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1 Maxwell Equations

1.1 Introduction

In 1863 James Clerk Maxwell has written down equations that summarized more than a
hundred years of developments adding his own absolutely crucial ingredient — displace-
ment current (the last term in 1.4 below). In the classical electrodynamics we have two
fields — the electric field E(x) (vector) and the magnetic field B(x) (pseudovector). We
also have matter described by a charge density p(x) (scalar field) and a current j(x)
(vector field).

Neglecting the historical development we start with the Maxwell equations in their
full glory:

P

V-E = — (1.1)
€0
oB
VXE = ——— 1.2
X ot (1.2)
vV-B =0 (1.3)

1 8E
c? ot
The first and the last are called source equations and the other two sourceless equations.
We also have the conservation of charge

op
——4+V-i=0 1.5
ot J (15)

c in these equations is the defined speed of light and the constants eq and ug are exper-
imentally measured but subject to one relation

1
Eolo = 6_2 (16)

VxB = mj+

The Maxwell equations and this relation show the tight bonds between the electric and
magnetic fields — we will discuss it in great detail in the course.
It is crucial that the operator V (in cartesian coordinates)

V,; = % (1.7)
transforms as a (co)vector under rotations. Therefore if we have a vector field E(x) then
its divergence ,
_OF’
- o1

V.E (1.8)



1. MAXWELL EQUATIONS

1s a scalar field and its rotation
(V x B) = %5, By, (1.9)

is a (pseudo)vector field. It follows that the equations (1.1-1.4) are true in any coordinate
system.

Classical electrodynamics is just an application of these equations in the more and
more complicated situations. In the course of these lectures we will start with pure
electric field independent of time in presence of more and more complicated matter,
then we will discuss pure magnetic field independent of time also in presence of matter
and at the end we will discuss time dependent fields in configurations of increasing
complexity with radiating charges as the prime example.

We now check the internal consistency of the Maxwell equations. Let us take the
divergence of (1.2). The LHS is identically zero while the RHS also vanishes by virtue
of (1.3). Taking divergence of (1.4) we get

1 oV-E
0=wV-j+—= 1.10
Then we use (1.1) to get
cooV - j + — 2P (1.11)

Comparing with (1.5) we get (1.6). After writing these equations Maxwell realized the
necessity of adding the displacement term in (1.4) not observed experimentally at that
time and it was a crucial step in predicting the existence of electromagnetic waves.

For arbitrary vector field A and 3-manifold M3 with a 2-dimensional boundary 0 M3
we have the Gauss equation

/ V-Adv=[ A-.do (1.12)
M3z OMs3

while for a 2-manifold M with 1-dimensional boundary 0 M, we have the Stokes equa-
tion
/ (VxA)-do=d A-ds (1.13)
Mo OM3
They are a generalization of the one-dimensional result that the integral is the inverse
of a differential b g
/ V) 4z = 16) - fa) (1.14)
a z
Applying these identities to (1.1-1.4) we get the integral form of the Maxwell equa-
tions

E-do = 9 (1.15)

OMs3 €0
0%g

E-ds = —— 1.16
OM> ot ( )

B:-do = 0 (1.17)
OMs

1 6%g

B.-ds = I+ ——— 1.18

Mo s Mo I + 2 5t (1.18)



K.A. MEISSNER

Q is a total charge in the 3D manifold M3 with 2D boundary OMj3. &g (respec-
tively ®g) is the magnetic (respectively electric) flux through 2D manifold My with 1D
boundary O Ms.

We also have the integral form of the charge conservation

dQ@ /
—_— = j-do 1.19
r . (1.19)
where @ is the charge inside Ms3.

Historically, these equations were very slowly discovered. The first is called the Gauss
Law, the second Faraday Law of Induction, the third is the absence of magnetic charges
and the fourth Oersted’s Law with the Maxwell correction.

1.2  Units in electrodynamics

It is important to be careful about the dimensions of fields and the constants (we will
discuss the detailed reasons as we go along). In the SI system of units, changed in
2019, (being now the only allowed system in Europe and adopted in these lectures)
the defining unit is the current unit, namely amper A. From the present perspective of
particle physics it is just the charge (measured in coulombs C) per second, where the
charge of a proton defined as

e :=1.602176634 - 1071° C (1.20)

The speed of light ¢ is in the present SI unit system defined as

c:=299 792 458 m/s (1.21)
The field dimensions read

N N
El = — B = — 1.22
El=g  [Bl=4— (1.22)

while the dimensions of densities read

C . A

[o] = o3’ il = o2 (1.23)

In the present SI system of units either €9 or ug are experimentally measured — ug
is (up to ten digits) equal to

- N
po & 4 - 10 7@ (1.24)
Then ¢q is given by the relation (1.6) and its inverse is numerically given by
1 2 N - m?
— KO §.9875517862(14) - 109 — (1.25)
4dmeg 4 C2

where the number in parenthesis gives the error of the last two digits.



1. MAXWELL EQUATIONS

Although Quantum Electrodynamics is beyond the scope of this course it is tempting
to quote another physical constant of fundamental importance — fine structure constant
o

S S L (1.26)
" 4meg he  137.035999177(21) '
where
he 2t (1.27)
Y '

and h is the Planck constant. Since the Planck constant A is defined in the SI unit

system as
h = 6.62607015 - 107%* J -5 (1.28)

the only measured quantity in « is &p.



2 Lorentz and gauge symmetries of
electrodynamics

2.1 Lorentz and gauge symmetries of the Maxwell equations

We will now describe the symmetry that plays a fundamental role in the description
of electrodynamics and subsequent passing to Quantum Electrodynamics (QED). We
consider the sourceless Maxwell equations (1.3) and (1.2) and use the mathematical
results described in Lecture 1.

If the manifold has vanishing second Betti number b5 then

V.- B=0=B=VxA (2.1)
for some vector field A. Then using (1.2) we get
oV x A 0A

for some ¢ (if the manifold is simply connected, i.e. by = 0, p is globally defined). They
are called a vector and a scalar potentials, respectively. We will discuss later on the case
(magnetic monopole) when the second Betti number is nonvanishing and one cannot
introduce globally defined A.

We can see that the pair of potentials (¢, A) is not uniquely defined by these equa-
tions. We can perform so called gauge transformation without changing the resulting E
and B:

A —- A+Va

oo

= 2.3
A A (2.3)

where o = a(t, x) is an arbitrary globally defined function.

Although at this stage it seems to be just a curiosity, the potentials and the pres-
ence of this symmetry is absolutely crucial in explicit realization of Lorentz symmetry
inherent in the theory and in defining the lagrangian formulation of the theory as we
will see below.

We can formulate classical electrodynamics in terms of 4-dimensional quantities ex-
plicitly showing Lorentz symmetry inherently present in the theory (as is well known
Lorentz discovered the transformations in 1895 as the ones that leave the Maxwell equa-
tions covariant and only 10 years later Einstein developed Special Theory of Relativity
providing the physical interpretation)



2. LORENTZ AND GAUGE SYMMETRIES OF ELECTRODYNAMICS

In this section from now on we put
c=¢ep=po=1 (2.4)

Let us take the pair of potentials (¢, A) and try to treat them as one 4-dimensional
vector A, 1 =0,1,2,3:

AF = (¢, AY) (2.5)
Then we form a 4-dimensional vector with 2 indices
F,, =0,A, —-0,A, (2.6)
We raise and lower indices by the metric tensor
N = diag(—-1,1,1,1) (2.7)
It is easy to see that the gauge transformations are
A, — AL+ 0,a (2.8)

and they trivially do not change F,, defined in (2.6).
Using (2.1) and (2.2) we get
FOi = —Ei, Fij = EijkBk (2.9)
or in contravariant components
F% = ', FY =¢;,B* (2.10)
In the matrix notation
0 -E, -E, —-E,
| Bz O B, —By
F,, = B -B, o0 B, (2.11)
E, By —-By 0
The sourceless Maxwell equations are satisfied automatically (the very idea of intro-
ducing potentials served exactly this purpose) and they follow from the identity
a,u,Fpo' + aanp + apFap, =0 (212)

where we use (0z7) to recover the equation (1.2) and (z5k) to recover (1.3).
To write the other pair of Maxwell equations in the 4-dimensional form we make a
4-vector out of sources p and j:

* = (p,5") (2.13)
Then we can write the source equations as
B FH = 5" (2.14)
For v = 0 we have , '
BF° = B, =—-5°= —p (2.15)
i.e. eq. (1.1) while for v = % we have
OoF% + 8;F7* = 8, B + €;;0; B¥ = —j* (2.16)

i.e. eq. (1.4). The 4-dimensional Lorentz symmetry is in this formulation explicit since
we use only 4-dimensional scalars, vectors and tensors.

10
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2.2 Maxwell action and the energy-momentum tensor

We have now gathered all necessary ingredients to write down the action for the electric
and magnetic fields coupled to external sources in the Lorentz and gauge invariant way:

1 L
S = /d% (—ZF,WF“ —i—jp'A“) (2.17)

from which, by differentiating with respect to A we recover (2.14).
The equation of motion (2.14) is consistent only if the continuity equation is satisfied

87" =0 (2.18)

The same equation follows when we impose the condition of invariance of (2.17) under
gauge transformations (2.8):

S = /d% (—%FWF‘“’ +7*(Ay + 6“05)) =S - /d4a: (@d,5*) (2.19)

If the trajectories of charges (j,) are not fixed i.e. they are not external but react to
the electric magnetic fields then one has to include the action for these fields as well —
we will discuss it in the following lectures.

The action (2.17) for the pure electromagnetic field has symmetries of time and space
translations so we can use the Noether procedure to arrive at the (symmetric) energy
momentum tensor for the electromagnetic field:

1
Tem = FIPFYp — " Fpe FP° (2.20)

This form requires an explanation. If we apply the usual Noether procedure we end up
with a non-symmetric energy-momentum tensor. Such a form leads to some problems in
the interpretation and people found a way to correct for this by adding a total derivative
of the three index tensor to arrive at the symmetric form while still satisfying the basic
requirement for the energy-momentum tensor that it has to be conserved in the absence
of external currents. On the other hand the symmetric form is automatically obtained
if we differentiate the action by the metric tensor since by definition

1
55 = 5/01‘1:1; TH§g,, (2.21)

In the calculation one has to be careful — it is F,, with lower indices that does not
involve the metric tensor and

1
5gM = —g*P8g,pg°", 6v/—g = EQW‘SQW (2.22)

The components read

1
00 _ 12 2

T 2(E +B?)

