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1 Maxwell Equations

1.1 Introduction

In 1863 James Clerk Maxwell has written down equations that summarized more than a

hundred years of developments adding his own absolutely 
ru
ial ingredient { displa
e-

ment 
urrent (the last term in 1.4 below). In the 
lassi
al ele
trodynami
s we have two

�elds { the ele
tri
 �eld E(x) (ve
tor) and the magneti
 �eld B(x) (pseudove
tor). We

also have matter des
ribed by a 
harge density �(x) (s
alar �eld) and a 
urrent j(x)

(ve
tor �eld).

Negle
ting the histori
al development we start with the Maxwell equations in their

full glory:

r �E =

�

"

0

(1.1)

r�E = �

�B

�t

(1.2)

r �B = 0 (1.3)

r�B = �

0

j+
1




2

�E

�t

(1.4)

The �rst and the last are 
alled sour
e equations and the other two sour
eless equations.

We also have the 
onservation of 
harge

��

�t

+r � j = 0 (1.5)


 in these equations is the de�ned speed of light and the 
onstants "

0

and �

0

are exper-

imentally measured but subje
t to one relation

"

0

�

0

=

1




2

(1.6)

The Maxwell equations and this relation show the tight bonds between the ele
tri
 and

magneti
 �elds { we will dis
uss it in great detail in the 
ourse.

It is 
ru
ial that the operator r (in 
artesian 
oordinates)

r

i

=

�

�x

i

(1.7)

transforms as a (
o)ve
tor under rotations. Therefore if we have a ve
tor �eld E(x) then

its divergen
e

r �E =

�E

i

�x

i

(1.8)
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1. Maxwell Equations

is a s
alar �eld and its rotation

(r�E)i = "

ijk

�

j

E

k

(1.9)

is a (pseudo)ve
tor �eld. It follows that the equations (1.1-1.4) are true in any 
oordinate

system.

Classi
al ele
trodynami
s is just an appli
ation of these equations in the more and

more 
ompli
ated situations. In the 
ourse of these le
tures we will start with pure

ele
tri
 �eld independent of time in presen
e of more and more 
ompli
ated matter,

then we will dis
uss pure magneti
 �eld independent of time also in presen
e of matter

and at the end we will dis
uss time dependent �elds in 
on�gurations of in
reasing


omplexity with radiating 
harges as the prime example.

We now 
he
k the internal 
onsisten
y of the Maxwell equations. Let us take the

divergen
e of (1.2). The LHS is identi
ally zero while the RHS also vanishes by virtue

of (1.3). Taking divergen
e of (1.4) we get

0 = �

0

r � j+
1




2

�r �E

�t

(1.10)

Then we use (1.1) to get

"

0

�

0

r � j+
1




2

��

�t

(1.11)

Comparing with (1.5) we get (1.6). After writing these equations Maxwell realized the

ne
essity of adding the displa
ement term in (1.4) not observed experimentally at that

time and it was a 
ru
ial step in predi
ting the existen
e of ele
tromagneti
 waves.

For arbitrary ve
tor �eld A and 3-manifoldM

3

with a 2-dimensional boundary �M

3

we have the Gauss equation

Z

M

3

r �AdV =

Z

�M

3

A � d� (1.12)

while for a 2-manifoldM

2

with 1-dimensional boundary �M

2

we have the Stokes equa-

tion

Z

M

2

(r�A) � d� =

I

�M

2

A � ds (1.13)

They are a generalization of the one-dimensional result that the integral is the inverse

of a di�erential

Z

b

a

df(x)

dx

dx = f(b)� f(a) (1.14)

Applying these identities to (1.1-1.4) we get the integral form of the Maxwell equa-

tions

Z

�M

3

E � d� =

Q

"

0

(1.15)

I

�M

2

E � ds = �

��

B

�t

(1.16)

Z

�M

3

B � d� = 0 (1.17)

I

�M

2

B � ds = �

0

I +

1




2

��

E

�t

(1.18)
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K.A. Meissner

Q is a total 
harge in the 3D manifold �M

3

with 2D boundary �M

3

. �

B

(respe
-

tively �

E

) is the magneti
 (respe
tively ele
tri
) 
ux through 2D manifoldM

2

with 1D

boundary �M

2

.

We also have the integral form of the 
harge 
onservation

dQ

dt

= �

Z

�M

3

j � d� (1.19)

where Q is the 
harge inside M

3

.

Histori
ally, these equations were very slowly dis
overed. The �rst is 
alled the Gauss

Law, the se
ond Faraday Law of Indu
tion, the third is the absen
e of magneti
 
harges

and the fourth Oersted's Law with the Maxwell 
orre
tion.

1.2 Units in electrodynamics

It is important to be 
areful about the dimensions of �elds and the 
onstants (we will

dis
uss the detailed reasons as we go along). In the SI system of units, 
hanged in

2019, (being now the only allowed system in Europe and adopted in these le
tures)

the de�ning unit is the 
urrent unit, namely amper A. From the present perspe
tive of

parti
le physi
s it is just the 
harge (measured in 
oulombs C) per se
ond, where the


harge of a proton de�ned as

e := 1:602176634 � 10

�19

C (1.20)

The speed of light 
 is in the present SI unit system de�ned as


 := 299 792 458 m=s (1.21)

The �eld dimensions read

[E℄ =
N

C

; [B℄ =
N

A �m

(1.22)

while the dimensions of densities read

[�℄ =

C

m

3

; [j℄ =
A

m

2

(1.23)

In the present SI system of units either "

0

or �

0

are experimentally measured { �

0

is (up to ten digits) equal to

�

0

� 4� � 10

�7

N

A

2

(1.24)

Then "

0

is given by the relation (1.6) and its inverse is numeri
ally given by

1

4�"

0

=

�

0




2

4�

� 8:9875517862(14) � 10

9

N �m

2

C

2

(1.25)

where the number in parenthesis gives the error of the last two digits.
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1. Maxwell Equations

Although Quantum Ele
trodynami
s is beyond the s
ope of this 
ourse it is tempting

to quote another physi
al 
onstant of fundamental importan
e { �ne stru
ture 
onstant

�:

� :=

1

4�"

0

e

2

~

�

1

137:035999177(21)

(1.26)

where

~ =
h

2�

(1.27)

and h is the Plan
k 
onstant. Sin
e the Plan
k 
onstant h is de�ned in the SI unit

system as

h = 6:62607015 � 10

�34

J � s (1.28)

the only measured quantity in � is "

0

.
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2 Lorentz and gauge symmetries of

electrodynamics

2.1 Lorentz and gauge symmetries of the Maxwell equations

We will now des
ribe the symmetry that plays a fundamental role in the des
ription

of ele
trodynami
s and subsequent passing to Quantum Ele
trodynami
s (QED). We


onsider the sour
eless Maxwell equations (1.3) and (1.2) and use the mathemati
al

results des
ribed in Le
ture 1.

If the manifold has vanishing se
ond Betti number b

2

then

r �B = 0) B = r�A (2.1)

for some ve
tor �eld A. Then using (1.2) we get

r�E = �

�r�A

�t

) E = �r'�

�A

�t

(2.2)

for some ' (if the manifold is simply 
onne
ted, i.e. b

1

= 0, ' is globally de�ned). They

are 
alled a ve
tor and a s
alar potentials, respe
tively. We will dis
uss later on the 
ase

(magneti
 monopole) when the se
ond Betti number is nonvanishing and one 
annot

introdu
e globally de�ned A.

We 
an see that the pair of potentials (';A) is not uniquely de�ned by these equa-

tions. We 
an perform so 
alled gauge transformation without 
hanging the resulting E

and B:

A ! A+r�

' ! '�

��

�t

(2.3)

where � = �(t;x) is an arbitrary globally de�ned fun
tion.

Although at this stage it seems to be just a 
uriosity, the potentials and the pres-

en
e of this symmetry is absolutely 
ru
ial in expli
it realization of Lorentz symmetry

inherent in the theory and in de�ning the lagrangian formulation of the theory as we

will see below.

We 
an formulate 
lassi
al ele
trodynami
s in terms of 4-dimensional quantities ex-

pli
itly showing Lorentz symmetry inherently present in the theory (as is well known

Lorentz dis
overed the transformations in 1895 as the ones that leave the Maxwell equa-

tions 
ovariant and only 10 years later Einstein developed Spe
ial Theory of Relativity

providing the physi
al interpretation)
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2. Lorentz and gauge symmetries of ele
trodynami
s

In this se
tion from now on we put


 = "

0

= �

0

= 1 (2.4)

Let us take the pair of potentials (';A) and try to treat them as one 4-dimensional

ve
tor A

�

, � = 0; 1; 2; 3 :

A

�

= (�;A

i

) (2.5)

Then we form a 4-dimensional ve
tor with 2 indi
es

F

��

= �

�

A

�

� �

�

A

�

(2.6)

We raise and lower indi
es by the metri
 tensor

�

��

= diag(�1; 1; 1; 1) (2.7)

It is easy to see that the gauge transformations are

A

�

! A

�

+ �

�

� (2.8)

and they trivially do not 
hange F

��

de�ned in (2.6).

Using (2.1) and (2.2) we get

F

0i

= �E

i

; F

ij

= �

ijk

B

k

(2.9)

or in 
ontravariant 
omponents

F

0i

= E

i

; F

ij

= �

ijk

B

k

(2.10)

In the matrix notation

F

��

=

0

B

B

B

�

0 �E

x

�E

y

�E

z

E

x

0 B

z

�B

y

E

y

�B

z

0 B

x

E

z

B

y

�B

x

0

1

C

C

C

A

(2.11)

The sour
eless Maxwell equations are satis�ed automati
ally (the very idea of intro-

du
ing potentials served exa
tly this purpose) and they follow from the identity

�

�

F

��

+ �

�

F

��

+ �

�

F

��

= 0 (2.12)

where we use (0ij) to re
over the equation (1.2) and (ijk) to re
over (1.3).

To write the other pair of Maxwell equations in the 4-dimensional form we make a

4-ve
tor out of sour
es � and j:

j

�

= (�; j

i

) (2.13)

Then we 
an write the sour
e equations as

�

�

F

��

= �j

�

(2.14)

For � = 0 we have

�

i

F

i0

= ��

i

E

i

= �j

0

= �� (2.15)

i.e. eq. (1.1) while for � = i we have

�

0

F

0i

+ �

j

F

ji

= �

t

E

i

+ �

jik

�

j

B

k

= �j

i

(2.16)

i.e. eq. (1.4). The 4-dimensional Lorentz symmetry is in this formulation expli
it sin
e

we use only 4-dimensional s
alars, ve
tors and tensors.
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2.2 Maxwell action and the energy-momentum tensor

We have now gathered all ne
essary ingredients to write down the a
tion for the ele
tri


and magneti
 �elds 
oupled to external sour
es in the Lorentz and gauge invariant way:

S =

Z

d

4

x

�

�

1

4

F

��

F

��

+ j

�

A

�

�

(2.17)

from whi
h, by di�erentiating with respe
t to A

�

we re
over (2.14).

The equation of motion (2.14) is 
onsistent only if the 
ontinuity equation is satis�ed

�

�

j

�

= 0 (2.18)

The same equation follows when we impose the 
ondition of invarian
e of (2.17) under

gauge transformations (2.8):

S

0

=

Z

d

4

x

�

�

1

4

F

��

F

��

+ j

�

(A

�

+ �

�

�)

�

= S �

Z

d

4

x (��

�

j

�

) (2.19)

If the traje
tories of 
harges (j

�

) are not �xed i.e. they are not external but rea
t to

the ele
tri
 magneti
 �elds then one has to in
lude the a
tion for these �elds as well {

we will dis
uss it in the following le
tures.

The a
tion (2.17) for the pure ele
tromagneti
 �eld has symmetries of time and spa
e

translations so we 
an use the Noether pro
edure to arrive at the (symmetri
) energy

momentum tensor for the ele
tromagneti
 �eld:

T

��

em

= F

��

F

�

�

�

1

4

�

��

F

��

F

��

(2.20)

This form requires an explanation. If we apply the usual Noether pro
edure we end up

with a non-symmetri
 energy-momentum tensor. Su
h a form leads to some problems in

the interpretation and people found a way to 
orre
t for this by adding a total derivative

of the three index tensor to arrive at the symmetri
 form while still satisfying the basi


requirement for the energy-momentum tensor that it has to be 
onserved in the absen
e

of external 
urrents. On the other hand the symmetri
 form is automati
ally obtained

if we di�erentiate the a
tion by the metri
 tensor sin
e by de�nition

ÆS =

1

2

Z

d

4

xT

��

Æg

��

(2.21)

In the 
al
ulation one has to be 
areful { it is F

��

with lower indi
es that does not

involve the metri
 tensor and

Æg

��

= �g

��

Æg

��

g

��

; Æ

p

�g =

1

2

g

��

Æg

��

(2.22)

The 
omponents read

T

00

em

=

1

2

�

E2

+B2

�

T

0i

em

= (E�B)
i

T

ij

em

= �E

i

E

j

�B

i

B

j

+

1

2

Æ

ij

�

E2

+B2

�

(2.23)
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2. Lorentz and gauge symmetries of ele
trodynami
s

The 00 
omponent is an energy density of the �eld and the 0i 
omponent is the 
ux of

energy in the dire
tion i the so 
alled Poynting ve
tor. The ij 
omponents are the so


alled Maxwell stress tensor.

