NuMI-NOTE-COMP-0860

Users Guide to the CandEventSR

Reconstruction Tree

Version 2.00

Roy Lee

Harvard University

April 18, 2003

Table of Contents

1 Introduction 1
2 Description 1
2.1 EventSRHeader, 2
2.2 CosmicRayInfoSR 4
2.3 VetoShieldInfoSR 4
2.4 ShieldStripSR 6
2.5 StripSRTTree 6
2.6 SliceSRTTree 8
2.7 TrackSRTTree 10
2.8 EventSRTTree 18
2.9 MCTruthSR 19
2.10 FLSDigitSR 20

i

1 Introduction

This memo provides a description of the reco tree output by the method
EventSRListModule::Ana. Each stage of reconstruction (e.g. track formation) can
have its own set of trees being written out containing information about that package
and upstream of it, and for many uses, such as analyses of cosmic muons, this is
sufficient. However, for more complicated events, such as beam induced events in the
near detector, a more complex tree structure complex is warranted, and this is the
role of the CandEventSR reconstruction tree.

The file output by EventSRListModule::Ana containing the reconstruction tree is
called eventsr.root. This ROOT file contains a single Tree with name reco.
Information about CandStrip, CandSlice, CandTrack, CandShower, and CandEvent
objects is contained within the reco tree. A description of these objects and of the
MINOS reconstruction can be found in [1].

Throughout this memo there will be references to ROOT trees and their usage. Some
basic knowledge of these trees by the user is assumed. For information on ROOT
trees (and ROOT in general), the ROOT Users Guide is a good reference (available
via http://root.cern.ch).

Note that as of the time that revision 2.00 of this note was being written, Sue Kasahara
was in the process of converting the functionality found in the CandEventSR tree
into the package CandNtupleSR. Eventually the code in EventSRListModule::Ana
will become obsolete and users should use the new CandNtupleSR package when
available.

2 Description

The reco tree is an example of a tree containing an object. In this case, the object
being written is of class TTreeSR (code for all of the classes associated with the
reconstruction tree is contained in the CandEventSR package). An examination of
TTReeSR.h shows

class TTreeSR : public TObject
{

EventSRHeader evthdr;
CosmicRayInfoSR crhdr;
VetoShieldInfoSR vetohdr;
DmxStatusTree dmxstatus;
TClonesArray *vetostp; // veto strip

TClonesArray *stp; // strip

TClonesArray *slc; // slice

TClonesArray *trk; // track

TClonesArray *shw; // shower

TClonesArray *evt; // event

TClonesArray *mc; //-> Monte Carlo truth
TClonesArray *flsdgt; //-> Monte Carlo digit truth

};

There is one object of class EventSRHeader, one object of class CosmicRaylnfoSR,
one object of class VetoShieldInfoSR, one object of class DmxStatusTree, and several
TClonesArray objects. The use of TClonesArray allows for multiple objects per tree
entry, where there is a one to one relationship between a tree entry and a snarl. Strip
objects obviously require an array, as there are multiple strips in a snarl. Most far
detector snarls correspond to a single physics events, which means that the typical
far detector snarl will have only a single track or single shower. However, this is not
always the case, for example cosmic ray multiple muon events, or a v, charged current
interaction with muon and pion tracks. In the near detector this situation is even
more complicated, where a near detector snarl can contain many physics events.

2.1 EventSRHeader

The class EventSRHeader contains information about each snarl:

class EventSRHeader : public TObject
{

Int_t run;

Short_t subrun;
Short_t runtype;
Int_t snarl;
Ulnt_t trigsrc;
UInt_t errorcode;
Double_t trigtime;

UInt_t ndigit;
UInt_t nstrip;
UShort_t nslice;
UShort_t ntrack;
UShort_t nshower;
UShort_t nevent;

DigitPulseHeightSR ph;

PlaneInfoSR planeall; // all digits

PlaneInfoSR plane; // digits above threshold (nominally 3 pe)
// PlaneInfoSR plane requires 4 consecutive hit planes

DateInfoSR date;
3

The first group of variables contain information identifying the snarl and are filled
from the classes RawDaqHeader and RawDaqgSnarlHeader, except for trigtime,
which is calculated from the data itself if FilterDigitListModule has been run. The
second group of variables show how many of each candidate objects are in the snarl.

