi=\eta=0}.$$

Examples of operator functions

• For
$$A(x, p) = x^2 + p^2$$

$$\begin{aligned} \mathsf{A}_{\sigma,\alpha,\beta}(\hat{q},\hat{p}) &= (\hat{q}^2 + \hat{p}^2)_{\sigma,\alpha,\beta} = \hat{q}^2 + \hat{p}^2 - \hbar\alpha - \hbar\beta \\ &= \hat{q}^2 + \hat{p}^2 + i(\alpha + \beta)\hat{q}\hat{p} - i(\alpha + \beta)\hat{p}\hat{q}. \end{aligned}$$

In particular, the case when $\alpha=\beta={\rm 0}$ gives

$$(\hat{q}^2+\hat{p}^2)_{\sigma,lpha,eta}=\hat{q}^2+\hat{p}^2.$$

Examples of operator functions

• For
$$A(x, p) = x^2 + p^2$$

$$\begin{aligned} \mathsf{A}_{\sigma,\alpha,\beta}(\hat{q},\hat{p}) &= (\hat{q}^2 + \hat{p}^2)_{\sigma,\alpha,\beta} = \hat{q}^2 + \hat{p}^2 - \hbar\alpha - \hbar\beta \\ &= \hat{q}^2 + \hat{p}^2 + i(\alpha + \beta)\hat{q}\hat{p} - i(\alpha + \beta)\hat{p}\hat{q}. \end{aligned}$$

In particular, the case when $\alpha=\beta={\rm 0}$ gives

$$(\hat{q}^2+\hat{p}^2)_{\sigma,lpha,eta}=\hat{q}^2+\hat{p}^2.$$

• For A(x,p) = xp

$$\mathcal{A}_{\sigma,lpha,eta}(\hat{q},\hat{p})=(\hat{q}\hat{p})_{\sigma,lpha,eta}=\hat{q}\hat{p}-i\hbar\sigma=ar{\sigma}\hat{q}\hat{p}+\sigma\hat{p}\hat{q}.$$

In particular, the case when $\sigma = 0, \frac{1}{2}, 1$ gives

$$\begin{aligned} &(\hat{q}\hat{p})_{\sigma=0,\alpha,\beta} = \hat{q}\hat{p} & (\text{normal ordering}), \\ &(\hat{q}\hat{p})_{\sigma=\frac{1}{2},\alpha,\beta} = \frac{1}{2}\hat{q}\hat{p} + \frac{1}{2}\hat{p}\hat{q} & (\text{Weyl ordering}), \\ &(\hat{q}\hat{p})_{\sigma=1,\alpha,\beta} = \hat{p}\hat{q} & (\text{anti-normal ordering}). \end{aligned}$$

< 回 > < 三 > < 三 >

3

Adjoint of $\star_{\sigma,\alpha,\beta}$ -multiplication

It is possible to introduce adjoint of left and right $\star_{\sigma,\alpha,\beta}\text{-multiplication}$ in a standard way

$$\begin{split} \langle (A_L \star_{\sigma,\alpha,\beta})^{\dagger} \Psi_1 | \Psi_2 \rangle_{\mathcal{H}} &= \langle \Psi_1 | A_L \star_{\sigma,\alpha,\beta} \Psi_2 \rangle_{\mathcal{H}} \,, \\ \langle (A_R \star_{\sigma,\alpha,\beta})^{\dagger} \Psi_1 | \Psi_2 \rangle_{\mathcal{H}} &= \langle \Psi_1 | A_R \star_{\sigma,\alpha,\beta} \Psi_2 \rangle_{\mathcal{H}} \,. \end{split}$$