These formulae will be used in the future so we give the energy density and the 
ux

with expli
it "

0

and �

0

:

T

00

em

=

"

0

2

�

E2

+ 


2B2

�

T

0i

em

=

1

�

0

(E�B)
i

(2.24)

It is important to note that the energy-momentum tensor of the ele
tromagneti
 �eld

satis�es

�

��

T

��

em

= 0 (2.25)

what follows from the symmetry of the a
tion under res
alings

x

�

! e

�

x

�

; A

�

! e

��

A

�

(2.26)

and it is part of a larger 
onformal symmetry.

We 
an de�ne the energy and momentum of the ele
tromagneti
 �eld (as a 4-ve
tor)

by the integration over the whole spa
e

P

�

em

=

Z

d

3

xT

0�

em

(2.27)

The energy and momentum de�ned in this way depends only on time. The derivative

with respe
t to time gives

d

dt

P

�

em

=

d

dt

Z

d

3

xT

0�

em

=

Z

d

3

x�

�

T

��

em

(2.28)

where we used the fa
t that the spatial divergen
e integrated over the whole spa
e

vanishes. We 
al
ulate the divergen
e of T

��

em

:

�

�

T

��

em

= (�

�

F

��

)F

�

�

+ F

��

(�

�

F

�

�

)�

1

4

�

�

(F

��

F

��

) (2.29)

We use (2.12) to 
al
ulate

F

��

�

�

F

�

�

= F

��

(��

�

F

�

�

� �

�

F

��

) (2.30)

so that

F

��

�

�

F

�

�

=

1

4

�

�

(F

��

F

��

) (2.31)

and �nally

d

dt

P

�

em

=

Z

d

3

x�

�

T

��

em

=

Z

d

3

xj

�

F

��

(2.32)

so the momentum of the �eld is 
onserved in the absen
e of external 
urrents. We will

see in the next le
ture that the loss (gain) in the energy and momentum of the �eld is

exa
tly equal to the gain (loss) of the 
harged parti
le moving in the �eld.
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There are two Lorentz invariants that 
an be formed out of F

��

:

I

1

= F

��

F

��

= �2(E2

�B2

)

I

2

=

1

4

"

����

F

��

F

��

= �2E �B (2.33)

A spe
ial solution 
orresponds to both invariants, I

1

and I

2

, vanishing - it is an ele
tro-

magneti
 wave in va
uum.

2.3 Lorentz transformation properties of the electric and

magnetic fields

The transformation properties of the ele
tri
 and magneti
 �elds under Lorentz trans-

formations 
an be read o� from the transformation properties of the tensor F

��

i.e.

F

�� 0

= �

�

�

F

��

�

�

�

(2.34)

where the Lorentz transformations satisfy

�

�

�

�

��

�

�

�

= �

��

; ���

T

= � (2.35)

Expli
itly, we have the transformation law in the dire
tion of x axis (
 = 1=

p

1� v

2

)

0

B

B

B

�

0 �E

x

�E

y

�E

z

E

x

0 B

z

�B

y

E

y

�B

z

0 B

x

E

z

B

y

�B

x

0

1

C

C

C

A

0

= (2.36)

0

B

B

B

�


 
v 0 0


v 
 0 0

0 0 1 0

0 0 0 1

1

C

C

C

A

0

B

B

B

�

0 �E

x

�E

y

�E

z

E

x

0 B

z

�B

y

E

y

�B

z

0 B

x

E

z

B

y

�B

x

0

1

C

C

C

A

0

B

B

B

�


 
v 0 0


v 
 0 0

0 0 1 0

0 0 0 1

1

C

C

C

A

Hen
e we 
an read o� the transformation laws for parallel and transverse �elds (we

reintrodu
e 
 for future appli
ations)

E0

= 
(E + v �B)�



2




2

(
 + 1)

v(v � E)

B0

= 
(B � v �E=
2)�



2




2

(
 + 1)

v(v �B) (2.37)

or

E0

k

= E
k

B0

k

= B
k

E0

?

= 
(E
?

+ v�B
?

)

B0

?

= 
(B
?

� v �E
?

=


2

) (2.38)
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2. Lorentz and gauge symmetries of ele
trodynami
s

As 
an be easily seen

E02

� 


2B02

= E02

k

+E02

?

� 


2B02

k

� 


2B02

?

= (2.39)

E2

k

+ 


2

(E2

?

+ v

2B2

?

)� 


2B2

k

� 


2




2

(B
?

+ v

2E2

?

=


4

) = E2

k

+E2

?

� 


2B2

k

� 


2B2

?

Therefore if E > B we 
an �nd su
h a Lorentz transformation that in the new


oordinate frame we have purely ele
tri
 �eld B

0

= 0. Analogously, if B > E we 
an

�nd su
h a Lorentz transformation that in the new 
oordinate frame we have purely

magneti
 �eld E

0

= 0.
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3 Charged particles in the electric and

magnetic fields

In this le
ture we dis
uss the behavior of 
harged parti
les in the external ele
tri
 and

magneti
 �elds in the fully relativisti
 des
ription.

We start with the des
ription of 
harged parti
les with mass m and 
harge q in the

external 4-potential A

�

. The parti
le's position and internal time are a 4-ve
tor x

�

and

the aÆne parameter along the traje
tory is denoted by � . Then we write the a
tion that

is invariant under Lorentz transformations and also independent of the parametrization

� ! f(� ):

S =

Z

d�

�

�m

q

� _x

�

_x

�

� q _x

�

A

�

(x

�

)

�

(3.1)

where dot denotes di�erentiation with respe
t to � . We make here an assumption

that 
harges are independent of Lorentz transformations { if they weren't anything


omposed of positive and negative 
harges moving with di�erent velo
ities would exhibit


u
tuations of 
harge and that would be easily dete
table.

The equations of motion for x

�

read

m

d

d�

_x

�

p

� _x

�

_x

�

= �q _x

�

F

��

(3.2)

Re
all that

F

0i

= E

i

; F

ij

= "

ijk

B

k

(3.3)

If we now 
hoose the parametrization � = x

0

= t then we get for the 0-
omponent

dE

dt

= qv �E (3.4)

while for the spatial 
omponents we get the Lorentz for
e

dp

dt

= q (E+ v �B) (3.5)

where the energy and momentum of the parti
le form a 4-ve
tor

p

�

= (E;p) =

 

m

p

1� v

2

=


2

;

mv
p

1� v

2

=


2

!

(3.6)

To 
ompare these formulae with the densities used for the ele
tri
 and magneti
 �elds

we introdu
e here 
harge density and 
urrent density using delta fun
tions.

�(x) = qÆ(x� x
0

(t)); j(x) = q _x
0

(t)Æ(x� x
0

(t)) (3.7)
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3. Charged parti
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 and magneti
 fields

and they form a 4-ve
tor. Then the equation of motion (3.2) 
an be written as

dP

�

dt

= �

Z

d

3

xj

�

F

��

(3.8)

If we add the 4-momentum ve
tors of the parti
le and of the �eld then from (2.32)

and (3.8) this sum is a 
onstant of motion (as it should):

d(P

�

+ P

�

em

)

dt

= 0 (3.9)

or in terms of the energy-momentum tensors

�

�

�

T

��

me
h

+ T

��

em

�

= 0 (3.10)

3.1 Trajectories in constant fields

We dis
uss three 
ases: a 
harged parti
le in a 
onstant ele
tri
, 
onstant magneti
 and


onstant orthogonal ele
tri
 and magneti
 �elds..

For the 
onstant ele
tri
 �eld in the, say, x dire
tion we have from (3.5)

p

x

= qEt) v

x

=

qEt

p

m

2

+ (qEt)

2

=


2

(3.11)

For large times velo
ity approa
hes 
 as it should.

For a 
onstant magneti
 �eld of value B in, say, z dire
tion equations (3.5) read in


omponents

dp

x

dt

= qBv

y

dp

y

dt

= �qBv

x

dp

z

dt

= 0 (3.12)

Sin
e the parti
le moves uniformly in the z dire
tion we may assume p

z

= 0 and add

uniform motion if needed. The total momentum p is a 
onstant of motion (what is seen

in (3.4) or by multiplying the �rst equation by p

x

and the se
ond by p

y

and adding)

and so is the total velo
ity v and therefore we 
an rewrite these equations as

dv

x

dt

= �

qB

p

1� v

2

=


2

m

v

y

dv

x

dt

=

qB

p

1� v

2

=


2

m

v

x

(3.13)

It is easy to re
ognize these equations as the equations for 
ir
ular os
illator with the

solution

v

x

(t) = v 
os(!t)

v

y

(t) = v sin(!t) (3.14)
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K.A. Meissner

where

! =

qB

p

1� v

2

=


2

m

(3.15)

We see that in the nonrelativisti
 
ase the frequen
y ! does not depend on the velo
ity

and it is the basis for 
onstru
tion of 
y
lotrons. If the velo
ity starts to be relativisti


then one has to adjust the frequen
y a

ordingly and it is ne
essary in syn
hrotrons

(where it is usually done by the adjustment of the magneti
 �eld).

One 
an integrate on
e more to get the traje
tory

x(t) = R sin(!t)

y(t) = �R 
os(!t) (3.16)

where the relativisti
 result for the radius is formally the same as the nonrelativisti
 one

R =

p

qB

(3.17)

For example for LHC in Geneva where R � 2:8 km (only 17.6 out of 26.7 km of the

tunnel are 
urved and �lled with dipole magnets) to keep protons on their orbit for

p = 7 TeV=
 the required magneti
 �eld is 8:3 T.

We 
onsider now a parti
le moving in both �elds E and B perpendi
ular to ea
h

other (i.e. E �B = 0 whi
h is a Lorentz invariant statement). We assume E

x

6= 0, B

y

6= 0

and E

x

< 
B

y

. Then we 
an ask whether there exists a 
oordinate system in whi
h the

ele
tri
 �eld vanishes. Using the relations derived in le
ture 3

E0

= 
(E + v �B)�



2




2

(
 + 1)

v(v � E)

B0

= 
(B � v �E=
2)�



2




2

(
 + 1)

v(v �B) (3.18)

we have E0

= 0 when (using A� (B�C) = B(A �C)�C(A �B))

v =

E�B

B

2

(3.19)

and then

E0

= 0; B0

=

q

1�E

2

=(B

2




2

)B (3.20)

This equation 
an be easily inferred from the fa
t that there is a Lorentz invariant

E2

� 


2B2

= E02

� 


2B02

(3.21)

The velo
ity v is 
alled a drift. In the new 
oordinate system there is only a magneti


�eld so the parti
le moves along a 
ir
le around B0

. If E

x

> 
B

y

then analogously there

exists a referen
e frame where there exists only the ele
tri
 �eld

B0

= 0; E0

=

q

1�B

2




2

=E

2E (3.22)
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3. Charged parti
les in the ele
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 and magneti
 fields

3.2 Free electron laser trajectories

As the last example we 
onsider an ultrarelativisti
 parti
le moving in the dire
tion z in

a spatially varying magneti
 �eld in the dire
tion y (and z but it will be unimportant

in the following) and satisfying sour
eless Maxwell equations:

B

y

= B

0

sin (k

u

z) 
osh (k

u

y) ; B

z

= B

0


os (k

u

z) sinh (k

u

y) (3.23)

where

k

u

=

2�

�

u

(3.24)

Su
h a �eld satis�es r �B = 0 and r�B = 0 as it should.

We dis
uss the 
ase where the initial 
onditions are y

0

= 0; v

y

(0) = 0 so y = 0

always (i.e. B

z

= 0 along the traje
tory). We assume that v

z

� 
 and v

x

� 
. Then

dp

x

dt

= qv

z

B

y

= qv

z

B

0

sin (k

u

z) (3.25)

Writing p

x

as m
v

x

(where 
 is 
onstant sin
e the magneti
 �eld does not 
hange the

energy) we get

m


dv

x

dz

v

z

= qv

z

B

0

sin (k

u

z) (3.26)

so that

v

x

= �

qB

0

m
k

u


os(k

u

z) (3.27)

Therefore

x(z) � �

qB

0

m

k

2

u

sin(k

u

z) (3.28)

It 
an be written as

x(z) � �

 

k

u

sin(k

u

z) (3.29)

where  is the maximal angle of the traje
tory with respe
t to the z axis and  satis�es

 
 := K =

qB

0

k

u

m


(3.30)

We will use these formulae when dis
ussing free ele
tron lasers in one of the last le
tures.
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4 Electrostatics

4.1 Electric fields from a distribution of charges

In this part we will dis
uss solutions of the Maxwell equations with vanishing magneti


�eld but with nontrivial boundary 
onditions for either the ele
tri
 �eld or the ele
tri


potential.