The last group holds information about the total pulse height in the snarl
(DigitPulseHeightSR), plane information (PlanelnfoSR), and date information
(DatelnfoSR). DigitPulseHeightSR has the structure

class DigitPulseHeightSR : public TObject
{

Float_t raw;
Float_t siglin;
Float_t sigcor;
Float_t pe;

+;

where raw gives the pulse height in raw ADC counts, siglin returns pulse height
corrected for nonlinearities, sigcor returns a normalized strip response pulse height,
and pe gives the pulse height in photoelectrons. The summation is done over all
CandDigit objects associated with the snarl.

There are two PlanelnfoSR objects, planeall and plane, which contain information
about the beginning and ending planes as well as the total number of hit planes.
This information exists both irrespective of the plane view, and for the U and V
views separately. The first object, planeall, examines all CandDigit objects. This
means that an upstream accidental hit can cause the beginning plane in planeall
to be upstream of the actual physics event. An attempt is made to filter out such
accidental hits when calculating the plane information. This is done by finding the
most upstream plane which is part of a set of 4 contiguous planes, with each of
the planes having at least 3 photoelectrons. This plane is defined to be plane.beg
(similarly for plane.end). The total number of hit planes (without any pulse height
requirement) between plane.beg and plane.end is then stored in plane.n.

Lastly, DatelnfoSR holds information about the date of the snarl. All variables in
this class are self explanatory, perhaps with the exception of the variable utc. This

variable represents the universal time (in seconds) and is filled from the method
VIdTimeStamp::GetSec().

2.2 CosmicRayInfoSR

This class holds information that is particularly useful for doing analysis of cosmic
ray muons:

class CosmicRayInfoSR : public TObject
{

Float_t zenith;

Float_t azimuth;

Float_t ra;

Float_t rahourangle;
Float_t dec;

Double_t juliandate;
Float_t locsiderialtime;

};

These quantities are defined for reconstructed tracks only. For the case in which there
is more than one track per snarl, these values are calculated for the last reconstructed
track. When no tracks are reconstructed, these values are undefined.

The zenith and azimuth angles (in units of degrees) are defined from track direction
cosines at the vertex. The azimuth is defined to be the true azimuthal angle; detector
north as defined by the longitudinal axis of the far detector is offset by 26.4234474°
with respect to true north. Note that these quantities are defined purely in terms of
the far detector.

The other member variables describe time in astronomy terms, ra being the
right ascension, rahourangle the right ascension hour angle, dec the declination,
juliandate the julian date, and locsiderialtime the local siderial time. The
Soudan mine sits at a longitude of -92.241389° (92-14’-31.23” W) and a latitude
of 47.819722° (47-49’-13.29” N).

2.3 VetoShieldInfoSR

The far detector has a configuration of scintillator modules above and to the sides of
the detector to identify muons which enter the detector. This veto shield is currently
set up as a prototype, and it is more than likely that the permanent configuration

4

will be different than the one that presently exists. Some of the member variables of
this class may therefore need to be changed in the future.

The class VetoShieldInfoSR contains summary information about digits in the veto
shield:

class VetoShieldInfoSR : public TObject
{

UInt_t ndigit([3];

UInt_t nplank[3];

Int_t adc[3];

Float_t dx[3];

Int_t dxvetostpl[3];

Float_t dcos; // normal direction cosine to shield
Float_t projx;

Float_t projy;

Float_t projz;

Bool_t ishit;

Contiguous scintillator strips in the veto shield are grouped together and are read
out by a single PMT pixel. We refer to these sets (mostly of 8 scintillator strips) as
planks.

