Jądra o dużych deformacjach. Jądra o wysokich spinach.

- 1. Kształty jąder atomowych
- 2. Powstawanie deformacji jądra
- 3. Model rotacyjny jądra
- 4. Jądra w stanach wzbudzonych o wysokich spinach
- 5. Stany superzdeformowane
- 6. Niewyjaśnione obserwacje i niepotwierdzone przewidywania
- 7. Inne przyczyny występowania dużych deformacji
- 8. Pasma rotacyjne w jądrach prawie sferycznych

Kształty jąder atomowych

Kształty jąder atomowych

Poszukiwane kształty jąder atomowych

Jądro hiperzdeformowane

Jądro tetraedryczne

Powstawanie deformacji jądra

- 1. Oddziaływania resztkowe
- a) długo zasięgowe siły grupowanie orbit nukleonów
- b) krótko zasięgowe siły (siły pairing) rozkład symetryczny orbit

Powstawanie deformacji jądra

Powstawanie deformacji jądra

Obszary jąder zdeformowanych:

zapełnione "pół" powłoki

- n=2 ⁷Li, Be, B, C
- n=3 Mg, Al, Si
- n=5 dla protonów i n=6 dla neutronów ziemie rzadkie, Ta, W
- n=6 dla protonów i n=7 dla neutronów Th, U, transuranowce

Jądra zdeformowane

Ν

Kształty jąder atomowych

Zależność energii jądra od deformacji kwadrupolowej

 $E_{calkowita} = E_{kropli} + E_{powlokowa} + E_{rot}$

jądro o zamkniętej powłoce jądro o małej liczbie nukleonów poza zamkniętą powłoką jądro o dużej liczbie nukleonów poza zamkniętą powłoką

Zależność energii jądra od deformacji kwadrupolowej

Jeden kształt równowagi

Zależność energii jądra od deformacji kwadrupolowej

Dwa kształty równowagi

Schemat poziomów w modelu powłokowym

Energie stanów własnych nukleonów w jądrze w zależności od

deformacji kwadrupolowej

Jądra zdeformowane

Opis kształtu jądra

$$\mathbf{R} = \mathbf{R}_0 \left(1 + \Sigma \, \alpha_{\lambda \mu} \, \mathbf{Y}_{\lambda \mu} \left(\boldsymbol{\theta}, \, \boldsymbol{\phi} \right) \right)$$

Dla jąder osiowo symetrycznych o deformacji kwadrupolowej $R = R_0 (1 + \beta_2 Y_2 (\theta, \phi))$

 $\beta_2 = (4/3) \sqrt{\pi/5} (R_1 - R_2)/R_0$

$$\mathbf{R} = \mathbf{R}_0 \left(1 + \Sigma \, \alpha_{\lambda \mu} \, \mathbf{Y}_{\lambda \mu} \left(\boldsymbol{\theta}, \, \boldsymbol{\phi} \right) \right)$$

Model rotacyjny jądra

- J całkowity moment pędu ruchu wewnętrznego
- R całkowity moment pędu ruchu rotacyjnego zdeformowanego jądra z į
- I wypadkowy moment pędu

 $\overline{J} + \overline{R} = \overline{I}$

 \mathfrak{J} - moment bezwładności jądra

Energia rotacji gdy J=0

$$E_{rot} = \frac{\overline{R}^2}{2\Im} = \frac{I(I+1)\hbar^2}{2\Im}$$

Dla jąder zdeformowanych

Model rotacyjny jądra

Energia poziomów rotacyjnych

Widmo kwantów y

 E_{γ} [keV]

Jądra w stanach wzbudzonych o wysokich spinach

1. Dla jąder o dużej deformacji kolektywna rotacja względem osi prostopadłej do osi symetrii

2. Dla jąder o małej deformacji niekolektywna rotacja- zmiana konfiguracji walencyjnych – nukleonów

Wytwarzanie jąder w stanach wzbudzonych o wysokich spinach - Reakcja fuzji ciężkich jonów

I - spin jądra C* J - moment bezwładności C*

Wytwarzanie jąder w stanach wzbudzonych o wysokich spinach –

Reakcja fuzji ciężkich jonów

Powstawanie deformacji jądra c.d.

2. Zmiana kształtu jądra pod wpływem wzrostu momentu pędu

Niestabilność Jacobiego

Powstawanie deformacji jądra c.d.