We start with the Maxwell equations and assume that B = 0 and all the �elds and


harge densities are time independent. We are left with two relevant equations

r �E =

�

"

0

(4.1)

and

r�E = 0 (4.2)

The se
ond equation allows us to write

E = �r' (4.3)

and then the �rst 
an be written in the form of Poisson equation

�' = �

�

"

0

(4.4)

It is easy to 
he
k that the Coulomb potential

'(x) =
1

4�"

0

q

r

(4.5)

satis�es

�' = �

q

"

0

Æ

3

(x) (4.6)

Another example is an in�nite wire 
harged with line density �. Then at distan
e �

the ele
tri
 �eld is given by

E =

1

Z

�1

dx

��e
�

4�"

0

(x

2

+ �

2

)

3=2

=

�e
�

2�"

0

�

) '(�) = �

�

2�"

0

ln

�

�

�

0

�

(4.7)

what also dire
tly follows from the Gauss' law.
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If we have a 
harge density �(x0) 
on�ned to some region jx0j < R then the potential

at some distant x, jxj � R 
an be expanded in inverse powers of R by means of the

following expansion (using the generating fun
tion for the Legendre polynomials)

1

jx� x0j
=

1

jxj

1

p

1 + a

2

� 2a 
os 


=

1

jxj

1

X

l=0

P

l

(
os 
)a

l

(4.8)

where a = jx0j=jxj and 
 is an angle between x and x0. Now we use the representation

of P

l

in terms of spheri
al harmoni
s:

P

l

(
os 
) =

l

X

m=�l

Y

?

lm

(�

0

; �

0

)Y

lm

(�; �) (4.9)

to arrive at the multipole expansion formula for the potential at x

'(x) =
1

4�"

0

1

X

l=0

l

X

m=�l

Q

lm

Y

lm

(�; �)

r

l+1

(4.10)

where

Q

lm

=

Z

d

3

x

0

�(x0)r0l Y ?

lm

(�

0

;�

0

) (4.11)

The expansion in 
artesian 
oordinates 
an be rewritten as

1

jx� x0j
=

1

r

+

x � x0

r

3

+

3(x � x0)2 � r2r02)

2r

5

+ : : : (4.12)

and the potential reads

'(x) =
1

4�"

0

 

q

r

+

p � r

r

3

+

Q

ij

x

i

x

j

r

5

+ : : :

!

(4.13)

where

q =

Z

d

3

x

0

�(x0)

p =

Z

d

3

x

0

�(x0)r0

Q

ij

=

1

2

Z

d

3

x

0

�(x0)(3x0ix0j � Æijr02) (4.14)

are the 
harge, dipole moment and quadrupole moment, respe
tively.

The ele
tri
 �eld of a monopole (
harge) is obviously the Coulomb �eld

E
0

(x) =
1

4�"

0

qr

r

3

(4.15)

while for a dipole it is

E
1

(x) =
1

4�"

0

3(p � r)r� r2p

r

5

(4.16)
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As we see it is not ne
essary that the 
harges are stri
tly 
on�ned to some region, it is

enough that the density � vanishes suÆ
iently fast at in�nity so that all the integrals

are �nite. On the other hand one has to be 
areful in using this formula for r ! 0 sin
e

it is singular and requires proper de�nition.

The Coulomb for
e between two 
harges 
an be justi�ed by the �eld energy 
onsid-

erations. The energy of the ele
tri
 �eld when two 
harges are present subtra
ted from

the separate energies of two �elds:

�W =

"

0

2

Z

d

3

x

h

(E
1

+E
2

)

2

�E2

1

�E2

2

i

= "

0

Z

d

3

xE
1

�E
2

(4.17)

Pla
ing one 
harge at the origin and the other on the z axis at distan
e l we get

�W =

q

1

q

2

(4�)

2

"

0

Z

r

2

drd


r � (r� l)

r

3

(r

2

+ l

2

� 2rl 
os �)

3=2

(4.18)

It is easy to integrate if we noti
e that the integrand is proportional to a derivative over

r of 1=(r

2

+ l

2

� 2rl 
os �)

1=2

and therefore

�W =

q

1

q

2

(4�)

2

"

0

4�

l

=

1

4�"

0

q

1

q

2

l

(4.19)

i.e. the Coulomb for
e. Therefore one 
an interpret the Coulomb for
e as originating

from the energy of the �elds.

4.2 Green’s function

The solution to the Poisson equation depends not only on the 
harge density inside

the region but also on the boundary 
onditions imposed on ' (or its derivative) on

the boundary. In the theory of partial di�erential equations one introdu
es the Green's

fun
tion G(x;x0) being the solution to the equation

�

x

G(x;x0) = Æ(x� x0) (4.20)

and satisfying either Diri
hlet or Neumann boundary 
onditions. Su
h a fun
tion is

in general not known and we will dis
uss here several methods to solve (4.4) in some

interesting 
ases of large symmetry.

If we know the Green's fun
tion we 
an derive an expli
it formula for the potential.

We start with the identity (9.20)

Z

M

3

r �AdV =

Z

�M

3

A � dS (4.21)

and apply it for

A(x0) = '(x0)r0

G(x;x0)�G(x;x0)r0

'(x0) (4.22)
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Using (4.4) and (4.20)

"

0

'(x) = �

Z

M

3

G(x;x0)�(x0) dV 0

+

Z

�M

3

�

'(x0)r0

G(x;x0)�G(x;x0)r0

'(x0)
�

�dS0 (4.23)

If there are no 
harges inside a given region then the potential inside is fully determined

by the potential at the boundary.

If we negle
t the boundary 
ontributions we have

'(k) = �
1

"

0

�(k)G(k) (4.24)

where the Fourier transforms are de�ned as

G(k) =

Z

d

3

x

0

e

�ik�x0

G(x0) =
2

k

2

(4.25)

if we assume that the Green's fun
tion is equal to 1=(4�r) only inside the ball of radius

L then

G(k) =

Z

d

3

x

0

e

�ik�x0

G(x0) = 2

sin

2

(kL=2)

k

2

(4.26)

4.3 Electrostatics with conducting surfaces

In this part we will dis
uss solutions of the Maxwell equations in presen
e of 
harges and


ondu
ting surfa
es. In the 
ase of 
ondu
ting surfa
es the potential has to be identi
al

along the surfa
e sin
e otherwise it would mean some ele
tri
 �eld along the surfa
e

indu
ing ele
tri
 
urrent and the situation 
ouldn't be independent of time. Therefore

inside an empty region surrounded by a 
ondu
ting surfa
e the potential inside should

be everywhere the same and equal to the potential of the surfa
e.

4.3.1 Method of images

We start with the Poisson equation (4.4)

�' = �

�

"

0

(4.27)

In the simplest 
ase of no boundaries (and vanishing potential at in�nity) we know that


harges q

a

lo
ated at x
a

give the potential

'(x) =
1

4�"

0

X

a

q

a

jx� x
a

j

(4.28)

If these 
harges are surrounded by a surfa
e with some pres
ribed potential (usually

a 
onstant one as in the presen
e of 
ondu
ting surfa
e) then we have to modify this

solution to mat
h the boundary 
ondition. It is then useful to use the so 
alled method

of images. We assume that there are some 
harges q

b

lo
ated outside the region at points
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x
b

and therefore not 
ontributing to the RHS of (4.27). The potential inside the region

being the sum of the two potentials still satis�es (4.27 with only real 
harges q

a

in
luded

but when the 
harges q

b

are appropriately 
hosen this sum 
an satisfy the boundary


onditions imposed. Unfortunately this method works in a simple way only for very

simple surfa
es (like spheres), otherwise the problem does not get any simpler when

formulated as the problem of virtual 
harges.

As an example let us 
onsider one 
harge q pla
ed at x
0

= (x

0

; 0; 0) (x

0

> 0) and

a sphere of radius R and 
enter at (0; 0; 0) (the sphere surrounds the 
harge R > x

0

).

Then we try to pla
e an imaginary 
harge q

0

outside the sphere so that the sum of the

two potentials will vanish on the sphere (although not evident, it turns out that one

imaginary 
harge is enough to satisfy the 
ondition). We try to lo
ate it at x
1

= (x

1

; 0; 0)

(x

1

> R) and then the solution inside the sphere (up to a 
onstant) is

4�"

0

'(x)
in

=

q

jx� x
0

j

+

q

0

jx� x
1

j

(4.29)

with the 
ondition of vanishing potential on the sphere

0 =

q

jx� x
0

j

+

q

0

jx� x
1

j

for jxj = R (4.30)

Squaring this identity we get

q

02

(R

2

� 2xx

0

+ x

2

0

) = q

2

(R

2

� 2xx

1

+ x

2

1

) (4.31)

It 
an be satis�ed for varying x only if

q

02

x

0

= q

2

x

1

(4.32)

and then

(x

1

� x

0

)(R

2

� x

0

x

1

) = 0 (4.33)

Therefore the solution is

q

0

= �q

R

x

0

; x

1

=

R

2

x

0

(4.34)

and with su
h 
hoi
e the (4.29) gives the potential inside the sphere.

Using this solution we 
an write down the Green's fun
tion inside the sphere

G(x;x0) =

1

4�jx � x0j
�

1

4�Rjx� x0R2

=x

02

j

=

=

1

4�(x

2

� 2x � x0 + x

02

)

1=2

�

1

4�(x

2

x

02

=R

2

� 2x � x0 +R

2

)

1=2

(4.35)

It is easy to 
he
k that indeed G(x;x0) = 0 for all x on the sphere.

Having found the solution inside with the vanishing potential on the sphere we have

to dis
uss the form of the solution outside and the value of 
onstants that eventually

have to be added. If the sphere is grounded (i.e. kept at zero potential) then the solution
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inside is given by 4.29) and the potential outside vanishes. If the sphere is isolated, its

total 
harge has to vanish and the Gauss law says that sin
e there is a 
harge q inside

and the potential is 
onstant on the sphere so the potential outside has to be equal to

4�"

0

'

out

(x) =
q

jxj
(4.36)

Therefore to make the potential 
ontinuous on the sphere we have to add a 
onstant to

the potential (4.29) and the full solution for the isolated sphere reads

4�"

0

'(x) =

q

jx� x
0

j

�

qR

x

0

jx� x
0

R

2

=x

2

0

j

+

q

R

inside

4�"

0

'(x) =

q

jxj
outside (4.37)

For a system of 
ondu
tors, ea
h 
harged with a 
harge q

a

and having a potential V

a

we have (due to linearity of ele
trodynami
s)

q

a

=

X

b

C

ab

V

b

(4.38)

The 
oeÆ
ients C

ab

are 
alled 
oeÆ
ients of 
apa
itan
e. If one grounds all 
ondu
tors

ex
ept one (a) and this 
hoi
e is �xed then one uses the term 
apa
itan
e for

C =

q

a

V

a

(4.39)

The energy of su
h a system is equal to

W =

1

2

X

ab

C

ab

V

a

V

b

(4.40)

Another example is given by a 
at surfa
e 
harged with a surfa
e density � (surfa
e

1) and another one at distan
e d whi
h is grounded i.e. with zero potential (surfa
e

2). Outside the grounded surfa
e there 
an be no ele
tri
 �eld so it must have a 
harge

density �� to shield the 
harged surfa
e. Therefore the ele
tri
 �eld between the plates

is equal to

E

in

=

�

"

0

(4.41)

and outside (on both sides) it vanishes. The potential of the 
harged surfa
e is equal to

V

1

=

�d

"

0

(4.42)

The 
apa
itan
e

C

11

=

Q

V

=

"

0

S

d

(4.43)

and

C

21

= �

"

0

S

d

(4.44)
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5 Dielectrics

In this le
ture we will dis
uss solutions of the Maxwell equations in presen
e of diele
tri


media.