T% = (ExB)

) |

Th = -B'E - BB+ 4 (B + B?) (2.23)

11



2. LORENTZ AND GAUGE SYMMETRIES OF ELECTRODYNAMICS

The 00 component is an energy density of the field and the 02 component is the flux of
energy in the direction ¢ the so called Poynting vector. The 77 components are the so
called Maxwell stress tensor.

These formulae will be used in the future so we give the energy density and the flux
with explicit ¢ and uo:

00 _ 80 (2, 2n2
TR = 5 (E te B)
. 1 .
7% = —_(ExB) (2.24)
Ko

It is important to note that the energy-momentum tensor of the electromagnetic field
satisfies
M T = 0 (2.25)

what follows from the symmetry of the action under rescalings
zt — e%zH, AF — e TAH (2.26)

and it is part of a larger conformal symmetry.
We can define the energy and momentum of the electromagnetic field (as a 4-vector)
by the integration over the whole space

pr — / d3z 0 (2.27)

The energy and momentum defined in this way depends only on time. The derivative
with respect to time gives

d d
P = 5, [ €T = [ @ag,m (2.28)

where we used the fact that the spatial divergence integrated over the whole space
vanishes. We calculate the divergence of Tim:

OuThy = (OuFHP) F¥ y + FHP (O, F" ) — %8” (Fou FP7) (2.29)

We use (2.12) to calculate

FHPO,FY, = F*P (-0,F," — 8" F,,) (2.30)
so that )
FHPO Y, = ZB,, (ELoFHP) (2.31)
and finally
%p:m = [ @1 = [ @ojur (2.32)

so the momentum of the field is conserved in the absence of external currents. We will
see in the next lecture that the loss (gain) in the energy and momentum of the field is
exactly equal to the gain (loss) of the charged particle moving in the field.

12
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There are two Lorentz invariants that can be formed out of F#Y:
I, = F,F* = —2(E*-B?
1
I, = ZS“VP”FWFPU =-2E-B (2.33)

A special solution corresponds to both invariants, I; and I, vanishing - it is an electro-
magnetic wave in vacuum.

2.3 Lorentz transformation properties of the electric and
magnetic fields

The transformation properties of the electric and magnetic fields under Lorentz trans-
formations can be read off from the transformation properties of the tensor F'#¥ i.e.

Fro! = NP FoP NG (2.34)
where the Lorentz transformations satisfy
AP AP =, AnAT =19 (2.35)

Explicitly, we have the transformation law in the direction of z axis (y = 1/v/1 — v?)

!

0 -B, —B, —E,
B, 0 B, -B,

E, -B, 0 B, = (2.36)
E, By —-By 0

¥ qv 0 O 0 -E, —-E, —E, ¥ qv 0 O

yv v 0 O E, 0 B, -—By yv v 0 O

0 0 10 E, -B, 0 B, 0 0 10

0 0 01 E, By —-By 0 0 0 01

Hence we can read off the transformation laws for parallel and transverse fields (we
reintroduce c¢ for future applications)

fy
E = vE+vxB)- —1 v(v-E
AE+v 5 B) = 5 v(v B
2
B = 4(B-vxE/®)——1 (v -B 2.37
9B = B/) ~ (v B) (2.37)
or
= By
| = By
' = v(EL+vxB))
= q(BL-vxE|/c?) (2.38)

13



2. LORENTZ AND GAUGE SYMMETRIES OF ELECTRODYNAMICS

As can be easily seen
E? - B” = Ef+Ef-B} -’Bf = (2.39)
Eﬁ +73(E2 +4°B?) — czBﬁ — c2y*(B 4+ v?E? /ct) = Eﬁ +E? - czBﬁ - c*B?%
Therefore if £ > B we can find such a Lorentz transformation that in the new
coordinate frame we have purely electric field B’ = 0. Analogously, if B > E we can

find such a Lorentz transformation that in the new coordinate frame we have purely
magnetic field E' = 0.

14



3 Charged particles in the electric and
magnetic fields

In this lecture we discuss the behavior of charged particles in the external electric and
magnetic fields in the fully relativistic description.

We start with the description of charged particles with mass m and charge g in the
external 4-potential A#. The particle’s position and internal time are a 4-vector z# and
the affine parameter along the trajectory is denoted by 7. Then we write the action that
is invariant under Lorentz transformations and also independent of the parametrization
T — f(1):

S = /dT (—m/-2#e, — gi* A, (2”)) (3.1)

where dot denotes differentiation with respect to 7. We make here an assumption
that charges are independent of Lorentz transformations — if they weren’t anything
composed of positive and negative charges moving with different velocities would exhibit
fluctuations of charge and that would be easily detectable.

The equations of motion for z* read

d H
-2 — _qz, Fv# 3.2
" wE, (3:2)
Recall that , ' N
F"“ =F', FY =¢;B* (3.3)
If we now choose the parametrization 7 = z° = ¢ then we get for the 0-component
dE
—_— = -E 3.4
7 = (3.4)
while for the spatial components we get the Lorentz force
d
P J(E+vxB) (3.5)
dt
where the energy and momentum of the particle form a 4-vector
m mv
b= (B, p) = , 3.6
p* = (E,p) (\/1_,02/62 \/1_1}2/62) (3.6)

To compare these formulae with the densities used for the electric and magnetic fields
we introduce here charge density and current density using delta functions.

p(x) = gb(x —xo(t)), J(x) = g%o(t)d(x — x0(2)) (3.7)

15



3. CHARGED PARTICLES IN THE ELECTRIC AND MAGNETIC FIELDS

and they form a 4-vector. Then the equation of motion (3.2) can be written as
dpP¥

= — | d®zj, F* 3.8

at / o (38)

If we add the 4-momentum vectors of the particle and of the field then from (2.32)
and (3.8) this sum is a constant of motion (as it should):

d(P¥ + P%,)

=0 3.9
i (3.9)

or in terms of the energy-momentum tensors
O (Theeh + Thn) =0 (3.10)

3.1 Trajectories in constant fields

We discuss three cases: a charged particle in a constant electric, constant magnetic and
constant orthogonal electric and magnetic fields..
For the constant electric field in the, say, z direction we have from (3.5)

qEt
J/m? + (qB2/c
For large times velocity approaches c as it should.

For a constant magnetic field of value B in, say, z direction equations (3.5) read in
components

Do = qBt = v, = (3.11)

dp:

7 = qBuy

dpy

v — 4B,

at 75y

dp,

é; =0 (3.12)

Since the particle moves uniformly in the z direction we may assume p, = 0 and add
uniform motion if needed. The total momentum p is a constant of motion (what is seen
in (3.4) or by multiplying the first equation by p, and the second by p, and adding)
and so is the total velocity v and therefore we can rewrite these equations as

dv, qB\/l—v2/c2v

dt m Y
dv, gB\/1 —v?/c?
v - P, (3.13)

It is easy to recognize these equations as the equations for circular oscillator with the
solution

vz(t) = wcos(wt)
vy(t) = wvsin(wt) (3.14)

16
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where

By/1— 2/
W= % (3.15)

We see that in the nonrelativistic case the frequency w does not depend on the velocity
and it is the basis for construction of cyclotrons. If the velocity starts to be relativistic
then one has to adjust the frequency accordingly and it is necessary in synchrotrons
(where it is usually done by the adjustment of the magnetic field).

One can integrate once more to get the trajectory

z(t) = Rsin(wt)
y(t) = —Recos(wt) (3.16)

where the relativistic result for the radius is formally the same as the nonrelativistic one

p
R= 4B (3.17)
For example for LHC in Geneva where R =~ 2.8 km (only 17.6 out of 26.7 km of the
tunnel are curved and filled with dipole magnets) to keep protons on their orbit for
p = 7 TeV/c the required magnetic field is 8.3 T.

We consider now a particle moving in both fields E and B perpendicular to each
other (i.e. E-B = 0 which is a Lorentz invariant statement). We assume £, # 0, By # 0
and E, < cBy. Then we can ask whether there exists a coordinate system in which the
electric field vanishes. Using the relations derived in lecture 3

2

I Y
E = ’Y(E+VXB)_WV(VE)
2
B = 4(B-vxE/?) - mv(v .B) (3.18)

we have E' = 0 when (using A x (B x C) =B(A-C) — C(A - B))

_E><B
vV = 32

(3.19)

and then
E'=0, B' =,/1-E2?/(B%)B (3.20)

This equation can be easily inferred from the fact that there is a Lorentz invariant
E? - ?B? = E? — ¢*B”? (3.21)

The velocity v is called a drift. In the new coordinate system there is only a magnetic
field so the particle moves along a circle around B'. If E, > cBy then analogously there
exists a reference frame where there exists only the electric field

B'=0, E' =./1-B?/E°E (3.22)

17



3. CHARGED PARTICLES IN THE ELECTRIC AND MAGNETIC FIELDS

3.2 Free electron laser trajectories

As the last example we consider an ultrarelativistic particle moving in the direction z in
a spatially varying magnetic field in the direction y (and z but it will be unimportant
in the following) and satisfying sourceless Maxwell equations:

By = Bysin (kyz)cosh (kyy), B, = Bgcos(kyz)sinh (kyy) (3.23)
where 5
™
ky = — 3.24
= (3.24)

Such a field satisfies V-B =0 and V x B =0 as it should.
We discuss the case where the initial conditions are yo = 0, v,(0) = 0soy =0
always (i.e. B, = 0 along the trajectory). We assume that v, ~ ¢ and v, < ¢. Then

dp.
dt

= qu, By = qu, By sin (ky2) (3.25)

Writing p, as myv, (where +y is constant since the magnetic field does not change the
energy) we get

m'y%vz = qu, By sin (ky2) (3.26)
so that B
Up = _73,712u cos(ky 2) (3.27)
Therefore B
z2(2) ~ —7:76‘;3 sin(ky 2) (3.28)
It can be written as
z(2z) ~ _ki sin(k,2) (3.29)

u
where 9 is the maximal angle of the trajectory with respect to the z axis and 9 satisfies

9By

gy =K =270 (3.30)

We will use these formulae when discussing free electron lasers in one of the last lectures.

18



4 Electrostatics

4.1 Electric fields from a distribution of charges

In this part we will discuss solutions of the Maxwell equations with vanishing magnetic
field but with nontrivial boundary conditions for either the electric field or the electric
potential.