< 6 >

< 3 > 4 3 >

3

Adjoint of $\star_{\sigma,\alpha,\beta}$ -multiplication

It is possible to introduce adjoint of left and right $\star_{\sigma,\alpha,\beta}\text{-multiplication}$ in a standard way

$$\begin{split} \langle (A_L \star_{\sigma,\alpha,\beta})^{\dagger} \Psi_1 | \Psi_2 \rangle_{\mathcal{H}} &= \langle \Psi_1 | A_L \star_{\sigma,\alpha,\beta} \Psi_2 \rangle_{\mathcal{H}} \,, \\ \langle (A_R \star_{\sigma,\alpha,\beta})^{\dagger} \Psi_1 | \Psi_2 \rangle_{\mathcal{H}} &= \langle \Psi_1 | A_R \star_{\sigma,\alpha,\beta} \Psi_2 \rangle_{\mathcal{H}} \,. \end{split}$$

From this it then follows that

$$\begin{split} (A_L \star_{\sigma,\alpha,\beta})^{\dagger} &= A_{\sigma,\alpha,\beta}^{\dagger}(\hat{q}_{\sigma,\alpha},\hat{p}_{\sigma,\beta}) = A_{\bar{\sigma},\alpha,\beta}^{*}(\hat{q}_{\sigma,\alpha},\hat{p}_{\sigma,\beta}), \\ (A_R \star_{\sigma,\alpha,\beta})^{\dagger} &= A_{\sigma,\alpha,\beta}^{\dagger}(\hat{q}_{\bar{\sigma},\alpha}^{*},\hat{p}_{\bar{\sigma},\beta}^{*}) = A_{\bar{\sigma},\alpha,\beta}^{*}(\hat{q}_{\bar{\sigma},\alpha}^{*},\hat{p}_{\bar{\sigma},\beta}^{*}). \end{split}$$

3

3 b. 4

Pure states, mixed states and expectation values of observables

Pure states

Pure states are functions $\Psi_{\mathrm{pure}} \in \mathcal{H}$ which satisfy the following conditions

$$\| \Psi_{\rm pure} \|_{\mathcal{H}} = 1 \ (\text{normalization}).$$

(日) (同) (三) (三)

э.

Mixed states

Mixed states $\Psi_{mix} \in \mathcal{H}$ are defined as linear combinations of some families of pure states $\Psi_{pure}^{(\lambda)}$

$$\Psi_{\mathrm{mix}} := \sum_{\lambda} p_{\lambda} \Psi_{\mathrm{pure}}^{(\lambda)},$$

where $0 \le p_{\lambda} \le 1$ and $\sum_{\lambda} p_{\lambda} = 1$.

(日) (同) (三) (三)

-

Quantum distribution functions

For an admissible quantum state $\Psi \in \mathcal{H}$ lets define a *quantum* distribution function ρ on the phase space by the equation

$$\rho := \frac{1}{\sqrt{2\pi\hbar}} \Psi.$$

3

B b d B b

Quantum distribution functions

For an admissible quantum state $\Psi \in \mathcal{H}$ lets define a *quantum* distribution function ρ on the phase space by the equation

$$\rho := \frac{1}{\sqrt{2\pi\hbar}} \Psi.$$

The function ρ is a quasi-probabilistic distribution function, i.e.

$$\iint \rho(x,p) \mathrm{d}x \,\mathrm{d}p = 1.$$

(日) (同) (三) (三)

э

Quantum distribution functions

For an admissible quantum state $\Psi \in \mathcal{H}$ lets define a *quantum* distribution function ρ on the phase space by the equation

$$\rho := \frac{1}{\sqrt{2\pi\hbar}} \Psi.$$

The function ρ is a quasi-probabilistic distribution function, i.e.

$$\iint \rho(\mathbf{x}, \mathbf{p}) \mathrm{d}\mathbf{x} \, \mathrm{d}\mathbf{p} = \mathbf{1}.$$

Marginal distributions

Marginal distributions

$$P(x) := \int \rho(x, p) \mathrm{d}p$$
, $P(p) := \int \rho(x, p) \mathrm{d}x$,

are probabilistic distribution functions.

(日) (同) (三) (三)

÷.