We start with the Maxwell equations and as before we assume that B = 0 and all the

�elds and 
harge densities are time independent. We are left with two relevant equations

r �E =

�

"

0

(5.1)

and

r�E = 0 (5.2)

As before the se
ond equation allows us to write

E = �r� (5.3)

and then the �rst 
an be written in the form of Poisson equation (4.4)

�� = �

�

"

0

(5.4)

In the presen
e of diele
tri
 media the density � 
an be divided into parts { one so 
alled

free 
harges (sum of delta fun
tions), the se
ond dipole 
harges (sum of derivatives of

delta fun
tions) and so on. For dis
rete 
harges, dipoles and so on one 
an write

�(x) =
X

a

q

a

Æ(x� x
a

)�

X

b

p
b

� rÆ(x� x
b

) + : : : (5.5)

where : : : stand for higher derivatives of the delta fun
tions. The reason for this ex-

pansion is 
lear { integrating �(x) over a small region surrounding x
a

we get q

a

while

integrating �(x)(x � x
b

) over a small region surrounding x
b

we get p
b

.

Negle
ting all higher derivatives (i.e. quadrupoles, o
tupoles and so on whi
h is

usually a very good approximation) and introdu
ing 
ontinuous densities we write

�(x) =

Z

dV

0

�

�

0

(x0)Æ(x� x0)�P(x0) � r
x

Æ(x� x0)
�

(5.6)

Integrating by parts and negle
ting the boundary terms we see that � 
an then be

e�e
tively des
ribed by

�(x) = �

0

(x)�r �P(x) (5.7)
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Returning to equation (5.1) and rearranging we get

r � ("

0

E+P) = �

0

(5.8)

where on the RHS we have only free 
harges. The quantity on the LHS is 
alled D(x).

D = "

0

E+P (5.9)

It should be emphasized that D(x) is only an auxiliary ve
tor and on the mi
ros
opi


s
ale we should use the ele
tri
 �eld. We 
an therefore write

r �D = �

0

(5.10)

If we have a polarized medium 
on�ned by a boundary then besides a volume density

of bound 
harges given by

�

b

= �r �P (5.11)

we have also a surfa
e bound 
harge density (
oming from the integration by parts)

�

b

= P � n (5.12)

The bound 
harges should be 
onserved. The 
onservation law reads

��

b

�t

+r � j
b

= 0 (5.13)

Using (5.11) we get

j
b

=

�P

�t

(5.14)

We 
an therefore write down the sour
e Maxwell equations with the bound 
harges

present

r �D = �

0

(5.15)

r�B = �

0

�

j+
�D

�t

�

(5.16)

where neither �

0

nor j 
ontain bound (polarization) 
harges { they are fully 
ontained

in D.

The question arises what do we know about the polarization �eld P(x) in the real

media? The most frequent 
ase is that the polarization is indu
ed when the external

ele
tri
 �eld is applied and then in the lowest approximation it is proportional to the

external ele
tri
 �eld

P(x) = ("� 1)"

0

E(x) (5.17)

with some 
onstant " (that varies with frequen
y for �elds dependent on time but in

our 
ase it is just a 
onstant). The dimension of P is [C=m

2

℄.
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5.1 Molecular polarizability

There are two models of the mole
ular polarizability { either the ele
tri
 �eld indu
es

polarization in the initially unpolarized mole
ules or it orders the dire
tions of existing

ele
tri
 dipoles.

In the �rst 
ase we 
an use a 
lassi
al pi
ture of an ele
tron bound to an atom with

some dissipation and the external for
e (we temporarily assume time dependen
e of the

ele
tri
 �eld):

m�z +m
 _z +m!

2

0

z = eEe

�i!t

(5.18)

with the solution

z(t) =

eEe

�i!t

m(!

2

0

� !

2

� i
!)

+ eigenmodes (5.19)

Hen
e the polarizability is for low frequen
ies independent of frequen
y

p =

e

2

m!

2

0

E (5.20)

but for larger frequen
ies, 
lose to the eigenfrequen
ies of the system, the dependen
e

is very strong and the real part 
hanges sign when 
rossing !

0

.

The result 
an be 
he
ked by the statisti
al me
hani
s approa
h. Hamiltonian for

the ele
tron in the 
onstant �eld E is given by

H =

p2

2m

+

m!

2

0

2

x2 � eEz (5.21)

Introdu
ing

x0 = x� eEe
z

=(m!

2

0

) (5.22)

we get

H =

p2

2m

+

m!

2

0

2

x02 �
e

2

E

2

2m!

2

0

(5.23)

Therefore average dipole moment is given by (� = 1=(kT ))

hpi =

R

d

3

pd

3

x(eze
z

)e

��H

R

d

3

pd

3

xe

��H

=

R

d

3

pd

3

x e(z

0

+ eE=(m!

2

0

))e
z

)e

��H

R

d

3

pd

3

xe

��H

=

e

2

m!

2

0

E (5.24)

i.e. the thermal motion of parti
les does not in
uen
e the polarizability.

To a

ount for di�erent rea
tions of di�erent ele
trons in an atom one introdu
es

\os
illator strengths" f

i

and then

p =

X

f

i

e

2

=m

!

2

i

� !

2

� i


i

!

E (5.25)

These os
illator strengths 
an be 
al
ulated in the framework of quantum me
hani
s.

We 
an estimate the orders of magnitude involved. If we have a density N then

"� 1 =

Ne

2

"

0

m!

2

0

(5.26)
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For gases in normal 
onditions we have N

A

= 6:023 � 10

23

mole
ules in 22.4 liters so

N � 2:7 � 10

25

=m

3

. Binding energy of ele
trons in atoms is of the order of the visible

light 3 eV (0.3 �) i.e. !

0

� 6 � 10

15

1/s. Therefore

"� 1 � 0:003 (5.27)

and for air it is 0.00054, for methyl al
ohol 0.0057 and for helium 0.000068 (in this


ase the lowest lying level is about 21 eV so it gives a fa
tor of 50 less than the estimate

above). For dense media N is roughly 10

3

times bigger and "�1 � O(1). Obviously this

model is very approximate sin
e a mole
ule has many eigenfrequen
ies and " 
hanges

when we approa
h any of them.

In the se
ond 
ase when the parti
les have their own dipole moment p

0

(for example

water or hydro
hlori
 a
id HCl) we are for
ed to use statisti
al me
hani
s sin
e otherwise

we would get an obviously wrong result that for arbitrarily small �eld all dipoles point

in the dire
tion of the �eld. To des
ribe the system statisti
ally we start with the

hamiltonian

H = H

0

� p
0

� E (5.28)

We assume here that the ele
tri
 �eld is small �p

0

E � 1 i.e. for T = 300 K (k =

1:38065 � 10

�23

J/K)

E �

kT

p

0

�

4 � 10

�21

2 � 1:6 � 10

�19

� 10

�10

V=m = 1:2 � 10

8

V=m (5.29)

where we estimated the atomi
 dipole moment as 3 D (debye)

p

0

� 3D = 3 � 0:208 � 1:6 � 10

�19

� 10

�10

Cm � 10

�29

Cm (5.30)

(the highest dipole moment known in 
hemistry is 11.5 D). Then the average dipole

moment per mole
ule is given by

hpi =

R

d� sin � p

0


os �e
z

e

�p

0

E 
os �

R

d� sin � e

�p

0

E 
os �

� p

0

e
z

R

dww(1 + �p

0

Ew)

R

dw

�

1

3

�p

2

0

E (5.31)

Therefore in general

"� 1 =

Ne

2

"

0

m!

2

0

+

Np

2

0

3"

0

kT

(5.32)

The temperature dependen
e allows to distinguish both 
ontributions (i.e. from indu
ed

and internal polarizability). For room temperatures we 
an estimate p

0

� 10

�29

Cm

and kT � 1:38 � 10

�23

� 300 � 4 � 10

�21

J. Then the the se
ond 
ontribution gives

Np

2

0

3"

0

kT

�

2:7 � 10

25

� 10

�58

3 � 0:88 � 10

�11

� 4 � 10

�21

� 0:03 (5.33)

so the 
ontribution for gases from dipole orientation is slightly bigger than from the

indu
ed dipole moment.
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5.2 Clausius-Mossotti equation

We start from the observation that an average ele
tri
 �eld inside a given region is related

to a total dipole moment inside the region. The relation for an arbitrary region is in

general 
ompli
ated and involves also higher moments of the distribution (quadrupoles

and so on) but it turns out that if the region is a ball the 
al
ulation is easy and the

relation involves only the dipole moment.

For a system of 
harges lo
ated at r
a

we 
an write

Z

B(0;R)

dV E = �

Z

B(0;R)

dV r'(x) = �
X

a

Z

S(0;R)

dS
q

a

4�"

0

jr� r
a

j

(5.34)

where the �eld E is from the 
harges en
losed in the ball only. We now 
al
ulate the z


omponent this equation. We use the expansion of 1=jr�r
a

j in Legendre polynomials and

we noti
e that dS 
ontribution is proportional to 
os � i.e. the �rst Legendre polynomial.

Therefore, be
ause of orthogonality of the Legendre polynomials we keep only l = 1 term

in the expansion (the integration over the l = 0 term vanishes) and we get

Z

B(0;R)

dV E

z

= �

X

a

Z

sin �d�d� 
os

2

�

q

a

z

a

4�"

0

(5.35)

where one 
os(�) 
omes from proje
ting dS on the z axis and the other from r
a

� r in the

expansion of the denominator jr � r
a

j. Dividing both sides by the volume of the ball

and using the fa
t that the z axis was arbitrary we get

hEi = �
1

3"

0

P (5.36)

where P is the polarization density.

The diele
tri
 
onstant des
ribes the 
oeÆ
ient of proportionality between the ele
-

tri
 �eld and the polarization { at the mi
ros
opi
 level it is given by

P = ("� 1)"

0

�

E+E
lo


�

1

3"

0

P

�

(5.37)

where E
lo


is a 
ontribution from mi
ros
opi
ally 
lose 
harges { there are arguments

that for high symmetry 
ases it vanishes. Solving for P and dividing by the density of

mole
ules N we get a mole
ular polarizability


 =

P

NE

=

3"

0

("� 1)

N("+ 2)

(5.38)

This equation is 
alled the Clausius-Mossotti equation.

In the form

n

2

� 1

n

2

+ 2

=

N


3"

0

(5.39)

for the refra
tive indi
es n, polarizability 
 and a number of parti
les in a volume N it

was dis
overed independently by Hendrik Lorentz and Ludvig Lorenz and is known as

the Lorentz-Lorenz equation.
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5.3 Energy of fields in the dielectric media

In the empty spa
e the energy of the ele
tri
 �eld is equal to

W =

"

0

2

Z

d

3

xE2

(5.40)

or in terms of 
harges and potentials (we assume that the potentials are indu
ed by


harges hen
e

1

2

) as

W =

1

2

Z

d

3

x�(x)'(x) =
1

2

Z

d

3

xE(x)D(x) (5.41)

The di�eren
e between initial and �nal situations when we put some diele
tri
 media

but keep free 
harges in the original positions is given by

ÆW =

1

2

Z

d

3

x(E �D�E
0

�D
0

) =

=

1

2

Z

d

3

x(E � (D�D
0

) +E �D
0

�E
0

(D
0

�D)�E
0

�D)

=

1

2

Z

d

3

x(E �D
0

�E
0

�D) (5.42)

sin
e

Z

d

3

xE � (D�D
0

) =

Z

d

3

x' � r � (D�D
0

) = 0 (5.43)

by the assumption that we do not 
hange the free 
harges (and similarly for the other

term). Therefore for

D
0

= "

0

E
0

; D = "

0

E+P (5.44)

we have

ÆW = �

1

2

Z

d

3

xP(x)E
0

(x) (5.45)

Hen
e the diele
tri
 is pulled to the regions where the ele
tri
 �eld is bigger.

It is important to note that in the diele
tri
 medium of diele
tri
 
onstant " the

ele
tri
 �eld with given 
harges is " times smaller than in the va
uum and therefore a


apa
itan
e of a given system is " times bigger.

It is important to note that the method of images is a very useful tool to satisfy

the boundary 
onditions in solving the problems with media with di�erent diele
tri



onstants.

5.4 Example

To illustrate the appli
ation of boundary 
onditions we now dis
uss the 
ase of a diele
-

tri
 ball of diele
tri
 
onstant " and radius R in a 
onstant ele
tri
 �eld E (to be de�nite
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in the z dire
tion) in va
uum. We use the expansion (9.60) separately inside the ball

and outside the ball

'

in

(x) =

1

X

l=0

A

l

r

l

P

l

(
os �)

'

out

(x) =

1

X

l=0

B

l

r

�l�1

P

l

(
os �)�Er 
os(�) (5.46)

where we have used the 
ondition that the potential is �nite at r ! 0 and that at in�nity

we have 
onstant ele
tri
 �eld in the z dire
tion.