We start with the Maxwell equations and assume that B = 0 and all the fields and
charge densities are time independent. We are left with two relevant equations

v.-E=" (4.1)
€o
and
VXE=0 (4.2)
The second equation allows us to write
E=-Vop (4.3)

and then the first can be written in the form of Poisson equation

Ap=-F (4.4)
€o

It is easy to check that the Coulomb potential

1 g
= = 4.5
o) = gt (45)
satisfies
Ap = —L653(x) (4.6)
€0

Another example is an infinite wire charged with line density A. Then at distance p
the electric field is given by

7 Ape e A p
E= [ d £ = —° = = - | (—) 4.7
/ ? dmeg(z2 + p%)3/2  2megp v () omeg 0 (47)

what also directly follows from the Gauss’ law.

19



4. BLECTROSTATICS

If we have a charge density p(x') confined to some region |x'| < R then the potential
at some distant x, |x| > R can be expanded in inverse powers of R by means of the
following expansion (using the generating function for the Legendre polynomials)

1 1 1 1 &
= — Z Py(cosy)a! (4.8)

m o m\/1+a,2—2a,cos’)’ B |X| 1=0

where a = |x'|/|x| and <y is an angle between x and x’. Now we use the representation
of P, in terms of spherical harmonics:

Py(cos ) Z Y (6,8 )Yim(6, 9) (4.9)

m=—1

to arrive at the multipole expansion formula for the potential at x

o) l
Yim (6, ¢)
Z 2 szsz (4.10)
0 1—0m=
where
Qum = [ &%/ ol )" Y3, (0 9) (411)
The expansion in cartesian coordinates can be rewritten as
1 1 x-x 3(x-x)2—r2r?)
_— == - 4.12
|x —x'| 7 + r3 + 275 + (4.12)

and the potential reads

p(x) = 47:50 (% + p,,},r + Qiﬁw ¥ .. > (4.13)
where
¢ = [&apx)
p = /d?’:z:'p(x' r’
Qu = 3 [ Lox)(a"a - 5% (414)

are the charge, dipole moment and quadrupole moment, respectively.
The electric field of a monopole (charge) is obviously the Coulomb field

1 gqr
E = = 4.15
O(X) 471'80 7‘3 ( )
while for a dipole it is
1 3(p-r)r—r?
Ei(x) = (p-r)r —r'p (4.16)

4dmeg 75

20
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As we see it is not necessary that the charges are strictly confined to some region, it is
enough that the density p vanishes sufficiently fast at infinity so that all the integrals
are finite. On the other hand one has to be careful in using this formula for » — 0 since
it is singular and requires proper definition.

The Coulomb force between two charges can be justified by the field energy consid-
erations. The energy of the electric field when two charges are present subtracted from
the separate energies of two fields:

AW = %0 /d?’:v [(E1 +E;)* —Ef - Eg] = 50/d3$E1 D) (4.17)

Placing one charge at the origin and the other on the z axis at distance [ we get

192 2 r-(r—1)
AW = drdQ 4.18
(4m)2eg /T TR (12 + 12 — 2rlcos 6)32 (4.18)

It is easy to integrate if we notice that the integrand is proportional to a derivative over
r of 1/(r® 4+ 1> — 2rlcos #)'/? and therefore

4 1
AW = 122 =T _ q192 (4.19)
(4m)%e9 I 4mey 1

i.e. the Coulomb force. Therefore one can interpret the Coulomb force as originating
from the energy of the fields.

4.2 Green’s function

The solution to the Poisson equation depends not only on the charge density inside
the region but also on the boundary conditions imposed on ¢ (or its derivative) on
the boundary. In the theory of partial differential equations one introduces the Green'’s
function G(x,x’) being the solution to the equation

AG(x,x") = 6(x —x') (4.20)

and satisfying either Dirichlet or Neumann boundary conditions. Such a function is
in general not known and we will discuss here several methods to solve (4.4) in some
interesting cases of large symmetry.

If we know the Green'’s function we can derive an explicit formula for the potential.
We start with the identity (9.20)

/V-AdV: / A-dS (4.21)
M3 OMs3
and apply it for
A(X') = p(xX')V'G(x,x") — G(x,x')V'p(x') (4.22)

21



4. BLECTROSTATICS

Using (4.4) and (4.20)

cop(x) = — / G(x, x')p(x") AV’ + / (0(x)V'G(x, x') — G(x,x')V'p(x')) -dS' (4.23)
M3z OMs3

If there are no charges inside a given region then the potential inside is fully determined
by the potential at the boundary.
If we neglect the boundary contributions we have

p(k) = ——p(k)G(k) (4.24)

G(k) = / dz'e k¥ G(x') = ki (4.25)

if we assume that the Green’s function is equal to 1/(4nr) only inside the ball of radius
L then
sin?(kL/2)

G(k) = / d’a'e *XG(x) = 23

(4.26)

4.3 Electrostatics with conducting surfaces

In this part we will discuss solutions of the Maxwell equations in presence of charges and
conducting surfaces. In the case of conducting surfaces the potential has to be identical
along the surface since otherwise it would mean some electric field along the surface
inducing electric current and the situation couldn’t be independent of time. Therefore
inside an empty region surrounded by a conducting surface the potential inside should
be everywhere the same and equal to the potential of the surface.

4.3.1 Method of images
We start with the Poisson equation (4.4)

Ap=-F (4.27)
€o

In the simplest case of no boundaries (and vanishing potential at infinity) we know that
charges g, located at x, give the potential

1 da
o(x) = § 4.28
( ) 4Teg " |x — xa| ( )

If these charges are surrounded by a surface with some prescribed potential (usually
a constant one as in the presence of conducting surface) then we have to modify this
solution to match the boundary condition. It is then useful to use the so called method
of images. We assume that there are some charges ¢, located outside the region at points
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xp and therefore not contributing to the RHS of (4.27). The potential inside the region
being the sum of the two potentials still satisfies (4.27 with only real charges g, included
but when the charges ¢, are appropriately chosen this sum can satisfy the boundary
conditions imposed. Unfortunately this method works in a simple way only for very
simple surfaces (like spheres), otherwise the problem does not get any simpler when
formulated as the problem of virtual charges.

As an example let us consider one charge ¢ placed at xo = (z0,0,0) (zo > 0) and
a sphere of radius R and center at (0,0,0) (the sphere surrounds the charge R > z).
Then we try to place an imaginary charge ¢’ outside the sphere so that the sum of the
two potentials will vanish on the sphere (although not evident, it turns out that one
imaginary charge is enough to satisfy the condition). We try to locate it at x; = (z1,0,0)
(z1 > R) and then the solution inside the sphere (up to a constant) is

/

q q

4 in = 4.29
WSo(p(X)m |X — XO| |X — X]_| ( )
with the condition of vanishing potential on the sphere
!
0=_12 7 forjx|=R (4.30)
|x — xo|  |x — x1]
Squaring this identity we get
q*(R? — 2zz0 + 23) = ¢*(R? — 2221 + 23) (4.31)
It can be satisfied for varying z only if
¢*zo = ¢’z (4.32)
and then
(CD]_ — Zo)(Rz — Z[)CD]_) =0 (433)
Therefore the solution is
= oI T = ik (4.34)
qg = qZ[)’ 1 — o .
and with such choice the (4.29) gives the potential inside the sphere.
Using this solution we can write down the Green'’s function inside the sphere
1 1
G ! — =
(3, ) anlx —x/| 4mR[x — x R?/z"|
1 1
= - (4.35)

4m(z? — 2x - x' +22)1/2  4x(2222/R? — 2x - x' + R?)1/2

It is easy to check that indeed G(x,x') = 0 for all x on the sphere.

Having found the solution inside with the vanishing potential on the sphere we have
to discuss the form of the solution outside and the value of constants that eventually
have to be added. If the sphere is grounded (i.e. kept at zero potential) then the solution
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inside is given by 4.29) and the potential outside vanishes. If the sphere is isolated, its
total charge has to vanish and the Gauss law says that since there is a charge ¢ inside
and the potential is constant on the sphere so the potential outside has to be equal to

AmEoPout (X) = |i (4.36)

X|
Therefore to make the potential continuous on the sphere we have to add a constant to
the potential (4.29) and the full solution for the isolated sphere reads

q gR

q . .
47e = — — inside
0 (x) % —xo|  zolx—xoR2/al R

dmegp(x) = % outside (4.37)

For a system of conductors, each charged with a charge g, and having a potential V,
we have (due to linearity of electrodynamics)

a = Z Cabe (438)
b

The coefficients C,; are called coefficients of capacitance. If one grounds all conductors
except one (a) and this choice is fixed then one uses the term capacitance for

da
C == 4.39
> (4.39)
The energy of such a system is equal to
1 b
W =— g WV 4.4
22 Cup V'V (4.40)

Another example is given by a flat surface charged with a surface density p (surface
1) and another one at distance d which is grounded i.e. with zero potential (surface
2). Outside the grounded surface there can be no electric field so it must have a charge
density —p to shield the charged surface. Therefore the electric field between the plates

is equal to
Ba=" (4.41)

€o

and outside (on both sides) it vanishes. The potential of the charged surface is equal to

Vi=— 4.42
1= (4.42)
The capacitance
Q@ €S
=2 -0 4.4
Cu v ¥ (4.43)
and s
Coy = —807 (4.44)
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5 Dielectrics

In this lecture we will discuss solutions of the Maxwell equations in presence of dielectric
media.
We start with the Maxwell equations and as before we assume that B = 0 and all the
fields and charge densities are time independent. We are left with two relevant equations
v.E=" (5.1)
€o
and
VxE=0 (5.2)

As before the second equation allows us to write
E=-V¢ (5.3)
and then the first can be written in the form of Poisson equation (4.4)

Ap=-F (5.4)
€0
In the presence of dielectric media the density p can be divided into parts — one so called
free charges (sum of delta functions), the second dipole charges (sum of derivatives of
delta functions) and so on. For discrete charges, dipoles and so on one can write

p(x):ané(x—xa)—Zpb-VJ(x—xb)—{—... (5.5)
a b

where ... stand for higher derivatives of the delta functions. The reason for this ex-
pansion is clear — integrating p(x) over a small region surrounding x, we get g, while
integrating p(x)(x — xp) over a small region surrounding x; we get ps.