Expectation value of observables

The expectation value of an observable $A \in \mathcal{A}_Q$ in an admissible state $\Psi \in \mathcal{H}$:

$$\langle A \rangle_{\Psi} = \iint (A \star_{\sigma, \alpha, \beta} \rho)(x, p) \mathrm{d}x \, \mathrm{d}p,$$

where

$$\rho = \frac{1}{\sqrt{2\pi\hbar}} \Psi.$$

Time evolution of quantum Hamiltonian systems

The time evolution of a quantum Hamiltonian system is governed by a Hamiltonian H. It will be assumed that $H \in \mathcal{O}_Q$ and that H is self-adjoint in \mathcal{H} , i.e. $H = H^*$ and $H_{L,R} \star_{\sigma,\alpha,\beta} = (H_{L,R} \star_{\sigma,\alpha,\beta})^{\dagger}$.

.

Time evolution of quantum Hamiltonian systems

The time evolution of a quantum Hamiltonian system is governed by a Hamiltonian H. It will be assumed that $H \in \mathcal{O}_Q$ and that H is self-adjoint in \mathcal{H} , i.e. $H = H^*$ and $H_{L,R} \star_{\sigma,\alpha,\beta} = (H_{L,R} \star_{\sigma,\alpha,\beta})^{\dagger}$.

Time evolution equation

The time evolution of a quantum distribution function ρ :

2

Stationary states

Stationary states Ψ satisfy

 $[H,\Psi]=0.$

< A >

3

Stationary states

Stationary states Ψ satisfy

$$[H,\Psi]=0.$$

For pure states the above equation is equivalent to a pair of $\star_{\sigma,\alpha,\beta}\text{-genvalue equations}$

$$H \star_{\sigma,\alpha,\beta} \Psi = E \Psi, \quad \Psi \star_{\sigma,\alpha,\beta} H = E \Psi,$$

for some $E \in \mathbb{R}$.

(日) (同) (三) (三)

3

The formal solution of the time evolution equation takes the form

$$\rho(t) = U(t) \star_{\sigma,\alpha,\beta} \rho(0) \star_{\sigma,\alpha,\beta} U(-t),$$

where

$$U(t) = e_{\star_{\sigma,\alpha,\beta}}^{-\frac{i}{\hbar}tH} := \sum_{k=0}^{\infty} \frac{1}{k!} \left(-\frac{i}{\hbar}t\right)^{k} \underbrace{H \star_{\sigma,\alpha,\beta} \dots \star_{\sigma,\alpha,\beta} H}_{k}$$

is an unitary function in \mathcal{H} as H is self-adjoint.

- 4 回 ト - 4 回 ト

3

Time dependent expectation value

A time dependent expectation value of an observable $A \in \mathcal{A}_Q$ in a state $\rho(t)$, i.e. $\langle A \rangle_{\rho(t)}$, fulfills the following equation of motion

$$\langle A \rangle_{L(H,\rho)} = 0 \iff \frac{\mathrm{d}}{\mathrm{d}t} \langle A \rangle_{\rho(t)} - \langle [|A,H|] \rangle_{\rho(t)} = 0.$$

2

Time development of observables

The time development of $A \in \mathcal{A}_Q$:

$$egin{aligned} \mathcal{A}(t) &= U(-t)\star_{\sigma,lpha,eta}\mathcal{A}(0)\star_{\sigma,lpha,eta}U(t) \iff rac{\partial \mathcal{A}}{\partial t}(t)-[|\mathcal{A}(t),\mathcal{H}|]=0. \end{aligned}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Time development of observables

The time development of $A \in \mathcal{A}_Q$:

$$A(t) = U(-t) \star_{\sigma, lpha, eta} A(0) \star_{\sigma, lpha, eta} U(t) \iff rac{\partial A}{\partial t}(t) - [|A(t), H|] = 0.$$

Both presented approaches to the time development yield equal predictions concerning the results of measurements:

$$\langle A(0) \rangle_{
ho(t)} = \langle A(t) \rangle_{
ho(0)}$$
.

(日) (同) (三) (三)

Ξ.

The end of Part 1

Maciej Błaszak, Ziemowit Domański Phase Space Quantum Mechanics Canonical Regime Part 1