The equations

r�E = 0

r � ("E) = 0 (5.47)

show that on the boundary we should impose 
ontinuity on the tangent ele
tri
 �eld

and perpendi
ular "E. Therefore we write

�'

in

��

(R) =

�'

out

��

(R)

�"'

in

�r

(R) =

�'

out

�r

(R)

(5.48)

Substituting (5.46) and using the linear independen
e of Legendre polynomials we get

for l � 2

A

l

R

l

= B

1

R

�l�1

l"A

l

R

l�1

= �(l+ 1)B

l

R

�l�2

(5.49)

The only solutions to these equations is A

l

= B

l

= 0. For l = 1 we have

A

1

R = B

1

R

�2

�ER

"A

1

= �2B

1

R

�3

�E (5.50)

hen
e

A

1

= �

3E

"+ 2

; B

1

=

("� 1)ER

3

"+ 2

(5.51)

The �eld inside is along the z axis, smaller than at in�nity, and with the polarization

P

z

=

3"

0

E("� 1)

"+ 2

(5.52)

Sin
e it 
onstant inside the ball there is no volume bound 
harge density and the surfa
e

bound 
harge density is equal to

�

b

= P � n =

3E"

0

("� 1)

"+ 2


os � (5.53)
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what e�e
tively s
reens the inside of the ball (but not entirely as in the 
ase of a 
on-

du
ting ball). The outside �eld is equivalent to a �eld of a dipole with

p = 4�"

0

("� 1)ER

3

"+ 2

(5.54)

Dividing by the volume of the ball we re
over, what is not surprising, the Clausius-

Mossotti equation (5.38).
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6 Magnetostatics

In this le
ture we will dis
uss solutions of the Maxwell equations in presen
e of 
urrents

and an indu
ed magneti
 �eld.

We start with the Maxwell equations and we assume that E = 0 and all the �elds

and 
urrent densities are time independent. We are left with two relevant equations

r �B = 0 (6.1)

and

r�B = �

0

j (6.2)

whi
h of 
ourse implies the 
ontinuity equation

r � j = 0 (6.3)

The integral form of (6.2) is the so 
alled Amp�ere's law:

I

�M

B � dl = �

0

I (6.4)

where I is a 
urrent 
owing through M

2

.

As before the �rst equation (6.1) allows us to write

B = r�A (6.5)

so if r �A = 0 we get the Poisson equation for A

�A(r) = ��
0

j(r)) A(r) =
�

0

4�

Z

d

3

x

0

j(r0)

jr� r0j
(6.6)

Sin
e r � j = 0 this solution indeed satis�es r �A = 0.

Applying r� to (6.2) and using (6.1) we get the Poisson equation dire
tly for B:

�B = ��

0

r� j (6.7)

One has to be 
areful when applying this equation in 
oordinate system di�erent from

the 
artesian one { in general by de�nition �C = r(r �C)�r� (r�C).

If there are no boundaries the solution to (6.7) is

B(r) =
�

0

4�

Z

d

3

x

0

r

0

� j(r0)

jr� r0j
=

�

0

4�

Z

d

3

x

0

j(r0)� (r� r0)

jr� r0j3
(6.8)
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where we integrated by parts. This equation is known as the Biot-Savart Law.

Let us 
al
ulate the magneti
 �eld in several examples.

For a straight, long wire with 
urrent I it is straightforward to 
al
ulateB using

(6.4). IfM

2

is a dis
 of radius R then we immediately get

B =

�

0

I

2�R

e
�

(6.9)

where e
�

is a unit ve
tor surrounding the wire.

For a long 
oil with N turns per meter and a 
urrent I we 
an use the Amp�ere's law

to get (far from the ends of the 
oil)

Bl = �

0

NlI ) B = �

0

NI (6.10)

The �eld is parallel to the 
oil and homogeneous inside the 
oil.

For an arbitrary 
oil with N turns per meter and a 
urrent I we 
an get an expression

for the magneti
 �eld on the axis at a distan
e z from the middle of the 
oil by the Biot-

Savart law

B(z) =
�

0

4�

Z

d

3

x

0

j(r0)� (r� r0)

jr� r0j3
(6.11)

The �eld is in the z dire
tion and we 
an easily integrate the proje
tion on the z dire
tion

B(z) =

�

0

4�

L=2

Z

�L=2

dz

0

INR

2

2�

(R

2

+ (z

0

� z)

2

)

3=2

=

�

0

IN

2

z

0

� z

p

R

2

+ (z

0

� z)

2

�

�

�

�

�

L=2

�L=2

=

�

0

IN

2

(sin �

1

+sin �

2

)

(6.12)

where �

1

; �

2

are angles at whi
h we see the ends of the 
oil (for a very long 
oil �

1

= �=2

and �

2

= �=2 and we reprodu
e the result from the previous paragraph). We see that

at the end of the long 
oil (�

1

= 0 and �

2

= �=2) the �eld is only half of the �eld in the

middle.

In the last example we want to show that the 
ux through the end of the long 
oil

is exa
tly half of the 
ux through the middle of the 
oil i.e. half of the 
ux \leaks

out" through the sides (the usual drawing of the �eld of the 
oil where all the 
ux goes

through the end is wrong).

To 
al
ulate the 
ux through the end
ap of a long 
oil of radius R with N turns per

meter and a 
urrent I we use the relation

� =

Z

B

2

(R)

B � dS =

I

S

1

(R)

A � dl (6.13)

where B

2

(R) is the dis
 of the end
ap and S

1

its boundary (
oin
iding with the 
oil's

end). To 
al
ulate A we use (6.6) in the 
ylindri
al 
oordinates

A =

�

0

NIRe
�

4�

0

Z

�1

dz

0

2�

Z

0

d� 
os�

1

p

2R

2

(1� 
os�) + z

02

(6.14)
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We integrate by parts over d�

A =

�

0

NIRe
�

4�

0

Z

�1

dz

0

2�

Z

0

d�

�

�

��

sin�

�

1

p

2R

2

(1� 
os�) + z

02

=

=

�

0

NIRe
�

4�

0

Z

�1

dz

0

2�

Z

0

d� sin�

R

2

sin�

(2R

2

(1� 
os�) + z

02

)

3=2

=

=

�

0

NIRe
�

4�

2�

Z

0

d� 
os

2

(�=2) =

�

0

NIRe
�

4

(6.15)

where we used the integral

Z

dz

1

(z

2

+ a

2

)

3=2

=

z

a

2

p

z

2

+ a

2

(6.16)

Therefore indeed

� =

Z

B

2

(R)

B � dS =

I

S

1

(R)

A � dl =
�

0

NI�R

2

2

(6.17)

i.e. the 
ux is twi
e smaller at the end than in the middle of the long 
oil.

6.1 Multipole expansion

Before we start let us note several identities that follow from (6.3).

0 =

Z

d

3

x (�

i

j

i

)x

k

= �

Z

d

3

x j

k

)

Z

d

3

x j(x) = 0 (6.18)

where we integrated by parts and used the assumption that j(x) has 
ompa
t support.

The se
ond one

0 =

Z

d

3

x (�

i

j

i

)x

k

x

l

= �

Z

d

3

x (x

k

j

l

+ x

l

j

k

))

Z

d

3

xx

k

j

l

=

1

2

"

klm

Z

d

3

x(r� j)m

(6.19)

We will also use

r� ( C) = r �C+  r�C

r� (B�C) = B(r �C)�C(r �B) + (C � r)B� (B � r)C (6.20)

We now expand (6.6) in powers of 1=r

A(r) =
�

0

4�

Z

d

3

x

0

j(r0)

jr� r0j
=

�

0

4�

�

Z

d

3

x

0

j(r0)

r

+

Z

d

3

x

0

j(r0)(r � r0)

r

3

+ : : :

�

(6.21)

The �rst term vanishes be
ause of (6.18) and the se
ond 
an be rewritten using (6.19)

as

A(r) =
�

0

4�

m� r

r

3

+ : : : (6.22)
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where

m =

1

2

Z

d

3

x

0 r0 � j(r0) (6.23)

is the so 
alled total magnetization of the system. For the 
at 
urrent loop it is equal to

jmj = IS (6.24)

where I is the 
urrent and S is the area of the loop.

The magneti
 �eld of the dipole is given by

B = r�A =

�

0

4�

3(m � r)r� r2m

r

5

(6.25)

The magneti
 moment is related to the angular momentum. If the 
urrent is given

by a movement of parti
les with 
harges q

a

and masses m

a

then we 
an write

j =
X

a

q

a

v
a

Æ(x� x
a

) (6.26)

The magneti
 moment is on the other hand given by

m =

1

2

Z

d

3

x

0 r0 � j(r0) =
X

a

q

a

2m

a

L
a

(6.27)

where the angular momentum

L
a

= m

a

r
a

� v
a

(6.28)

If the ratio q

a

=m

a

is the same for all parti
les then

m =

q

2m

L (6.29)

where L is the total angular momentum. The 
lassi
al fa
tor

1

2

is repla
ed by 1 for spins

in the lowest order relativisti
 theory of massive fermions (Dira
 equation) and this 1

re
eives small 
orre
tions in the full Quantum Ele
trodynami
s (the �rst one is �=(2�)

where � is the �ne stru
ture 
onstant � = e

2

=(4�"

0

~
) � 1=137).

6.2 Forces in the magnetic field

We start with the Lorentz for
e a
ting on a 
harge q in an external magneti
 �eld B

dp

dt

= qv �B (6.30)

One 
an show that the magneti
 for
e is intimately 
onne
ted with the ele
tri
 (Coulomb)

for
e by the following reasoning. If a 
harge q is moving with velo
ity v at distan
e d

with respe
t to a wire of area A with a 
urrent I then it sees a (approximately at rest)


ertain density � of positive ions and the same density of ele
trons moving with some

velo
ity v along the wire.

�

ion

= �

e

= � (6.31)
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sin
e the wire is un
harged. There is magneti
 for
e a
ting on the 
harge

dp

dt

= qv �B =

qv

2

�

0

e�Se
�

2�r

(6.32)

where e > 0 is equal to minus the ele
tron 
harge. If we now 
hange the frame to the one

moving at velo
ity v then the 
harge is at rest and the magneti
 �eld from the positive

ions (that now move with velo
ity �v) does not exert any for
e on the 
harge. However

the densities 
hange be
ause of the Lorentz 
ontra
tion

�

0

ion

=

�

p

1� v

2

=


2

; �

0

e

= �

q

1� v

2

=


2

(6.33)

Therefore in this frame the wire is 
harged with the linear density

�

eff

= �

0

ion

� �

0

e

=

�v

2




2

p

1� v

2

=


2

(6.34)

Therefore there is an ele
tri
 for
e

dp

dt

0

= qE =

qv

2

e�Se
�

�

0




2

2�r

p

1� v

2

=


2

(6.35)

Using

dt

0

=

q

1� v

2

=


2

dt (6.36)

we get the same result in both frames if

�

0

=

1

�

0




2

(6.37)

what shows the uni�
ation of magneti
 and ele
tri
 intera
tions as seen by di�erent

observers,

A for
e a
ting on a short element of wire with 
urrent I in an external magneti
 �eld

B is given by

dF = Idl�B (6.38)

Therefore for two long wires at a distan
e d we have the for
e (using (6.9)

F =

�

0

I

1

I

2

2�d

(6.39)

The de�nition of ampere is that the it is the 
urrent whi
h in two long wires at a distan
e

of 1 m produ
es the for
e 2 � 10

�7

N/m (hen
e by de�nition �

0

= 4� � 10

�7

N/A

2

).

In the presen
e of an ele
tri
 �eld the for
e a
ting on a lo
alized distribution of


harge is given by

F =

Z

d

3

x �(r)E(r) =

Z

d

3

x �(r)(E(0) + r � rE(0) + : : :) = QE(0) + (p � r)E(0) + : : :

(6.40)
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while the leading term for the torque (moment of for
e) reads

N =

Z

d

3

x r� �(r)E(r) = p�E (6.41)

In the presen
e of a magneti
 �eld the total for
e a
ting on some lo
alized distribution

of 
urrents is given by

F =

Z

d

3

x j(r)�B(r) =

Z

d

3

x j(r)� (B(0) + (r � r)B(0) + : : :) (6.42)

The �rst term vanishes be
ause of (6.18). We write the se
ond term in 
omponents

F

i

= "

ijk

Z

d

3

x j
j

x

l

(�

l

B

k

)(0) (6.43)

and using (6.19) we write

F

i

=

1

2

"

ljm

"

ijk

Z

d

3

x (r� j)
m

(�

l

B

k

)(0) = �

i

(m �B) (6.44)

where we used r �B = 0. Therefore

F = r(m �B) (6.45)

The potential energy of a dipole in the magneti
 �eld (but not the full energy!) is

therefore given by

U = �m �B (6.46)

The torque in the magneti
 �eld is given by the leading term

N =

Z

d

3

x r� (j�B(0)) =

Z

d

3

x (j(r �B(0)) �B(0)(r � j)) (6.47)

The se
ond term vanishes be
ause of (6.19) and the �rst (also using (6.19)) gives

N = m�B(0) (6.48)
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7 Magnetization

In a similar way to the dis
ussion of diele
tri
s we 
an divide any 
urrent into free


urrents j
0

and bound 
urrents

j(x) =
X

a

j
0

(x)Æ(x� x
a

) +

X

b

"

ijk

M

j

�

k

Æ(x� x
b

) + : : : (7.1)

where r � j
0

= 0 and the se
ond term is written in su
h a way to satisfy this 
ondition

automati
ally and : : : stand for higher derivatives of the delta fun
tion. Negle
ting all

higher derivatives and introdu
ing 
ontinuous 
urrent densities we write

j(x) = j
0

(x) +r�M(x) (7.2)

Returning to equation

r�B = �

0

j (7.3)

and rearranging we get

r� (B� �
0

M) = �

0

j
0

(7.4)

where on the RHS we have only free 
urrents. We introdu
e

H :=

1

�

0

B�M (7.5)

and then

r�H = j
0

(7.6)

The �eld H is very useful in a
tual appli
ations sin
e most often we 
ontrol the external


urrents (in ele
trostati
s we usually 
ontrol potentials and therefore the analogous �eld

D is not so useful) but we have to remember that at the mi
ros
opi
 level we should

use only the �eld B.