Neglecting all higher derivatives (i.e. quadrupoles, octupoles and so on which is
usually a very good approximation) and introducing continuous densities we write

o(x) = / AV (po(x')5(x — x') — P(x) - Vb (x — x)) (5.6)

Integrating by parts and neglecting the boundary terms we see that p can then be
effectively described by

p(x) = po(x) = V - P(x) (5.7)
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Returning to equation (5.1) and rearranging we get
V- (edE+P) =po (5.8)
where on the RHS we have only free charges. The quantity on the LHS is called D(x).
D=¢E+P (5.9)

It should be emphasized that D(z) is only an auxiliary vector and on the microscopic
scale we should use the electric field. We can therefore write

V-D=pp (5.10)

If we have a polarized medium confined by a boundary then besides a volume density
of bound charges given by

pp=—-V-P (5.11)

we have also a surface bound charge density (coming from the integration by parts)
op=P-n (5.12)

The bound charges should be conserved. The conservation law reads

Oy
V. .ip=0 5.13
5 TV b (5.13)
Using (5.11) we get
oP
iy = — .14
b == (5.14)

We can therefore write down the source Maxwell equations with the bound charges
present

V-D = pp (5.15)

VxB = u (j + 3—D> (5.16)
ot

where neither py nor j contain bound (polarization) charges — they are fully contained

in D.

The question arises what do we know about the polarization field P(x) in the real
media? The most frequent case is that the polarization is induced when the external
electric field is applied and then in the lowest approximation it is proportional to the
external electric field

P(x) = (e — 1)eoE(x) (5.17)

with some constant € (that varies with frequency for fields dependent on time but in
our case it is just a constant). The dimension of P is [C/m?].
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5.1 Molecular polarizability

There are two models of the molecular polarizability — either the electric field induces
polarization in the initially unpolarized molecules or it orders the directions of existing
electric dipoles.

In the first case we can use a classical picture of an electron bound to an atom with
some dissipation and the external force (we temporarily assume time dependence of the
electric field):

mz 4+ myz + mwiz = eBe it (5.18)
with the solution ——
z(t) = o BT + eigenmodes (5.19)
Hence the polarizability is for low frequencies independent of frequency
2
p= mwSE (5.20)

but for larger frequencies, close to the eigenfrequencies of the system, the dependence
is very strong and the real part changes sign when crossing wp.

The result can be checked by the statistical mechanics approach. Hamiltonian for
the electron in the constant field E is given by

2 2
_ b MWy o
H = o + 5 eEz (5.21)
Introducing
x' = x — eBe, /(mw?) (5.22)
we get
2 2 22
P mwy o, €°E
- P _ 5.23
om 2 2mw? (5.23)
Therefore average dipole moment is given by (8 = 1/(kT"))
_ [d®pd3z(eze,)e PH [dPpdize(z' +eE/(mwi))e,)e PE €2 B (524)

(p) = [d3pd3ze—FH [d3pd3ze—FH - mw?

i.e. the thermal motion of particles does not influence the polarizability.
To account for different reactions of different electrons in an atom one introduces
“oscillator strengths” f; and then

fie2/m
= ———E 5.25
P=0. w? —w? —iyw (5.25)

These oscillator strengths can be calculated in the framework of quantum mechanics.
We can estimate the orders of magnitude involved. If we have a density N then

Ne?

5.26
gomw? (5.26)

e—1=
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For gases in normal conditions we have Ny = 6.023 - 10%® molecules in 22.4 liters so
N ~ 2.7-.10%®/m3. Binding energy of electrons in atoms is of the order of the visible
light 3 eV (0.3 p) i.e. wo ~ 6-10%® 1/s. Therefore

£ —1~0.003 (5.27)

and for air it is 0.00054, for methyl alcohol 0.0057 and for helium 0.000068 (in this
case the lowest lying level is about 21 eV so it gives a factor of 50 less than the estimate
above). For dense media N is roughly 10° times bigger and € —1 ~ O(1). Obviously this
model is very approximate since a molecule has many eigenfrequencies and e changes
when we approach any of them.

In the second case when the particles have their own dipole moment pg (for example
water or hydrochloric acid HCI) we are forced to use statistical mechanics since otherwise
we would get an obviously wrong result that for arbitrarily small field all dipoles point
in the direction of the field. To describe the system statistically we start with the
hamiltonian

H = Ho — Po- E (528)

We assume here that the electric field is small fppEF <« 1 ie. for T = 300 K (k =
1.38065 - 10722 J/K)

B« kT 4.10 21
po 2-1.6-10-19.1010

V/m=12-108V/m (5.29)
where we estimated the atomic dipole moment as 3 D (debye)

po~3D=3-0.208-1.6-10"1°.107Cm ~ 107**Cm (5.30)

(the highest dipole moment known in chemistry is 11.5 D). Then the average dipole
moment per molecule is given by

[ d@sin 6 pg cos fe,ePPoB cosb fdww(l + BpoBw) 1,
<p> - fdg sin @ ePpoE cos b ~ Do€; fdw ~ gﬁpoE (5'31)
Therefore in general
Ne? Np3

e—1=
eomw? = 3eokT

(5.32)

The temperature dependence allows to distinguish both contributions (i.e. from induced
and internal polarizability). For room temperatures we can estimate py ~ 1072° Cm
and kT ~ 1.38 - 10722 . 300 ~ 4 - 102! J. Then the the second contribution gives

Np2 2.7-10% . 10758
3eokT 3-0.88-10-11.4.10-2!

~ 0.03 (5.33)

so the contribution for gases from dipole orientation is slightly bigger than from the
induced dipole moment.
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5.2 Clausius-Mossotti equation

We start from the observation that an average electric field inside a given region is related
to a total dipole moment inside the region. The relation for an arbitrary region is in
general complicated and involves also higher moments of the distribution (quadrupoles
and so on) but it turns out that if the region is a ball the calculation is easy and the
relation involves only the dipole moment.

For a system of charges located at r, we can write

/ dVE = — / dV Vo(x Z / 4mo|r_ra| (5.34)
B(0,R)

B(0,R) * 5(0,R)

where the field E is from the charges enclosed in the ball only. We now calculate the z
component this equation. We use the expansion of 1/|r—r,| in Legendre polynomials and
we notice that dS contribution is proportional to cos @ i.e. the first Legendre polynomial.
Therefore, because of orthogonality of the Legendre polynomials we keep only I = 1 term
in the expansion (the integration over the [ = 0 term vanishes) and we get

dV E, = Z / sin 0d6d4 cos eq“ a (5.35)
BO.R) %

where one cos(f) comes from projecting dS on the z axis and the other from r, - r in the
expansion of the denominator |[r — r,|. Dividing both sides by the volume of the ball
and using the fact that the z axis was arbitrary we get

1
EyY=—"P 5.36
(B) = —5- (5.36)
where P is the polarization density.
The dielectric constant describes the coefficient of proportionality between the elec-

tric field and the polarization — at the microscopic level it is given by
1
P =(c— 1)eo (E + Broe —P) (5.37)
360

where Ej,. is a contribution from microscopically close charges — there are arguments
that for high symmetry cases it vanishes. Solving for P and dividing by the density of
molecules N we get a molecular polarizability

P 3eo(e —1)

= = 5.38
NE N(e +2) ( )
This equation is called the Clausius-Mossotti equation.
In the form )
n“—1 Ny
—_ = — 5.39
n2+2 3¢ (5.39)

for the refractive indices n, polarizability v and a number of particles in a volume N it
was discovered independently by Hendrik Lorentz and Ludvig Lorenz and is known as
the Lorentz-Lorenz equation.
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5.3 Energy of fields in the dielectric media

In the empty space the energy of the electric field is equal to
W = %0 /ol%E2 (5.40)

or in terms of charges and potentials (we assume that the potentials are induced by
charges hence 1) as

W = % / Pp(x)p(x) = % / oE(x)D(x) (5.41)

The difference between initial and final situations when we put some dielectric media
but keep free charges in the original positions is given by

oW = %/dsz(E-D—EO-DO):
1
= E/dsa:(E-(D—Do)—i—E-Do—EO(DO—D)—EO-D)
= %/dsz(E-DO—EO-D) (5.42)

since
/d3zE (D =Dy) = /d3z<p V- (D-Dg) =0 (5.43)

by the assumption that we do not change the free charges (and similarly for the other
term). Therefore for

DO = EoEo, D= SOE + P (544)

we have
SW = —% / 432 P (x)Eo (%) (5.45)

Hence the dielectric is pulled to the regions where the electric field is bigger.

It is important to note that in the dielectric medium of dielectric constant € the
electric field with given charges is € times smaller than in the vacuum and therefore a
capacitance of a given system is ¢ times bigger.

It is important to note that the method of images is a very useful tool to satisfy
the boundary conditions in solving the problems with media with different dielectric
constants.

5.4 Example

To illustrate the application of boundary conditions we now discuss the case of a dielec-
tric ball of dielectric constant ¢ and radius R in a constant electric field E (to be definite
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in the z direction) in vacuum. We use the expansion (9.60) separately inside the ball
and outside the ball

pin(x) = Y Ar'P(cosh)
1=0

Yout(X) = Z Bir~'"1P(cos §) — Er cos(8) (5.46)
1=0

where we have used the condition that the potential is finite at 7 — 0 and that at infinity
we have constant electric field in the 2z direction.
The equations

VxE =
V-(E) = 0 (5.47)

show that on the boundary we should impose continuity on the tangent electric field
and perpendicular eéE. Therefore we write

8(pin _ a(/’ou‘l:
as(pin a(pou‘l:
R) = R
or () or ()

(5.48)

Substituting (5.46) and using the linear independence of Legendre polynomials we get
forl>2

AR = BRV!
leAR™! = —(I1+1)BR "2 (5.49)

The only solutions to these equations is A; = B; = 0. For [ = 1 we have

AR = BiR?°-ER

€Ay = —-2BiR>-E (5.50)
hence s
3E —1)ER
Al=——", B = (- VBR (5.51)
E+2 E+2

The field inside is along the z axis, smaller than at infinity, and with the polarization

_ 380E(8 — 1)

P,
z €+ 2

(5.52)

Since it constant inside the ball there is no volume bound charge density and the surface
bound charge density is equal to

_ 3E€0(€ — 1)

P cos @ (5.53)

O'b:P-n
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what effectively screens the inside of the ball (but not entirely as in the case of a con-
ducting ball). The outside field is equivalent to a field of a dipole with

(e — 1)ER3

= 47e
b 0 e 10

(5.54)

Dividing by the volume of the ball we recover, what is not surprising, the Clausius-
Mossotti equation (5.38).
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6 Magnetostatics

In this lecture we will discuss solutions of the Maxwell equations in presence of currents
and an induced magnetic field.