3. Zależność kształtu jądra od temperatury jądra (energii wzbudzenia jądra) – fluktuacje kształtu jądra

Jądra superzdeformowane

Po raz pierwszy zaobserwowane w 152 Dy w 1986 r., R₁:R₂ =2:1

NEUTRONY

Jądra superzdeformowane

Duża rola efektów powłokowych

Superdeformacja

Bardzo silna deformacja (stosunek osi 2:1) i wiele stanów rotacyjnych

Jądra superzdeformowane

1. Obserwuje się szereg przejść elektromagnetycznych łączących stany rotacyjne - wiele równoodległych linii w widmie kwantów γ

2 Przejścia te mają charakter kwadrupolowy E2.

3. Z różnicy energii ΔE_{γ} między kolejnymi liniami można wyznaczyć moment bezwładności jądra, a stąd R₁:R₂ i deformację jądra ($\beta_2 = 0.5-0.6$)

$$\Im = \frac{4\hbar}{\Delta E_{\gamma}}$$

4. Momenty kwadrupolowe wyznaczone z czasów życia tych jąder są znacznie większe niż dla jąder zdeformowanych.

5. W większości przypadków nieznane są przejścia łączące stany SD ze stanami o mniejszej deformacji

Pomiar energii emitowanych fotonów

Pomiar czasów życia

Stany superzdeformowane (SD)

Niewyjaśnione obserwacje i niepotwierdzone przewidywania:

1. Występowanie identycznych pasm rotacyjnych w różnych jądrach teoria: $\Im \sim MR^2 \sim A^{5/3}$

dla A= 150 zmiana A → A+1 powoduje zmianę ℑo 1%, a więc dla E_{rot} = 1 MeV zmianę E_{rot} o 10 keV
exp: zmiana A → A+ 1(4) powoduje zmianę E_{rot} o 1-3 keV
2. Trudności obserwacji rozpadu stanów SD do stanów ND

Występowanie identycznych pasm rotacyjnych w różnych jądrach

Stany hiperzdeformowane (HD)

Teoria przewiduje, że dla niektórych jąder może wystąpić trzecie minimum w energii potencjalnej odpowiadające deformacji ok. $\beta_2 = 1.1$ i $R_1:R_2 = 3:1$.

- jako wynik efektów
 powłokowych i oddziaływań
 kulombowskich
- krótki czas życia na spontaniczne rozszczepienie

Jak dotąd nie znaleziono dowodów na istnienie HD.

Jądra hiperzdeformowane

Poszukiwanie hiperdeformacji w jądrach ¹²⁶Xe

- Reaction : ⁸²Se (⁴⁸Ca,xn) ^{130-x}Xe
- Xe-1 with the Vivitron and Euroball-VI in June 2001, E_b = 195 MeV. Analysis completed.
- Xe-2 with ATLAS and Gammasphere in December 2003, E_b = 206 MeV. Analysis in progress.

Jądra tetraedryczne

Jądra tetraedryczne

$$\mathbf{R} = \mathbf{R}_{\mathbf{0}} \left(\mathbf{1} + \Sigma \, \alpha_{\lambda \mu} \, \mathbf{Y}_{\lambda \mu} \left(\boldsymbol{\theta}, \boldsymbol{\varphi} \right) \right)$$

1. Symetrię tetraedryczną definiuje się przez $\alpha_{\text{32}} \neq \textbf{0}$

pozostałe $\alpha_{\lambda\mu}$ = 0

Jądra tetraedryczne Istnienie jako wynik bardzo silnych efektów powłokowych

1. Kształt tetraedryczny oczekiwany dla izomerów kształtu

- 2. Małe deformacje α_{32} = 0.1-0.3
- 3. Spin 0⁺
- 4. Stany wzbudzone

5. Konkurencja stany o normalnych deformacjach

Przewidywania teoretyczne

Przewidywane warunki obserwacji w eksperymencie

1. Stany o niskim spinie

2. Energia wzbudzenia Ex \approx 0.5 - kilka MeV

3. Jądra o liczbach magicznych tetraedrycznych

4. Przejścia γtypu E3 (E1 i E2 niemożliwe)

Tetraedryczne liczby magiczne Z= 16, 20, 32, 40, 56-58, 70, 90-94, 100, 112, 126 N= 16, 20, 32, 40, 56-58, 70, 90-94, 100, 112, 136

Inne przyczyny występowania dużych deformacji

1. Izomeria kształtu w rozszczepieniu

$$\beta_2 = 0.6$$

$${}^{12}C = \alpha \alpha \alpha$$

stan o Ex= 10.3 MeV

Pasma rotacyjne w jądrach prawie sferycznych

- 1. Wywołane przez sprzężenie momentów pędu walencyjnych protonów i dziur neutronowych
- 2. Rozpad stanów poprzez promieniowanie typu M1
- 3. Obserwacja dla jąder w obszarze A
 \approx 190, 140, 110, 80

Pasma rotacyjne w jądrach prawie sferycznych