We 
an now write down Maxwell equations in the presen
e of media

r �D = �

0

r�E = �

�B

�t

r �B = 0

r�H = j
0

+

�D

�t

(7.7)

and it is in this form that Maxwell wrote originally his equations. Only later it be
ame


lear that the �elds D and H are se
ondary and at the mi
ros
opi
 level everything 
an

(and should) be des
ribed by the �eld E and B only.
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7. Magnetization

The question arises what is the relation between H (or M) and B in the magnet-

i
ally a
tive media? As with diele
tri
s we have two di�erent situations { either the

magnetization is indu
ed by the external magneti
 �eld or the mole
ules or atoms have

their own magneti
 moment. The di�eren
e in this 
ase is mu
h more dramati
 than in

the diele
tri
 
ase sin
e the intera
tion of internal magneti
 moments 
an be so strong to

totally order these magneti
 moments in large domains (in ferromagneti
 media below

the Curie temperature).

In the �rst 
ase when the magnetization is indu
ed when the external magneti


�eld is applied and then in the lowest approximation it is proportional to the external

magneti
 �eld

B(x) = ��

0

H(x) (7.8)

with some 
onstant � (that varies with frequen
y for �elds dependent on time but in

our 
ase it is just a 
onstant). In prin
iple one should write this relation for H as a

fun
tion of B (sin
e B is a fundamental �eld and H is an auxiliary �eld) but �rst, this

form is traditionally used, se
ond H is what is dire
tly related to the external 
urrents

and third it it is easier to operate with very large � (for ferromagneti
 materials) than

with very small 1=�.

The linear relation between B and H is rather well satis�ed in the 
ase when � � 1

but for � � 1 it is not satis�ed and moreover the a
tual value of B for a given H

depends on the history of the sample (the phenomenon of hysteresis).

We start now with � � 1. If � < 1 the substan
e is 
alled diamagneti
 if � > 1

it is paramagneti
 (note that for diele
tri
s we have � > 1 { it is 
onne
ted with

the de�nition D � �E and here B � �H). The diamagneti
 properties exist when

the substan
e does not have any internal magneti
 moment and paramagneti
 (and

ferromagneti
) when it does. The di�eren
e with the ele
trostati
 
ase (where we have

only diele
tri
 substan
es and there are no paraele
tri
 ones) lies in the di�erent rea
tion

of magneti
 dipole moments from the ele
tri
 dipole moments.

If we have a substan
e without any internal magneti
 moment (either orbital or spin)

then in the magneti
 �eld the 
arriers (ele
trons) start to move on 
ir
ular orbits and

the indu
ed magneti
 �eld from su
h 
urrent loops de
reases the magneti
 �eld (i.e.

� < 1). The substan
es with su
h behavior are water, 
arbon, lead, silver and the

most diamagneti
 element known is bismuth. The e�e
t is very weak and it turns out

that 
lassi
ally it should vanish (it is purely quantum me
hani
al be
ause of dis
rete

Landau levels). There exist however ideal diamagnets (zero magneti
 �eld inside) namely

super
ondu
tors of the �rst kind (Meissner e�e
t) but the origin of the e�e
t is entirely

di�erent and purely quantum me
hani
al.

If mole
ules or atoms have their internal magneti
 moment then the external mag-

neti
 �eld tends to orient the dire
tions along the external magneti
 �eld. There are

two distin
t situations - either the intera
tion between the neighboring atoms is weak

and the orientation is separate for ea
h of the mole
ule (paramagnet) or the intera
-

tion is strong and the atoms are oriented independently of the external �eld (ferro- or

antiferromagnet).

In the �rst, paramagneti
 
ase we 
an use a similar reasoning to 
al
ulate an average
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magnetization as a fun
tion of temperature. If atoms have their own magneti
 dipole

moment m

0

and they do not intera
t with one another (this assumption is obviously

wrong in the ferromagneti
 
ase) then the hamiltonian is given by

H = H

0

�m
0

�B (7.9)

The magneti
 moment is of the order of Bohr magneton

�

B

=

e~

2m

e

= 0:92 � 10

�23

J=T (7.10)

sin
e m
0

= �

B

S where S is a spin operator. Then the average dipole moment per

mole
ule is given by (� = 1=(kT ))

hmi =

R

d� sin � �

B


os �e
z

exp

��

B

B 
os �

R

d� sin � exp

��

B

B 
os �

= �

B

�


oth(��

B

B)�

1

��

B

B

�

(7.11)

For small B we have

hmi �
1

3

��

2

B

B (7.12)

what is the 
ase (for T = 300 K (k = 1:38065 � 10

�23

J/K)) when

B �

kT

�

B

�

4 � 10

�21

0:92 � 10

�23

T � 400T (7.13)

Then

�� 1 =

�

0

N�

2

B

3kT

(7.14)

For gases at room temperatures we 
an estimate (N � 2:7�10

25

m

�3

) that ��1 is around

10

�5

and therefore it is very small. In dense substan
es the total 
ontribution from

spins almost 
an
els (be
ause of the Pauli prin
iple) and only those 
lose to the Fermi

surfa
e 
an be ordered and therefore the paramagneti
 properties are not multiplied by

� 10

3

as would be suggested by the density fa
tor but remain at the level 10

�5

(Pauli

paramagnetism).

Before we dis
uss ferromagneti
 substan
es let us derive the expression for the energy

density in the magneti
 �eld. In the va
uum we have dis
ussed already that the 00


omponent of the energy momentum tensor (we assume vanishing ele
tri
 �eld) reads

T

00

=

1

2�

0

B2

(7.15)

In the presen
e of magneti
 substan
es we write the total energy as

W =

Z

d

3

x

1

2

H �B (7.16)

If we keep 
urrents �xed and we introdu
e some magneti
ally a
tive substan
e the

ÆW =

Z

d

3

x

1

2

(H �B�H
0

�B
0

) =

Z

d

3

x

1

2

(H �B�H
0

�B
0

) (7.17)
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The �rst term 
an be written as

Z

d

3

x

1

2

H �B =

Z

d

3

x

1

2

((H�H
0

) � (r�A) +H
0

�B) (7.18)

Using the equation

r � (C�D) = D � (r�C)�C � (r�D) (7.19)

we integrate by parts the �rst term and use the fa
t that we don't 
hange the free


urrents (i.e.r�H = r�H
0

) to show that it vanishes. We apply the same pro
edure

to the se
ond term in (7.17) to arrive at the general result

ÆW =

Z

d

3

x

1

2

(H
0

�B�H �B
0

) (7.20)

For a linear relation between B and H and the initial B
0

in the va
uum we have

ÆW =

Z

d

3

x

�

0

2

(�� 1)H �H
0

=

Z

d

3

x

�

0

2

M �H
0

(7.21)

The di�eren
e in sign with respe
t to the previously used expression �m �B (apart from

the obvious

1

2

) 
omes from the fa
t that now it is the full 
hange of energy in
luding also

the work needed to keep the 
urrents 
onstant while before this work was not a

ounted

for.

7.1 Ferromagnetic materials

In 
ontradistin
tion to the polarization where in matter we do not en
ounter very large

permanent ele
tri
 dipole moments, the internal magneti
 moments in matter 
an be

very large. The reason for this is the fa
t that spins 
ontribute to the magneti
 moment

and the mutual intera
tion of spins 
an lead to a spontaneous ordering of large regions.

In 
lassi
al ele
trodynami
s two magneti
 moments pla
ed 
lose to ea
h other try to

orient themselves in an antiparallel way so the net �eld should be 
lose to 0. In the

quantum world there is a Pauli ex
lusion prin
iple that in partially �lled shells 
an lead

to unbalan
ed spins (one of Hund's rules says that ele
trons tend to have parallel spins if

they start to �ll a shell). There are only very few materials that have large enough spin-

orbital and spin-spin intera
tion to allow for the spontaneous ordering { iron, ni
kel,


obalt, some rare earth materials like neodymium and most of alloys of these metals.

If the shells are �lled or almost �lled the total orbital momentum and the total spin

(almost) vanish.

In the statisti
al des
ription there are two opposing e�e
ts { the temperature tries

to disorder the system and the intera
tion tries to order it. As it turns out in ferromag-

neti
 substan
es there exists a temperature (Curie temperature) below whi
h there is a

spontaneous symmetry breaking and the material rea
hes its maximal possible magne-

tization. Then on small s
ales (domains) the material is fully magnetized but on larger
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s
ales the domains 
an still be disoriented so that the average ma
ros
opi
 magneti-

zation vanishes. If one swit
hes the magneti
 �eld the domains start to point in the

dire
tion of the �eld (mu
h like in the 
ase of individual magneti
 moments but sin
e

the internal �eld of the domains is very large the e�e
t 
an be very large as well). When

the magneti
 �eld is swit
hed o� then it 
osts energy (at the boundary of the domains)

to disorient again the domains so they stay (partially) oriented. It requires a magneti


�eld in the opposite dire
tion to bring the magnetization ba
k to 0. This phenomenon

of hysteresis is at the origin of permanent magnets but it makes the solution of a
tual

problems very diÆ
ult mu
h more diÆ
ult than in the ele
trostati
 
ase.

The dependen
e of the magneti
 permeability on temperature above the Curie tem-

perature T

C

(when the ferromagneti
 substan
e is paramagneti
) is given by the Curie-

Weiss' law

� =

�

T � T

C

(7.22)

7.2 Methods of solving the problems

The equations

r �B = 0; r�H = j (7.23)

impose the boundary 
onditions on surfa
es separating two media without free surfa
e


urrents:

B
(1)

?

= B
(2)

?

; H
(1)

k

= H
(2)

k

(7.24)

In general sin
e H(B) is a 
ompli
ated fun
tion depending on the history of a sample

it is very diÆ
ult to give any simple pro
edure that works in every 
ase and in the real


ases one resorts to numeri
al simulation. We will give below some methods that work

in spe
ial situations.

� If the relation between B and H is linear B = ��

0

H then we 
an write

r�

�

1

�

r�A

�

= �

0

J (7.25)

In the regions where � is 
onstant and we impose the Coulomb 
ondition r�A = 0

we get the Poisson's equation

��A = ��

0

J (7.26)

Solving this equation separately in di�erent regions with di�erent �'s we have to

impose the 
ontinuity on A a
ross the boundaries.

� if in some region there are no free 
urrents then

r�H = 0 (7.27)

and we 
an introdu
e the magneti
 potential

H = �r�

M

(7.28)
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The equation we have to solve is then

r � (�r�

M

) = 0 (7.29)

If � is 
onstant it boils down to the Lapla
e equation { again we have to glue

together the solutions to ensure the 
ontinuity of �

M

.

� if we have permanent magnets with �xed magnetization M(r) (and no free 
ur-

rents) then we 
an write

r �B = �

0

r � (H+M) = 0 (7.30)

Hen
e

��

M

= ��

M

; �

M

= �r �M (7.31)

If there are no external boundaries we write the solution as

�

M

(r) = �
1

4�

Z

d

3

x

0

r

0

�M0

jr� r0j
= �

1

4�

r �

Z

d

3

x

0

M0

jr� r0j
(7.32)

For large r we re
over the dipole potential

�

M

=

1

4�

m � r

r

3

(7.33)

� For a given permanent magnetization M(r) 
on�ned to some 
losed region we 
an

use dire
tly the equation

r�B = �

0

j (7.34)

where the 
urrent j is a sum of free and bound 
urrents. The bulk bound 
urrents

are given by

j
b

= r�M (7.35)

and the surfa
e bound 
urrents are given by

j
bS

= M� n (7.36)

where n is a ve
tor normal to the surfa
e (outward).