We start with the Maxwell equations and we assume that E = 0 and all the fields
and current densities are time independent. We are left with two relevant equations

V-B=0 (6.1)

and
VxB= ,LLOJ (62)

which of course implies the continuity equation
V-j=0 (6.3)

The integral form of (6.2) is the so called Ampere’s law:

B-dl = pol (6.4)
oM

where [ is a current flowing through M. .
As before the first equation (6.1) allows us to write

B=VxA (6.5)

so if V- A = 0 we get the Poisson equation for A

AA() = —poi(r) = A(r) = £2 / a3z’ % (6.6)

Since V - j = 0 this solution indeed satisfies V- A = 0.
Applying Vx to (6.2) and using (6.1) we get the Poisson equation directly for B:

AB = —poV X j (6.7)

One has to be careful when applying this equation in coordinate system different from
the cartesian one — in general by definition AC = V(V - C) — V x (V x C).
If there are no boundaries the solution to (6.7) is

B(r) = Ho /de’ VIxj(r') _ o /dsz/j(rl) X (r—1') (6.8)

AT r—r/|  4r v — /|3
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where we integrated by parts. This equation is known as the Biot-Savart Law.

Let us calculate the magnetic field in several examples.

For a straight, long wire with current I it is straightforward to calculateB using
(6.4). If M5 is a disc of radius R then we immediately get

I
B_#o

_ Hol 6.9
o B (6.9)

where ey is a unit vector surrounding the wire.
For a long coil with N turns per meter and a current I we can use the Ampere's law
to get (far from the ends of the coil)

Bl = puoNII = B = poNI (6.10)

The field is parallel to the coil and homogeneous inside the coil.
For an arbitrary coil with N turns per meter and a current I we can get an expression
for the magnetic field on the axis at a distance z from the middle of the coil by the Biot-

Savart law i) x ( )
Ko 3 4 J\r) X (r—r

B(z)=— [d°2' —F——+—*~ 6.11

(2) 47r/ ? v —r/|3 (6.11)

The field is in the z direction and we can easily integrate the projection on the z direction

L/2 L/2
Lo , INR?27 wol N 2 —z woIN . ,
B(z) = — /dz 5 ; 3 = = (sin 61 +sin 65)
_ /2 2 I »)2
47r7L/2 (R? + (2! — 2)?) 2 VR*4 (2 —2) 1)
(6.12)

where 61, 6> are angles at which we see the ends of the coil (for a very long coil 6; = 7/2
and f> = 7/2 and we reproduce the result from the previous paragraph). We see that
at the end of the long coil (6; = 0 and #; = 7/2) the field is only half of the field in the
middle.

In the last example we want to show that the flux through the end of the long coil
is exactly half of the flux through the middle of the coil i.e. half of the flux “leaks
out” through the sides (the usual drawing of the field of the coil where all the flux goes
through the end is wrong).

To calculate the flux through the endcap of a long coil of radius R with N turns per
meter and a current I we use the relation

& — / B.dS = f A-dl (6.13)

Ba(R) S1(R)

where By(R) is the disc of the endcap and S; its boundary (coinciding with the coil’s
end). To calculate A we use (6.6) in the cylindrical coordinates

0

27

NIR 1

A = Hotiee / dz’/d¢ cos ¢ (6.14)
4 ) V2R?(1 — cos ¢) + 2"
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We integrate by parts over d¢

0 2
,u,oNIRqu/ ,/ (3 . ) 1
A= —1/4d d¢ | == =
ar zo ¢ a¢s1n¢ V/2R2(1 — cos @) + 22

0 2T
poNIReg / , / , R?sin ¢
= = 7 d d =
4t z J ¢Sm¢(2R2(1 —cos @) +2/2)3/2

2m
NI NI
— 'UOTWR% /d¢cosz(¢/2) — mfR% (6.15)

where we used the integral

/dz(z2 +1a2)3/2 _ a2\/.;+7a2 (6.16)
Therefore indeed )
$ = / B-dS = ?{A-dlzw (6.17)
B»(R) S1(R)

i.e. the flux is twice smaller at the end than in the middle of the long coil.

6.1 Multipole expansion

Before we start let us note several identities that follow from (6.3).

0= /d3 87" /d3$] = /d3$J (6.18)

where we integrated by parts and used the assumption that j(x) has compact support.
The second one

; 1
0= /dsm(aijz)w’“wl = —/dsw (z*5' + z'5%) = /dsw zkjt = Esklm/dsw(r xjHm
(6.19)
We will also use
V x (%C
Vx(BxC

) = V¥ xC+9yV xC
) = B(V-C)—C(V-B)+(C-V)B-(B-V)C (6.20)
)

We now expand (6.6) in powers of 1/r

A(r):i‘—i/d%';_r,' (/ds’J +/d3’J rr)+...) (6.21)

The first term vanishes because of (6.18) and the second can be rewritten using (6.19)
as

Mo X T
A(I’):E 7‘3

(6.22)
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where
m= - /d?’:z:'r x j(r (6.23)

is the so called total magnetization of the system. For the flat current loop it is equal to
lm| =18 (6.24)

where I is the current and S is the area of the loop.
The magnetic field of the dipole is given by

2
BeUxA— fo 3(m -1T)r — r°m

g 5 (6.25)

The magnetic moment is related to the angular momentum. If the current is given
by a movement of particles with charges ¢, and masses m, then we can write

j= Z QaVad(X — X4) (6.26)
a
The magnetic moment is on the other hand given by
a3z’ x da_y, 6.27
/ zrxj(r —~2mg (6.27)
where the angular momentum
L, =mgry X vq (6.28)

If the ratio g,/m, is the same for all particles then

m= 11 (6.29)

2m
where L is the total angular momentum. The classical factor % is replaced by 1 for spins
in the lowest order relativistic theory of massive fermions (Dirac equation) and this 1
receives small corrections in the full Quantum Electrodynamics (the first one is o /(27)

where o is the fine structure constant o = e2/(4meghc) ~ 1/137).

6.2 Forces in the magnetic field

We start with the Lorentz force acting on a charge g in an external magnetic field B

i—l;) =gqvxB (6.30)
One can show that the magnetic force is intimately connected with the electric (Coulomb)
force by the following reasoning. If a charge g is moving with velocity v at distance d
with respect to a wire of area A with a current I then it sees a (approximately at rest)
certain density p of positive ions and the same density of electrons moving with some
velocity v along the wire.

Pion = Pe = P (631)
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since the wire is uncharged. There is magnetic force acting on the charge

dp _ v xB= qv*poepSe,

6.32
dt 2mr ( )

where e > 0 is equal to minus the electron charge. If we now change the frame to the one
moving at velocity v then the charge is at rest and the magnetic field from the positive
ions (that now move with velocity —v) does not exert any force on the charge. However
the densities change because of the Lorentz contraction

P
Pion = W, Pe = py/1—v?/c? (6.33)

Therefore in this frame the wire is charged with the linear density

2

ov
Peff = Pion ~ Pe = 5= 2 (6.34)
Therefore there is an electric force
d 2epS
P _gg—  97CP%% (6.35)

dt' — T ecenry/1— 02/

dt' = /1 — v2/c2dt (6.36)

we get the same result in both frames if

Using

Bo=—3 (6.37)

what shows the unification of magnetic and electric interactions as seen by different
observers,
A force acting on a short element of wire with current I in an external magnetic field
B is given by
dF =Idl1 x B (6.38)

Therefore for two long wires at a distance d we have the force (using (6.9)

polrlo
=
2md

(6.39)

The definition of ampere is that the it is the current which in two long wires at a distance
of 1 m produces the force 2- 107 N/m (hence by definition pg = 47 - 10~7 N/A?).

In the presence of an electric field the force acting on a localized distribution of
charge is given by

F— /dsw o(r)E(r) = /dsw o(r)(E(0) + - VE(0) +...) = QE(0) + (p - V)E(0) + ...
(6.40)
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while the leading term for the torque (moment of force) reads

N = /dB:z:r x p(r)E(r) = p x E (6.41)

In the presence of a magnetic field the total force acting on some localized distribution
of currents is given by

F— /deJ ) x B(r /d%J (0) + (r- V)B(0) +...) (6.42)

The first term vanishes because of (6.18). We write the second term in components

Fi = &ijk /dSwjjwl(alBk)(O) (6.43)
and using (6.19) we write
1 .
Fi = jeumese [ &2 x )m(8B)(0) = 8(m - B) (6.44)

where we used V - B = 0. Therefore
F =V(m-B) (6.45)

The potential energy of a dipole in the magnetic field (but not the full energy!) is
therefore given by
U=-m-B (6.46)

The torque in the magnetic field is given by the leading term
N = /d?’zr x (j x B(0 /d3 (r - B(0)) — B(0)(r - j)) (6.47)

The second term vanishes because of (6.19) and the first (also using (6.19)) gives

N = m x B(0) (6.48)
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7 Magnetization

In a similar way to the discussion of dielectrics we can divide any current into free
currents jo and bound currents

J(X) = Zjo(x)(s(x — Xa) + Z Eijijakg(X — Xb) + ... (71)
a b

where V - jo = 0 and the second term is written in such a way to satisfy this condition
automatically and ... stand for higher derivatives of the delta function. Neglecting all
higher derivatives and introducing continuous current densities we write

J(x) =Jjo(x) + V x M(x) (7.2)
Returning to equation
V x B = pgj (7.3)
and rearranging we get
V x (B — poM) = pojo (7.4)
where on the RHS we have only free currents. We introduce
1
H=—B-M (7.5)
Ko
and then
V xH =jj (7.6)

The field H is very useful in actual applications since most often we control the external
currents (in electrostatics we usually control potentials and therefore the analogous field
D is not so useful) but we have to remember that at the microscopic level we should
use only the field B.

We can now write down Maxwell equations in the presence of media

V-D = po
oB
VXE = ——
X ot
V-B =0
oD
VxH = j —— 7.7
X Jo + Py (7.7)

and it is in this form that Maxwell wrote originally his equations. Only later it became
clear that the fields D and H are secondary and at the microscopic level everything can
(and should) be described by the field E and B only.
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7. MAGNETIZATION

The question arises what is the relation between H (or M) and B in the magnet-
ically active media? As with dielectrics we have two different situations — either the
magnetization is induced by the external magnetic field or the molecules or atoms have
their own magnetic moment. The difference in this case is much more dramatic than in
the dielectric case since the interaction of internal magnetic moments can be so strong to
totally order these magnetic moments in large domains (in ferromagnetic media below
the Curie temperature).

In the first case when the magnetization is induced when the external magnetic
field is applied and then in the lowest approximation it is proportional to the external
magnetic field

B(x) = ppoH(x) (7.8)

with some constant u (that varies with frequency for fields dependent on time but in
our case it is just a constant). In principle one should write this relation for H as a
function of B (since B is a fundamental field and H is an auxiliary field) but first, this
form is traditionally used, second H is what is directly related to the external currents
and third it it is easier to operate with very large px (for ferromagnetic materials) than
with very small 1/u.

The linear relation between B and H is rather well satisfied in the case when p ~ 1
but for p > 1 it is not satisfied and moreover the actual value of B for a given H
depends on the history of the sample (the phenomenon of hysteresis).

We start now with u ~ 1. If u < 1 the substance is called diamagnetic if u > 1
it is paramagnetic (note that for dielectrics we have € > 1 — it is connected with
the definition D ~ €E and here B ~ pH). The diamagnetic properties exist when
the substance does not have any internal magnetic moment and paramagnetic (and
ferromagnetic) when it does. The difference with the electrostatic case (where we have
only dielectric substances and there are no paraelectric ones) lies in the different reaction
of magnetic dipole moments from the electric dipole moments.

If we have a substance without any internal magnetic moment (either orbital or spin)
then in the magnetic field the carriers (electrons) start to move on circular orbits and
the induced magnetic field from such current loops decreases the magnetic field (i.e.
u < 1). The substances with such behavior are water, carbon, lead, silver and the
most diamagnetic element known is bismuth. The effect is very weak and it turns out
that classically it should vanish (it is purely quantum mechanical because of discrete
Landau levels). There exist however ideal diamagnets (zero magnetic field inside) namely
superconductors of the first kind (Meissner effect) but the origin of the effect is entirely
different and purely quantum mechanical.

If molecules or atoms have their internal magnetic moment then the external mag-
netic field tends to orient the directions along the external magnetic field. There are
two distinct situations - either the interaction between the neighboring atoms is weak
and the orientation is separate for each of the molecule (paramagnet) or the interac-
tion is strong and the atoms are oriented independently of the external field (ferro- or
antiferromagnet).

In the first, paramagnetic case we can use a similar reasoning to calculate an average
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magnetization as a function of temperature. If atoms have their own magnetic dipole
moment mg and they do not interact with one another (this assumption is obviously
wrong in the ferromagnetic case) then the hamiltonian is given by

H:Ho—mo-B (79)
The magnetic moment is of the order of Bohr magneton

__eh
 2me

LB =0.92-1073J/T (7.10)

since my = ugS where S is a spin operator. Then the average dipole moment per
molecule is given by (8 = 1/(kT))

(m) [ dfsin @ pp cos fe,expPrBBcos?
m) =
[ df sin @ expPrsBcosb

= uB (coth(,Bp,BB) - ,3;;3) (7.11)

For small B we have 1
(m) ~ -Pu3 B (7.12)
what is the case (for 7 = 300 K (k = 1.38065 - 10~2% J/K)) when
kT 4.10"2%

Then )
polN p

For gases at room temperatures we can estimate (N ~ 2.7-10%° m~2) that u—1 is around
10~® and therefore it is very small. In dense substances the total contribution from
spins almost cancels (because of the Pauli principle) and only those close to the Fermi
surface can be ordered and therefore the paramagnetic properties are not multiplied by
~ 10% as would be suggested by the density factor but remain at the level 10~5 (Pauli
paramagnetism).

Before we discuss ferromagnetic substances let us derive the expression for the energy
density in the magnetic field. In the vacuum we have discussed already that the 00
component of the energy momentum tensor (we assume vanishing electric field) reads

1
T = —B? 7.15
0 = 5 (7.15)
In the presence of magnetic substances we write the total energy as
1
W= /d?’w ;H'B (7.16)

If we keep currents fixed and we introduce some magnetically active substance the

5W:/d3w%(H-B—H0-B0):/d%%(H-B—HO-BO) (7.17)
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The first term can be written as
/dsm%H-B:/d%%((H—HO)-(V><A)+H0-B) (7.18)
Using the equation
V- (CxD)=D:(VxC)-C-(VxD) (7.19)

we integrate by parts the first term and use the fact that we don’t change the free
currents (i.e.V x H = V x Hp) to show that it vanishes. We apply the same procedure
to the second term in (7.17) to arrive at the general result

1
oW = /d% 5(Ho - B —H - Bo) (7.20)
For a linear relation between B and H and the initial By in the vacuum we have
3. Mo 3 Mo
JW:/dw?(,u—l)H-Hoz/dz?M-Ho (7.21)

The difference in sign with respect to the previously used expression —m-B (apart from
the obvious %) comes from the fact that now it is the full change of energy including also
the work needed to keep the currents constant while before this work was not accounted

for.

7.1 Ferromagnetic materials

In contradistinction to the polarization where in matter we do not encounter very large
permanent electric dipole moments, the internal magnetic moments in matter can be
very large. The reason for this is the fact that spins contribute to the magnetic moment
and the mutual interaction of spins can lead to a spontaneous ordering of large regions.
In classical electrodynamics two magnetic moments placed close to each other try to
orient themselves in an antiparallel way so the net field should be close to 0. In the
quantum world there is a Pauli exclusion principle that in partially filled shells can lead
to unbalanced spins (one of Hund’s rules says that electrons tend to have parallel spins if
they start to fill a shell). There are only very few materials that have large enough spin-
orbital and spin-spin interaction to allow for the spontaneous ordering — iron, nickel,
cobalt, some rare earth materials like neodymium and most of alloys of these metals.
If the shells are filled or almost filled the total orbital momentum and the total spin
(almost) vanish.

In the statistical description there are two opposing effects — the temperature tries
to disorder the system and the interaction tries to order it. As it turns out in ferromag-
netic substances there exists a temperature (Curie temperature) below which there is a
spontaneous symmetry breaking and the material reaches its maximal possible magne-
tization. Then on small scales (domains) the material is fully magnetized but on larger
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scales the domains can still be disoriented so that the average macroscopic magneti-
zation vanishes. If one switches the magnetic field the domains start to point in the
direction of the field (much like in the case of individual magnetic moments but since
the internal field of the domains is very large the effect can be very large as well). When
the magnetic field is switched off then it costs energy (at the boundary of the domains)
to disorient again the domains so they stay (partially) oriented. It requires a magnetic
field in the opposite direction to bring the magnetization back to 0. This phenomenon
of hysteresis is at the origin of permanent magnets but it makes the solution of actual
problems very difficult much more difficult than in the electrostatic case.

The dependence of the magnetic permeability on temperature above the Curie tem-
perature To (when the ferromagnetic substance is paramagnetic) is given by the Curie-
Weiss’ law

b= T (7.22)
7.2 Methods of solving the problems
The equations
V-B=0, VxH=j (7.23)

impose the boundary conditions on surfaces separating two media without free surface

currents:

1 2 1 2
B =B, =’ =g (7.24)

In general since H(B) is a complicated function depending on the history of a sample
it is very difficult to give any simple procedure that works in every case and in the real
cases one resorts to numerical simulation. We will give below some methods that work
in special situations.

e If the relation between B and H is linear B = uuoH then we can write
1
V x (;V X A) = pod (7.25)

In the regions where p is constant and we impose the Coulomb condition V-A =0
we get the Poisson’s equation

—AA = pupd (7.26)

Solving this equation separately in different regions with different up’s we have to
impose the continuity on A across the boundaries.

e if in some region there are no free currents then
VxH=0 (7.27)
and we can introduce the magnetic potential

H=-Véy (7.28)
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The equation we have to solve is then
V.- (uV&y)=0 (7.29)

If u is constant it boils down to the Laplace equation — again we have to glue
together the solutions to ensure the continuity of $j,.

if we have permanent magnets with fixed magnetization M(r) (and no free cur-
rents) then we can write

V-B=uV-(H+M) =0 (7.30)
Hence
A@’M = —PMm, PM = -V-M (7.31)
If there are no external boundaries we write the solution as
1 v .M 1 M
& =—— [ d3 :__Vﬂ/&l 7.32
m(r) 47r/ ? r —r'| 4 e v — 1| (7:32)

For large r we recover the dipole potential

lm-r
Py=—
M= 4r 13

(7.33)

For a given permanent magnetization M(r) confined to some closed region we can
use directly the equation
V x B = uoj (7.34)

where the current j is a sum of free and bound currents. The bulk bound currents
are given by
=V xM (7.35)

and the surface bound currents are given by
ij =Mxn (7.36)

where n is a vector normal to the surface (outward).

To illustrate the application of boundary conditions we now discuss the case of a

magnetized ball of constant magnetization M (to be definite in the z direction) and
radius R in vacuum. We use the usual expansion into spherical harmonics separately
inside the ball and outside the ball
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where we have used the condition that the potential should be finite at » — 0 and at
7 — 0o and that V - M is different from zero only on the surface of the ball.

The field H|| is continuous across the surface while the continuous perpendicular
field is H| + M |. Therefore we write

a<§>M in 8§’M out
~—5g (B) ~ 5 (B)

BCI>M in _ ach out
—T(R) + Mcosf = " (R)

(7.38)

Substituting (7.37) and using the linear independence of Legendre polynomials we get
forl>2

yR' = bR
—lg;R"' = (I+1)hR 2 (7.39)

The only solutions to these equations is a; = b; = 0. For [ = 1 we have

—-a;R = -bR?
—a;+M = 2bR73 (7.40)
whence 2
M MR
o ==, by = 3 (7.41)
Therefore the field B is equal to
20 o 3(m - r)r — r’m
Bin = ,U,o(H + M) = TM Bout = E 5 (742)

where m = $wR®M. Hence the field inside is homogeneous (and smaller than poM)
and it is purely dipole outside with the natural value of the dipole.

If we have a cylinder made of a magnetic material with permeability x immersed
in a constant magnetic field then it is in general difficult to give exact expressions for
the M inside and outside. There are however two limiting cases when it is relatively
straightforward.