To illustrate the appli
ation of boundary 
onditions we now dis
uss the 
ase of a

magnetized ball of 
onstant magnetization M (to be de�nite in the z dire
tion) and

radius R in va
uum. We use the usual expansion into spheri
al harmoni
s separately

inside the ball and outside the ball

�

M in

(x) =

1

X

l=0

a

l

r

l

P

l

(
os �)

�

M out

(x) =

1

X

l=0

b

l

r

�l�1

P

l

(
os �) (7.37)
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where we have used the 
ondition that the potential should be �nite at r ! 0 and at

r !1 and that r �M is di�erent from zero only on the surfa
e of the ball.

The �eld H
k

is 
ontinuous a
ross the surfa
e while the 
ontinuous perpendi
ular

�eld is H
?

+M
?

. Therefore we write

�

��

M in

��

(R) = �

��

M out

��

(R)

�

��

M in

�r

(R) +M 
os � = �

��

M out

�r

(R)

(7.38)

Substituting (7.37) and using the linear independen
e of Legendre polynomials we get

for l � 2

a

l

R

l

= b

1

R

�l�1

�la

l

R

l�1

= (l+ 1)b

l

R

�l�2

(7.39)

The only solutions to these equations is a

l

= b

l

= 0. For l = 1 we have

�a

1

R = �b

1

R

�2

�a

1

+M = 2b

1

R

�3

(7.40)

when
e

a

1

=

M

3

; b

1

=

MR

3

3

(7.41)

Therefore the �eld B is equal to

B
in

= �

0

(H+M) =

2�

0

3

M: B
out

=

�

0

4�

3(m � r)r� r2m

r

5

(7.42)

where m =

4

3

�R

3M. Hen
e the �eld inside is homogeneous (and smaller than �

0

M)

and it is purely dipole outside with the natural value of the dipole.

If we have a 
ylinder made of a magneti
 material with permeability � immersed

in a 
onstant magneti
 �eld then it is in general diÆ
ult to give exa
t expressions for

the M inside and outside. There are however two limiting 
ases when it is relatively

straightforward.

If the 
ylinder is very thin then it is the B �eld that is 
ontinuous a
ross the base

and therefore

B = �

0

H
0

) H =

B

�

0

�M = H
0

� (�� 1)H) H =

H
0

�

(7.43)

If the 
ylinder is very long then it is the tangent 
omponent of H
0

that is 
ontinuous

a
ross the sides and therefore

H = H
0

) B = ��

0

H
0

(7.44)
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8 Alternating currents

In the rest of the le
tures we will dis
uss time dependent densities and 
urrents.

We re
all the Maxwell equations

r �E =

�

"

0

(8.1)

r�E = �

�B

�t

(8.2)

r �B = 0 (8.3)

r�B = �

0

j+
1




2

�E

�t

(8.4)

8.1 Circuits

We start with the traditional appli
ation of ele
trodynami
s to 
ir
uits at small frequen-


ies when we don't have to 
onsider radiation.

The 
ondu
tors have a simple relation between the 
urrent and the voltage. Sin
e

j = �E (8.5)

then we have the Ohm's law

V = RI (8.6)

where

R =

l

�S

(8.7)

For the 
apa
itors we have

Q = CV (8.8)

so that di�erentiating with respe
t to time we have

I = C

dV

dt

(8.9)

For the indu
tors the equation (8.2) integrated over some surfa
e gives

I

E � dl = �
��

�t

(8.10)

so that the voltage di�eren
e at the ends od a 
ir
uit is proportional to the time derivative

of a magneti
 
ux through this 
ir
uit. Sin
e

� = LI (8.11)
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where L is the indu
tan
e therefore we have

V = �L

�I

�t

(8.12)

For a 
ir
uit of a resistor, a 
apa
itor and an indu
tor 
onne
ted in series and atta
hed

to a battery with alternating 
urrent we 
an write

E sin!t = RI + L

dI

dt

+

Q

C

(8.13)

Di�erentiating with respe
t to time we have

!E 
os!t = R

dI

dt

+ L

d

2

I

dt

2

+

I

C

(8.14)

The general solution is the sum the solution to the homogeneous equation and the spe
ial

solution to inhomogeneous equation. The �rst solution is 
alled a transient 
urrent and

the se
ond a stationary 
urrent. Constraining ourselves to the stationary 
urrent we

write

I(t) = A sin(!t� �) = A(sin!t 
os�� 
os!t sin�) (8.15)

Plugging it to (8.14) we get

0 = !R sin�� !

2

L 
os�+


os�

C

!E = A

�

!R 
os�+ !

2

L sin ��

sin�

C

�

(8.16)

We get the phase shift

tan� =

L! �

1

C!

R

(8.17)

and the amplitude

A =

E

r

R

2

+

�

!L�

1

!C

�

2

=

E

R


os� (8.18)

Therefore the spe
ial solution is equal to

I

s

(t) =

E

R


os� sin(!t� �) (8.19)

with � given by (8.17).

The maximum is in the resonan
e

!

0

=

s

1

LC

(8.20)

and the resistan
e is purely ohmi
 there.

48



K.A. Meissner

We 
an 
al
ulate the average power dissipated by the 
ir
uit:

P =

1

T

T

Z

0

V (t)I(t)dt =

E

2

2R


os

2

� (8.21)

If �! �

�

2

there is no power dissipated by the 
ir
uit

Let us 
al
ulate the full solution with the transient 
urrents is given by he sum of

the homogeneous and the spe
ial solutions and is equal to

I

g

(t) = e

�

Rt

2L

(A

1


os(!

f

t) +A

2

sin(!

f

t)) +

E

R


os� sin(! � �) (8.22)

where (we assume that the expression below is real)

!

f

=

s

1

LC

�

R

2

4L

2

(8.23)

If we assume that I(0) = 0 and

_

I(0) = 0 then we get

A

1

=

E

R

sin� 
os�

A

2

= �

E!

R!

f


os

2

�+

E

2L!

f


os� sin� (8.24)

8.2 Faraday’s law

As an appli
ation of the Faraday's law let us 
al
ulate the potential between the pole and

the equator indu
ed in a (poorly) 
ondu
ting sphere of radius R rotating with angular

velo
ity ! in a magneti
 �eld B.

The 
ontribution to dE from an element of 
oordinates �; � is

dE = (v �B) � dl = R

2

!B 
os � sin �d� (8.25)

Hen
e integrating from 0 to �=2 we get

�E =

1

2

R

2

!B (8.26)

This example shows that we 
an add the ele
tromotive for
e pie
ewise and not only

apply it for the whole 
losed loops. Of 
ourse the full EMF vanishes sin
e there is no


ux through the loop.

8.3 Conductivity

Let us re
all the formula for diele
tri
 
onstant as a fun
tion of frequen
y

"(!) = 1 +

Ne

2

"

0

m

X

j

f

j

!

2

j

� !

2

� i!


j

(8.27)
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where the os
illator strengths satisfy

X

j

f

j

= Z (8.28)

In the limit of small frequen
ies there is a 
ru
ial di�eren
e whether the lowest

eigenfrequen
y vanishes (i.e there are free ele
trons) or not. In the 
ondu
ting 
ase

there is f

0

> 0 ele
trons that are free and then we separate the 
ontribution from the

free ele
trons from the rest and we write (in the limit ! � !

1

)

"(!) = "+ i

Ne

2

f

0

"

0

m!(�� i!)

(8.29)

Let us 
ompare this formula with the law

r�H = j+
�D

�t

(8.30)

where j denotes free 
urrents only. For a medium satisfying the Ohm's law

j = �E (8.31)

and the diele
tri
 
onstant " we 
an write (assuming harmoni
 dependen
e on time)

r�H = �i!

�

"

0

"+ i

�

!

�

E (8.32)

On the other hand the quantity on the RHS is the full diele
tri
 
onstant "(!) so that


omparing wih (8.29) the 
ondu
tivity at ! = 0 is given by

� =

Ne

2

f

0

m�

(8.33)

In the limit of large frequen
ies (larger than any !

j

with nonnegligible os
illator

strength) we have

"(!) = 1�

!

2

p

!

2

; !

p

=

s

Ne

2

Z

"

0

m

(8.34)

where !

p

is 
alled the plasma frequen
y.

8.4 Kramers-Kronig relations and causality

For a general relation between the D �eld at time t (i.e. the rea
tion of the medium,

assumed isotropi
 and homogeneous) and the ele
tri
 �eld E at the same point we have

D(t;x) = "

0

(E(t;x) +

1

Z

0

d�G(� )E(t� �;x)) (8.35)
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where G(� ) is some real fun
tion. Putting the lower limit of the integration to 0 we

have used a fundamental 
on
ept of 
ausality i.e. the e�e
t 
annot o

ur earlier than

the 
ause. This simple observation leads to very powerful statements in many bran
hes

of physi
s known as dispersion relations. In this 
ase we have for the Fourier transform

(i.e. all �elds dependent on time as e

�i!t

)

"(!) = 1 +

1

Z

0

d�G(� )e

i!�

(8.36)

We assume that G(� ) is 
ontinuous i.e. G(0) = 0. For nonvanishing 
ondu
tivity we


an use

G

�

(� ) =

�

"

0

(1� exp(��� )) (8.37)

and then

"(!) =

i��

"

0

!(�� i!)

+ 1 +

1

Z

0

d�

~

G(� )e

i!�

(8.38)

where

~

G(� ) = G(� )�G

�

(� ) (8.39)

tends to 0 for � !1.

To get the expansion for large !

"(!)� 1�

i��

"

0

!(�� i!)

=

1

Z

0

d�

~

G(� )

1

i!

d

d�

e

i!�

= �

1

Z

0

d�

~

G

0

(� )

i!

e

i!�

(8.40)

where we used

~

G(0) = 0. Continuing this pro
edure we get the expansion

"(!) ���!

!!1

1�

��

"

0

!

2

�

~

G

0

(0)

!

2

+ : : : (8.41)

We now 
ontinue ! to 
omplex values. We see that be
ause in (8.35) the integral

runs from � = 0 the integral is well de�ned for the whole upper halfplane in !. The

relation shows that we 
an extend the range of arguments for negative values and we

have

"(�z) = "

?

(z

?

) (8.42)

If we introdu
e

~"(z) := "(z) � 1 +

��

"

0

z(z + i�)

(8.43)

we 
an write the Cau
hy equation when z = ! is on the real axis

0 =

1

2�i

I

C

~"(!

0

)

!

0

� !

d!

0

(8.44)
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where the 
ontour runs along the real axis, surrounds ! by a small semi
ir
le above (in

the 
lo
kwise sense) and 
omes ba
k by the large semi
ir
le in the upper halfplane in

the 
ounter
lo
kwise sense. There are no poles inside the 
ontour hen
e 0 on the LHS.

The 
ontribution from the semi
ir
le vanishes for large radius and we are left with

0 =

1

2�i

P

1

Z

�1

~"(!

0

)

!

0

� !

d!

0

�

�i

2�i

~"(!) (8.45)

to arrive at

~"(!) =

1

i�

P

1

Z

�1

~"(!

0

)

!

0

� !

d!

0

(8.46)

We 
an divide it into the real and imaginary parts

Re ~"(!) =

1

�

P

1

Z

�1

Im ~"(!

0

)

!

0

� !

d!

0

Im ~"(!) = �

1

�

P

1

Z

�1

Re ~"(!

0

)

!

0

� !

d!

0

(8.47)

and these are the Kramers-Kronig relations relating absorptive and dispersive parts

(often 
alled dispersion relations in other bran
hes of physi
s). One should note that

these relations are very general based only on 
ausality and therefore have very broad

spe
trum of appli
ations.

If we have a narrow absorption line in the absorptive part (we have to add a se
ond

term be
ause of (8.42))

Im "(!) =

�K

1

!

2

1

2!

1

(Æ(! � !

1

)� Æ(! + !

1

)) (8.48)

then far away from the other absorption frequen
ies

Re "(!) = �

1

+

K

1

!

2

1

!

2

1

� !

2

(8.49)

i.e. it is a rapidly varying fun
tion around the absorptive peak. In this model

Re "(!) = 1�

��

"

0

(!

2

+ �

2

)

+

X

j

K

j

!

2

j

!

2

j

� !

2

Im "(!) =

��

2

"

0

!(!

2

+ �

2

)

+

X

j

�K

j

!

2

j

2!

j

(Æ(! � !

j

)� Æ(! + !

j

)) (8.50)
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9 Appendix

In the notation used in these le
tures indi
es i; j; k : : : will denote 1; 2; 3 i.e spatial di-

mensions (Greek indi
es �; � : : : = 0; 1; 2; 3 will denote 4-dimensional quantities). The

summation over repeated indi
es will always be impli
itly assumed. The derivative with

respe
t to time will be denoted by a dot and with respe
t to (
artesian) spatial dire
tions

by

r

i

:=

�

�x

i

� �

i

(9.1)

This operator has well de�ned properties under rotations and transforms tensors into

tensors.