If the cylinder is very thin then it is the B field that is continuous across the base
and therefore

B H
B:uOHO:H:——M:HO—(u—1)H:H:7" (7.43)

Ko

If the cylinder is very long then it is the tangent component of Hy that is continuous
across the sides and therefore

H=H,=B= ,LL/.L[)HO (744)
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8 Alternating currents

In the rest of the lectures we will discuss time dependent densities and currents.
We recall the Maxwell equations

v.E = 2 (8.1)
€o
oB
VXE = ——/(— 8.2
X 51 (8.2)
V-B = 0 (8.3)
. 10E

8.1 Circuits

We start with the traditional application of electrodynamics to circuits at small frequen-
cies when we don’t have to consider radiation.
The conductors have a simple relation between the current and the voltage. Since

j=0E (8.5)
then we have the Ohm's law
V =RI (8.6)
where '
R=— 8.7
- (8.7)
For the capacitors we have
R=CV (8.8)
so that differentiating with respect to time we have
dv
I=C— 8.9
7 (8.9)
For the inductors the equation (8.2) integrated over some surface gives
0%
E-dl=-—— 8.10
frea=- (10

so that the voltage difference at the ends od a circuit is proportional to the time derivative
of a magnetic flux through this circuit. Since

&=LI (8.11)
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where L is the inductance therefore we have

81
V=-L_ 8.12
5t (8.12)

For a circuit of a resistor, a capacitor and an inductor connected in series and attached
to a battery with alternating current we can write

I Q

Esinwt=RI+ L— + = 8.13
sin w + i + C ( )
Differentiating with respect to time we have

dI d’r I

The general solution is the sum the solution to the homogeneous equation and the special
solution to inhomogeneous equation. The first solution is called a transient current and
the second a stationary current. Constraining ourselves to the stationary current we
write

I(t) = Asin(wt — ¢) = A(sin wt cos ¢ — cos wt sin ¢) (8.15)

Plugging it to (8.14) we get

0 = wRsing —w?Lcos¢ + COCS;,¢

wéE = A (chosqS—i—szsinqS— y) (8.16)

We get the phase shift

Lw — 7=
tang = ——C 8.17
ang = = (8.17)
and the amplitude
£ £

A= = —cos¢ (8.18)

\/R2 + (wL - %)2 R

Therefore the special solution is equal to
£ i
I(t) = 7 608 ¢sin(wt — @) (8.19)

with ¢ given by (8.17).
The maximum is in the resonance

wo = ,/% (8.20)

and the resistance is purely ohmic there.

48



K.A. MEISSNER

We can calculate the average power dissipated by the circuit:

&2
T/V = ﬁcos o) (8.21)

If ¢ — £7 there is no power dissipated by the circuit
Let us calculate the full solution with the transient currents is given by he sum of
the homogeneous and the special solutions and is equal to

Iy(t) = ’%(Al cos(wyt) + Az sin(wyt)) + % cos ¢ sin(w — @) (8.22)

where (we assume that the expression below is real)

1 R?
= - 2
Y=\ 1c T are (8.23)
If we assume that I(0) = 0 and [(0) = 0 then we get
&
A, = Esinq&cosq&
£ .
Ay = —R—:jjf cos® ¢ + 2L cos ¢ sin ¢ (8.24)

8.2 Faraday’s law

As an application of the Faraday’s law let us calculate the potential between the pole and
the equator induced in a (poorly) conducting sphere of radius R rotating with angular
velocity w in a magnetic field B.

The contribution to d€ from an element of coordinates 8, ¢ is

d€ = (v x B) - dl = R%wB cos 6 sin 6d4 (8.25)

Hence integrating from 0 to 7/2 we get
1 2
AE = §R wB (8.26)

This example shows that we can add the electromotive force piecewise and not only
apply it for the whole closed loops. Of course the full EMF vanishes since there is no
flux through the loop.

8.3 Conductivity

Let us recall the formula for dielectric constant as a function of frequency

e(w)=1+ Ne? Z 5 /; - (8.27)

2 w2 — .
gom S wi — w? —iwy;
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where the oscillator strengths satisfy

Y fi=2 (8.28)
j

In the limit of small frequencies there is a crucial difference whether the lowest
eigenfrequency vanishes (i.e there are free electrons) or not. In the conducting case
there is fyo > 0 electrons that are free and then we separate the contribution from the
free electrons from the rest and we write (in the limit w < w;)

. . N€2f0

Let us compare this formula with the law

oD
VxH=j+ — 8.30
X i+ (8.30)

where j denotes free currents only. For a medium satisfying the Ohm’s law
j=0E (8.31)

and the dielectric constant € we can write (assuming harmonic dependence on time)
. .0
VxH=—-iw (sos + 1;) E (8.32)

On the other hand the quantity on the RHS is the full dielectric constant e(w) so that
comparing wih (8.29) the conductivity at w = 0 is given by

o= N62f0

— (8.33)

In the limit of large frequencies (larger than any w; with nonnegligible oscillator

strength) we have
w? Ne’Z
=1--2 = 8.34
£(w) e (8.34)

where w,, is called the plasma frequency.

8.4 Kramers-Kronig relations and causality

For a general relation between the D field at time ¢ (i.e. the reaction of the medium,
assumed isotropic and homogeneous) and the electric field E at the same point we have

D(t, x) = eo(E(t, %) + / drG(T)E(t — 7,x)) (8.35)
0
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where G(7) is some real function. Putting the lower limit of the integration to 0 we
have used a fundamental concept of causality i.e. the effect cannot occur earlier than
the cause. This simple observation leads to very powerful statements in many branches
of physics known as dispersion relations. In this case we have for the Fourier transform
(ie. all fields dependent on time as ei¢?)

e(w) =1+ / drG(r)e™ (8.36)
0

We assume that G(7) is continuous i.e. G(0) = 0. For nonvanishing conductivity we
can use

Go(r) = % (1 — exp(~I7)) (8.37)
and then -
(w) = ﬁl—;iw) +1+ /dTé’(T)ein (8-38)
0
where
G(1) = G(1) — G4(1) (8.39)

tends to 0 for 7 — oo.
To get the expansion for large w

ioT T 1d T &)
S It M I e — —eT 4
£(w) ol ) 0/ drG(r)_ e 0/ ar= e (8.40)
where we used G(0) = 0. Continuing this procedure we get the expansion
o'  G'(0)
1- - e 8.41
R R (8.41)

We now continue w to complex values. We see that because in (8.35) the integral
runs from 7 = 0 the integral is well defined for the whole upper halfplane in w. The
relation shows that we can extend the range of arguments for negative values and we
have

g(—z) = €*(2") (8.42)
If we introduce
() = elz) 1+ — O (8.43)
E(z) =¢(z _ .
g0z(z +1I")
we can write the Cauchy equation when z = w is on the real axis
1 4 !
0= _f ACONW (8.44)
2miJ) W' —w
c
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where the contour runs along the real axis, surrounds w by a small semicircle above (in
the clockwise sense) and comes back by the large semicircle in the upper halfplane in
the counterclockwise sense. There are no poles inside the contour hence 0 on the LHS.
The contribution from the semicircle vanishes for large radius and we are left with

[oe]
1 E(w' i
-~ p / 8@ g — T (8.45)
27l w —w 2mi
to arrive at
1_ T &Ww)
f(w) = ~P / ) gy (8.46)
ir w —w
—00

We can divide it into the real and imaginary parts

Im é(w
Reé = —P
eéW) / w—w
1_ TR
eé(w
Imé = —=P 8.47
mé(w) T / w’—w (8:47)

and these are the Kramers-Kronig relations relating absorptive and dispersive parts
(often called dispersion relations in other branches of physics). One should note that
these relations are very general based only on causality and therefore have very broad
spectrum of applications.

If we have a narrow absorption line in the absorptive part (we have to add a second
term because of (8.42))

Ime(w) = M(cs(w —w) — 8w +wy)) (8.48)

2(/.}1

then far away from the other absorption frequencies

Klw%
Ree(w) = € + m (8.49)
i.e. it is a rapidly varying function around the absorptive peak. In this model
ol K]wz
R = 1—-—— J
es(w) go(w? +I?) +zj:w]2- —w?
o™ WKijZ-
Ime(w) = S ) + ZJ: 2 (0(w — wj) — §(w + w;)) (8.50)
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9 Appendix

In the notation used in these lectures indices ¢, 7,k ... will denote 1, 2,3 i.e spatial di-
mensions (Greek indices p,v... =0, 1,2,3 will denote 4-dimensional quantities). The
summation over repeated indices will always be implicitly assumed. The derivative with
respect to time will be denoted by a dot and with respect to (cartesian) spatial directions
by

0
- Oz
This operator has well defined properties under rotations and transforms tensors into
tensors.

We introduce a scalar product of two vectors

V;: =05 (9.1)

A-B:= A;B* (9.2)
with a number as a result and a vector product
(A x B); := ¢, A7 B* (9.3)

with a vector (in 3 dimensions) as a result — &;;% is a fully antisymmetric tensor with
€103 = 1 (in 4 dimensions we choose the convention 0123 = 1).
We will often use the identity

€ijk€ilm = 0j10km — 0jmOki (9.4)
Therefore, for example
Ax(BxC)=B(A-C)-C(A-B) (9.5)

If we have a vector field E(x) then its divergence

dE"
V-E= s (9.6)
1s a scalar field and its rotation
(V x E)* = £7%9, B (9.7)

is a (pseudo)vector field.
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We have for example

V-(fA) = Vf-A+fV-A
V x (fA) VfxA+fVxA
Vx(AxB) = (B-V)A-(A-V)B+(V-B)A—-(V-A)B (9.8)

For an arbitrary scalar field ¢ we have an important identity
V x (Vg)=0 (9.9)
Also for an arbitrary vector field E we have
V- (VxXE)=0 (9.10)

These equations are better expressed in the language of differential forms. If we have

an n-form A, then an exterior derivative denoted by d acting on A, produces (n + 1)-

form. If the manifold is metric then there exists also an operation x that produces

(D —n)-form where D is the dimension of the manifold. There is also a functor § := xdx*

that acting on A, produces (n — 1)- form. These equations then follow from the basic
equation

dd =0 (9.11)

when acting on a 0-form, as in (9.9), or 1-form, as in (9.10). A crucial role is played by
a laplacian A defined as
A =dd +4dd (9.12)

An arbitrary form A, on a any manifold can be written as a sum of three forms
(Hodge decomposition)
A, =dA, 1 +0An41 + Hy (9.13)

for some globally defined A,_1, An,+1 and so called harmonic form H, satisfying
dH, = 6H, =0 (9.14)
so it satisfies also the Laplace equation
AH, =0 (9.15)

The number of linearly independent harmonic n-forms (Betti number b,) is a very
important characterization of a manifold (the harmonic forms belong to the so called
nth cohomology class dual to the n-th homology class). If the n-th cohomology class
for a given manifold is empty then

dA, =0= A, =dAn_; (9.16)

for some globally defined A, ;. For example the manifolds with b; = 0 are called
simply-connected and then dA; = 0= A; = dé¢.
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In the form language the gradient is an action on O-form producing a one-form
(vector):

af,d:ci, (9.17)

f_>df:8:z:Z

divergence is an action on a one-form producing a 0-form (scalar)
Vi = %d(xV1) = Vs, (9.18)

rotation is an action on a one-form producing (n — 2)-form (in 3 dimensions a pseu-
dovector)

V]_ — *dVv]_ = Vn,2 (919)

For arbitrary vector field A and 3-manifold M3 with a 2-dimensional boundary O M3
we have the Gauss equation

/ V-Adv=[ A-.dsS (9.20)
M3 OMs3

while for a 2-manifold M with 1-dimensional boundary 0 M, we have the Stokes equa-
tion

/ (VxA)-do=d A-ds (9.21)
Mo OM2

9.1 Coordinate systems

In physical problems it is very often the case that we have some kind of symmetry
(spherical, axial). It is then advantageous to use the coordinate system adapted to the
symmetry so that the dependence on one or more coordinates drops out.