We introdu
e a s
alar produ
t of two ve
tors

A �B := A

i

B

i

(9.2)

with a number as a result and a ve
tor produ
t

(A�B)
i

:= "

ijk

A

j

B

k

(9.3)

with a ve
tor (in 3 dimensions) as a result { "

ijk

is a fully antisymmetri
 tensor with

�

123

= 1 (in 4 dimensions we 
hoose the 
onvention "

0123

= 1).

We will often use the identity

"

ijk

"

ilm

= Æ

jl

Æ

km

� Æ

jm

Æ

kl

(9.4)

Therefore, for example

A� (B�C) = B(A �C)�C(A �B) (9.5)

If we have a ve
tor �eld E(x) then its divergen
e

r �E =

�E

i

�x

i

(9.6)

is a s
alar �eld and its rotation

(r�E)i = "

ijk

�

j

E

k

(9.7)

is a (pseudo)ve
tor �eld.
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We have for example

r � (fA) = rf �A+ fr �A

r� (fA) = rf �A+ fr�A

r� (A�B) = (B � r)A� (A � r)B+ (r �B)A� (r �A)B (9.8)

For an arbitrary s
alar �eld � we have an important identity

r� (r�) = 0 (9.9)

Also for an arbitrary ve
tor �eld E we have

r � (r�E) = 0 (9.10)

These equations are better expressed in the language of di�erential forms. If we have

an n-form A

n

then an exterior derivative denoted by d a
ting on A

n

produ
es (n+ 1)-

form. If the manifold is metri
 then there exists also an operation ? that produ
es

(D�n)-form where D is the dimension of the manifold. There is also a fun
tor Æ := ?d?

that a
ting on A

n

produ
es (n � 1)- form. These equations then follow from the basi


equation

dd = 0 (9.11)

when a
ting on a 0-form, as in (9.9), or 1-form, as in (9.10). A 
ru
ial role is played by

a lapla
ian � de�ned as

� = dÆ + Æd (9.12)

An arbitrary form A

n

on a any manifold 
an be written as a sum of three forms

(Hodge de
omposition)

A

n

= dA

n�1

+ ÆA

n+1

+H

n

(9.13)

for some globally de�ned A

n�1

, A

n+1

and so 
alled harmoni
 form H

n

satisfying

dH

n

= ÆH

n

= 0 (9.14)

so it satis�es also the Lapla
e equation

�H

n

= 0 (9.15)

The number of linearly independent harmoni
 n-forms (Betti number b

n

) is a very

important 
hara
terization of a manifold (the harmoni
 forms belong to the so 
alled

nth 
ohomology 
lass dual to the n-th homology 
lass). If the n-th 
ohomology 
lass

for a given manifold is empty then

dA

n

= 0) A

n

= dA

n�1

(9.16)

for some globally de�ned A

n�1

. For example the manifolds with b

1

= 0 are 
alled

simply-
onne
ted and then dA

1

= 0) A

1

= d�.
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In the form language the gradient is an a
tion on 0-form produ
ing a one-form

(ve
tor):

f ! df =

�f

�x

i

dx

i

; (9.17)

divergen
e is an a
tion on a one-form produ
ing a 0-form (s
alar)

V

1

! ?d(?V

1

) = V

0

; (9.18)

rotation is an a
tion on a one-form produ
ing (n � 2)-form (in 3 dimensions a pseu-

dove
tor)

V

1

! ?dV

1

= V

n�2

(9.19)

For arbitrary ve
tor �eld A and 3-manifoldM

3

with a 2-dimensional boundary �M

3

we have the Gauss equation

Z

M

3

r �AdV =

Z

�M

3

A � dS (9.20)

while for a 2-manifoldM

2

with 1-dimensional boundary �M

2

we have the Stokes equa-

tion

Z

M

2

(r�A) � d� =

I

�M

2

A � ds (9.21)

9.1 Coordinate systems

In physi
al problems it is very often the 
ase that we have some kind of symmetry

(spheri
al, axial). It is then advantageous to use the 
oordinate system adapted to the

symmetry so that the dependen
e on one or more 
oordinates drops out.

There exist general expressions for the gradient, divergen
e, rotation and Lapla
e

operator for a manifold endowed with a metri
 g

ij

(espe
ially easy if the metri
 is

diagonal i.e. in the Lam�e form) but we will not develop the general theory here quoting

only the Lapla
e operator

� =

1

p

g

�

��

i

�

p

gg

ij

�

��

j

�

(9.22)

We give below expressions for di�erential operators only in 
ylindri
al and spheri
al

frames where the metri
 is given by

ds

2

= d�

2

+ �

2

d�

2

+ dz

2

(9.23)

and

ds

2

= dr

2

+ r

2

d�

2

+ r

2

sin

2

�d�

2

(9.24)
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9.1.1 Cylindrical coordinates

In the 
ylindri
al frame we de�ne (�; �; z) as

x = � 
os �; y = � sin�; z = z (9.25)

so that

�

��

= x

�

�x

+ y

�

�y

;

�

��

= �y

�

�x

+ x

�

�y

;

�

�z

=

�

�z

(9.26)

Then the unit ve
tors are

e
�

=

1

p

x

2

+ y

2

(x; y; 0); e
�

=

1

p

x

2

+ y

2

(�y; x; 0); e
z

= (0; 0; 1) (9.27)

so that

r�e
�

=

1

�

; r�e
�

= 0; r�e
�

= 0; r�e
�

=

1

�

e
z

; r�e
z

= 0; r�e
z

= 0 (9.28)

Then

r =

� 

��

e
�

+

1

�

� 

��

e
�

+

� 

�z

e
z

(9.29)

sin
e for example

e
�

� r =

1

�

(�y; x; 0) �

�

� 

�x

;

� 

�y

;

� 

�z

�

=

1

�

�

��

(9.30)

For a ve
tor A

A = A

�

e
�

+A

�

e
�

+A

z

e
z

(9.31)

we have

r �A =

1

�

�

��

(�A

�

) +

1

�

�A

�

��

+

�A

z

�z

(9.32)

r�A =

�

1

�

�A

z

��

�

�A

�

�z

�

e
�

+

�

�A

�

�z

�

�A

z

��

�

e
�

+

1

�

�

�(�A

�

)

��

�

�A

�

��

�

e
z

The Lapla
e operator is given by

� = r � (r) =

1

�

�

��

�

�

�

��

�

+

1

�

2

�

2

��

2

+

�

2

�z

2

(9.33)

9.2 Solutions to the Laplace equation in cylindrical

coordinates

It is very useful to have a general solution of the Lapla
e equation. In 3 dimensions the

solution of �' = 0 is easy to get by separation of variables.

In 
ylindri
al 
oordinates we write

 (x) = R(�)�(�)Z(z) (9.34)
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then the Lapla
e equation using (9.56) 
an be written as

� = 0)

1

�R(�)

d

d�

�

�

dR(�)

d�

�

+

1

�

2

�(�)

d

2

�(�)

d�

2

+

1

Z(z)

d

2

Z(z)

dz

2

(9.35)

To satisfy this equation the double derivatives of � and Z must be equal to a 
onstants,

equal respe
tively to �m

2

and k

2

so that

 (x) =
X

m

X

k

R

mk

(�)e

im�

e

kz

(9.36)

The index m runs usually over integer numbers be
ause of periodi
ity in � but the range

of summation over k (and whether k is real or imaginary) depends on the problem. The

fun
tion R

mk

(�) therefore satis�es

d

2

R

mk

d�

2

+

1

�

dR

mk

d�

+

 

k

2

�

m

2

�

2

!

R

mk

= 0 (9.37)

i.e. the Bessel equation. Therefore in 
ylindri
al 
oordinates the general solution reads

 (x) =
X

m

X

k

(A

m

J

m

(k�) +B

m

N

m

(k�)) e

im�

e

kz

(9.38)

where J are the Bessel fun
tions and N are the Neumann fun
tions (or Bessel fun
tions

of the se
ond kind)

N

�

(x) =

J

�

(x) 
os �� � J

��

(x)

sin ��

(9.39)

The Bessel fun
tions have the Taylor expansion

J

�

(x) =

�

x

2

�

�

1

X

j=0

(�1)

j

j!�(j + � + 1)

�

x

2

�

2j

(9.40)

For half-integer indi
es they are given by elementary fun
tions.

9.3 Spherical Bessel and Hankel functions

The spheri
al Bessel and Hankel fun
tions are de�ned as

j

l

(x) =

r

�

2x

J

l+

1

2

(x)

h

(1)

l

(x) =

r

�

2x

H

(1)

l+

1

2

(x) (9.41)

They are elementary fun
tions that 
an be obtained from the formulae

j

l

(x) = (�x)

l

�

1

x

d

dx

�

l

�

sin x

x

�

h

(1)

l

(x) = �i(�x)

l

�

1

x

d

dx

�

l

 

e

ix

x

!

(9.42)
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and they both satisfy

d

2

dx

2

(xf

l

(x)) +

�

1�

l(l+ 1)

x

2

�

xf

l

(x) = 0 (9.43)

We will need the expansions

j

l

(x) ��!

x!0

x

l
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(1 +O(x

2

))
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(1)

l

(x) ���!

x!1

(�i)
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e
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(1 +O

�

1

x

��

(9.44)

The expansion in terms of spheri
al waves

e

ikjr�r0j

jr� r0j
= ik

1

X

l=0

(2l+ 1)h

(1)

l

(kr)j

l

(kr

0

)P

l

(
os �) (9.45)

and

e

�ixt

=

1

X

l=0

(2l+ 1)(�i)

l

j

l

(x)P

l

(t) (9.46)

9.4 Spherical coordinates

In the spheri
al frame we de�ne (r; �; �) as

x = r sin � 
os�; y = r sin � sin�; z = r 
os � (9.47)

so that

�
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�
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(9.48)

Then the unit ve
tors are

e
r

=

1

p

x

2

+ y

2

+ z

2

(x; y; z)

e
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=
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)

e
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=

1

p
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2

+ y

2

(�y; x; 0) (9.49)

so that

r�e
r

=

2

r

; r�e
r

= 0; r�e
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=
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r

; r�e
�

=

1

r

e
z
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�

= 0; r�e
�
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r

e
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(9.50)
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Then

r =
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�r

e
r

+
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r
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e
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r sin �
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��

e
�

(9.51)

and for a ve
tor A

A = A

r

e
r

+A

�

e
�
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(9.52)

we have

r �A =

1

r

2

�

�r

(r

2

A

r

) +

1

r sin �

�(sin �A

�

)

��

+

1

r sin �

�A

�

��

(9.53)
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The Lapla
e operator is given by
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(9.54)

9.5 Solutions to the Laplace equation in spherical coordinates

In spheri
al 
oordinates we write

 (x) =
R(r)

r

�(�)�(�) (9.55)

then the Lapla
e equation using (9.54) 
an be written as

� = 0)

r

2
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(9.56)

To satisfy this equation double derivatives of R and � must be equal to 
onstants, equal

respe
tively to l(l+ 1) (with solutions r

l+1

an r

�l

) and �m

2

so that

 (x) =
X

l

X

m
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lm
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lm
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�l�1
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�

lm

(�)e

im�

(9.57)

The index m runs over integer numbers be
ause of periodi
ity in � and it turns out that

be
ause of restri
ted interval of � 2 [0; �℄ requiring non singular solutions at the ends

of this interval range of summation over l is restri
ted to non-negative integers � jmj.

The fun
tion �

lm

(�) satis�es

1

sin �

d
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d�
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l(l+ 1)�
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!

�

lm

= 0 (9.58)

i.e. the Legendre equation. Therefore in spheri
al 
oordinates the general solution reads

 (x) =
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(9.59)
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where P

m

l

are asso
iated Legendre fun
tions. If additionally the solution has an axial

symmetry then the solution doesn't depend on �

 (x) =
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X
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l
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where P

l

(x) are Legendre polynomials given by
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First 3 polynomials read

P
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2
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(9.62)

The generating fun
tion for the Legendre polynomials is given by

1

p
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2

� 2xt

=

1
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(9.63)

The Legendre polynomials form a 
omplete set on the interval [�1; 1℄:

1
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The asso
iated Legendre fun
tions are given by the formula
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We have a relation between positive and negative m:
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and for a given m
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We introdu
e spheri
al harmoni
 fun
tions as
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They are orthogonal on the sphere
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We use here Y

lm

whi
h are di�erently normalized than the usual 
onvention
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=
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(9.71)

what appears to be mu
h more 
onvenient.

The lowest Y
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An arbitrary fun
tion g(�; �) 
an be expanded in spheri
al harmoni
s

g(�; �) =
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(�; �) (9.73)

where
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