There exist general expressions for the gradient, divergence, rotation and Laplace
operator for a manifold endowed with a metric g;; (especially easy if the metric is
diagonal i.e. in the Lamé form) but we will not develop the general theory here quoting
only the Laplace operator

1 8

A:ﬁagi

We give below expressions for differential operators only in cylindrical and spherical
frames where the metric is given by

(\/ggii %) (9.22)

ds? = dp? + p>d¢? + d2? (9.23)

and
ds? = dr? + r2d#? + r?sin? Ad¢? (9.24)
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9.1.1 Cylindrical coordinates
In the cylindrical frame we define (p, ¢, 2) as

Tz =pcos¢p, y=psing, z==2 (9.25)

so that 5 & o 5 o & o
e = - g _ — = 2
op "oz Yoy 84~ Yoz "%y 8z o2 (9.26)

Then the unit vectors are

1 1
e, = ———(z,y,0), es=——(-y,z,0), e, =(0,0,1 9.27

so that

1 1
V-ep:;, Vxe,=0, V-e4 =0, Vxe¢:;ez, V-e, =0, Vxe,=0 (9.28)

Then 81/) 1 81/) 6¢
v — 9.29
since for example
1 oy Y 81/)) 106
-V = —(— 0) | —, —,— | = —— 9.30
€y ¢ p( Yz, ) <8$,8y’82 pa¢ ( )
For a vector A
A =Aje, + Agey + Aze, (9.31)
we have
10 BA
V-A = ——(pA,) +— 9.32
10A, 0A4 8A A, 1 a(pAd,) 0A, )
A = — ekl LR il
v (5% - az) o+ (G5 ) et 5 (B8 - %) =
The Laplace operator is given by
10 o] 1 62 52
A = . = —— —_ - J— .
V-V pOp (pap) 20§ " 822 (5-88)

9.2 Solutions to the Laplace equation in cylindrical
coordinates

It is very useful to have a general solution of the Laplace equation. In 3 dimensions the
solution of Ap = 0 is easy to get by separation of variables.
In cylindrical coordinates we write

Y(x) = R(p)2(¢)Z(2) (9.34)
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then the Laplace equation using (9.56) can be written as
0o L d ( dR(p)) 1 d2%(¢) 1 d2z(z2)
pR(p) dp dp p?®(¢) d¢?  Z(z) d2?

To satisfy this equation the double derivatives of ® and Z must be equal to a constants,
equal respectively to —m? and k? so that

P(x) =D > Rmi(p)e™?e (9.36)
m  k

Ay = (9.35)

The index m runs usually over integer numbers because of periodicity in ¢ but the range
of summation over k£ (and whether k is real or imaginary) depends on the problem. The
function R,,x(p) therefore satisfies

dszk 1 dRmk 2 m2
— k- — | Rnr=0 9.37
a2 " p dp p2 )k (5:87)
i.e. the Bessel equation. Therefore in cylindrical coordinates the general solution reads
P(x) =D > (AmIm(kp) + BnNp(kp)) e™Pe (9.38)
m k

where J are the Bessel functions and N are the Neumann functions (or Bessel functions

of the second kind)

Jy(z)cosvm — J_,(z)
sin v

The Bessel functions have the Taylor expansion

J,(z) = @),, 5 % <§>2j (9.40)

=0

N,(z) = (9.39)

For half-integer indices they are given by elementary functions.

9.3 Spherical Bessel and Hankel functions

The spherical Bessel and Hankel functions are defined as

7@ = =0y @)

™
h(2) = /o Hys (@) (9.41)

They are elementary functions that can be obtained from the formulae

(@) = (~=) (%)l &
e =-it=) (55;) <e_> (0.42)

rzdzr T
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and they both satisfy

d? I(1+1)
2oz @h@) + (1- 25 Y ai(e) =0 (9.43)
We will need the expansions
. ! L+ O(2
n(z) — m( +0(z7))
iz 1
W) — (S ((1 +0 (5» (9.44)
The expansion in terms of spherical waves
ik|r—r'| 0o
T =ik S (2 + 1AM (kr)ji(kr') Py(cos 6) (9.45)
r—r
1=0
and -
R Z(2l + 1)(=1)5:(2) Bi(t) (9.46)
1=0
9.4 Spherical coordinates
In the spherical frame we define (r, 6, ¢) as
z =rsinfcos¢, y—=rsinfsing, z=rcosh (9.47)
so that
o _,0 8. 2
or oz yay 0z
6 _ _=m 0. vz 9 [o. 29
8 = J@Z120z  J2 1420 Yoz
o} o] o}
— = —Y— — 9.48
¢ Yoz "oy (9.48)
Then the unit vectors are
1
e, = ——(2,9,2
Nl
1 Tz Yz [ 5 o
€ — ) VT + 2
? \/:z:2+y2+z2(\/222+y2 Vz2 + 2 ¥)
0y = ——1 (—y,2,0) (9.49)
¢ — \/m Yz, .
so that
2 1 1
V-.e, = o Vxe,=0, V-ep= Ctr—g9, V xeg = ;ez, V-.eg =0, Vxey=—-e

(950)

58



K.A. MEISSNER

Then
¢ 16¢ . L 1 oy

e - 9¥ 51
VY= T 86% T rsing 66 (9:51)
and for a vector A
A = A,e, + Apeg + A¢e¢ (9.52)
we have
18 1 6(sin 9A9) 1 3A¢
A = = .
v Ear AT T g rsind 04 (9.53)
1 sin €A¢ _ 04 1 04, 1 8(7‘A¢)>
VxA = _z
% 7 8in 6 ( o¢ > (r sinf 9¢ r Or e

(% 2o )
e\ Tar 56 ) °?
The Laplace operator is given by
10 0 1 4 0 1 52
A9 (20 -9 9 . 9.54
2 or <" 8r> Tt 2sin6 60 ( in ae) T 2 sin? 0 04 (9.54)
9.5 Solutions to the Laplace equation in spherical coordinates

In spherical coordinates we write

R
¥ = o()a(s) (0.55)
then the Laplace equation using (9.54) can be written as
B r2 d2R(r) 1 d /. ,de) 1 d28(g)
AY=0= 2y arr " B(8)smedd ( n6=7y ) s’ 0a(g) agz  o0)

To satisfy this equation double derivatives of R and ® must be equal to constants, equal
respectively to I(I + 1) (with solutions '+ an r—!) and —m? so that

=35 (Amr! + Binr 1) O (8)™? (9.57)
I m

The index m runs over integer numbers because of periodicity in ¢ and it turns out that
because of restricted interval of 6 € [0, 7] requiring non singular solutions at the ends
of this interval range of summation over [ is restricted to non-negative integers > |m|.
The function ©;,,(8) satisfies

1 m 2
1 d <sin PRl ) + <l(l +1) - 2 > O = 0 (9.58)
S1

sin 8 df dé n%4

i.e. the Legendre equation. Therefore in spherical coordinates the general solution reads

[eS) A

= Z Z (Almrl + Blmr’l’1> P (cos §)e'™? (9.59)

=0 m=-1
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where P/™ are associated Legendre functions. If additionally the solution has an axial

symmetry then the solution doesn’t depend on ¢
[ee]
= Z (Alrl + Blr_l_1> Py(cos )
1=0
where Pj(z) are Legendre polynomials given by
1 d o/, !
First 3 polynomials read

3z2 — 1
2

Po(:l)) = 1, Pl(fll) =, Pz( )

The generating function for the Legendre polynomials is given by
1 [e.e]

=) " Py(z)t!
Vitt -2zt ;l()

The Legendre polynomials form a complete set on the interval [—1,1]:

> 2 R@) R = o - o)
=0

The associated Legendre functions are given by the formula

_]_)m I+m

N’ C zz)m/zjmlﬁ (mz B 1)’

We have a relation between positive and negative m:

B "(0) = (-1 (o Aa)

and for a given m

2
/ dz P*(2)P, ™ (z) = (~1)™ S
We introduce spherical harmonic functions as
Yim(e, ¢) =

hence
Yi _m(gi ¢) = (_1)in:n(91 ¢)
They are orthogonal on the sphere

/zw/deSinGY* (0, 8)Yih, (0, 4) = —
0 0 Im\Y) I'm/’\Y) _2l+1
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We use here Y;,,, which are differently normalized than the usual convention

a7
Yim = {| = Yim 71
! A1t (9.71)

what appears to be much more convenient.
The lowest Y}, (6, ¢) are given by

Yoo = 1
Yio = cosé

1. i
Yll = —4/=sinfe

2

3 1
Yoo = [=cos?6— =
20 <2 COos 2>

3 .
Yor = —\/;sin900s9e14’
3 . 2, 24
Ygg = gsm fe (972)

An arbitrary function g(8, ¢) can be expanded in spherical harmonics

9(6,8) = > gim Yim(6, 8) (9.73)
lm
where o1
oim = =, [ 40Y;,(6,4) 9(6,9) (9.74)
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