Most of the member variables are self explanatory. The reconstructed track (if it
exists) is projected to the veto shield; the spatial residuals between the projected track
position and the closest shield hits are calculated and stored in dx. The vetostp index
of the veto shield digit whose spatial residual is smallest is represented by dxvetostp.
The three elements of the arrays ndigit, nplank, adc, dx, and dxvetostp represent
early, in time, and late shield digits, where the timing is determined relative to the
track vertex time (if a track exists), and is corrected for time walk and optical fiber
propagation delay. Early digits are nominally considered to be those which come at
least 50 ns before the track vertex; late digits are nominally considered to be those
which come at least 150 ns after the track vertex.

The projected track angle is calculated relative to the part of the veto shield which
is intercepted, and the direction cosine relative to the shield is found and stored in
dcos. The spatial coordinates of the projected track position are stored in projx,
projy, and projz. Finally, the boolean ishit is true if the projected track intercepts
the veto shield.

2.4 ShieldStripSR

The TClonesArray *vetostp is an array of shield strip objects, where a shield strip
is defined to be a hit plank (see the previous section for definition of a plank) with
either one or two digits. The structure of ShieldStripSR is

class ShieldStripSR : public TObject

{
Int_t pln;
Int_t plank;
Float_t x;
Float_t y;
Float_t z[2];
Int_t ndigit;
Int_t adc[2]; // O = south, 1 = north
Double_t time[2]; // O = south, 1 = north
Double_t timeraw[2]; // O = south, 1 = north
Float_t wlspigtaill2];
Float_t clearlen[2];
}

The pln variable represents the plane number as defined by the Plex package. The
plank is the strip number as defined by the Plex package of the first PlexStripEndld.
The spatial position of the shield strip is found in x, y, and z, where the last variable
contains the upstream and downstream ends of the shield scintillator strip.

The timing variables time and timeraw give the 3D fully corrected and raw times,
where the event trigger time has been subtracted off. The 3D time correction
includes a pulse height dependent time walk correction and corrections for optical
fiber propagation delays. The south end is index 0, the north end is index 1.

2.5 StripSRTTree

The TClonesArray *stp contains information about CandStrip objects, with each
element of *stp corresponding to a single CandStrip object. The structure of
StripSRT Tree is

class StripSRTTree : public TObject
{

Int_t index;

UShort_t strip;

Float_t tpos;

UShort_t plane;

Float_t z;

Char_t planeview;
DigitPulseHeightSR phO; // 0
DigitPulseHeightSR phl; // 0
UShort_t ndigit;

east, 1 = west
east, 1 = west

Float_t timeO; // O = east, 1 = west
Float_t timel; // O = east, 1 = west
Int_t pmtindex0; // 0 = east, 1 = west
Int_t pmtindexl; // 0 = east, 1 = west

};

All of these variables should be self explanatory. The 0 and 1 flags for ph, time, and
pmtindex refer to the east and west read out ends (for the near detector, only one of
these will be sensible).

The object *stp, being a TClonesArray, can be accessed using conventional a C style
array index. For example, to print the transverse position, z position, and pulse
height (in photoelectrons) for the 5th strip for snarl 69:

reco->Scan("stp[4] .tpos:stp[4].z:stp[4].ph.pe","evthdr.snarl==69");

To draw the transverse versus longitudinal positions for all strips in snarl 69:

reco->Draw("stp[] .tpos:stp[].z","evthdr.snarl==69");

The square brackets without any index tells ROOT to loop over all valid entries of the
array. Alternatively, omitting the square brackets altogether means the same thing:

reco->Draw("stp.tpos:stp.z","evthdr.snarl==69");

The result is shown in Fig. 1.

One word of warning: because writing out information about each CandStrip object
can require a relatively large amount of disk space, there is an option in the
EventSRListModule package to turn this off. If such is the case, reco->Print ()
will show the existence of the *stp array, but there will be no entries in it.

| stp.tpos:stp.z {evthdr.snarl==69} |

O
05
Al
1.5}
o
25|

3.5

=
N
=
w
=
N
=
()]
Ay
(o2}
=
~

Figure 1: tpos vs z for all CandStrip objects

2.6 SliceSRTTree

A snarl may contain multiple physics events, particularly true in the case of near
detector beam induced events. Omne of the first reconstruction tasks involves the
formation of CandSlice objects. Such objects are formed by separating CandStrip
objects based on timing and/or spatial information.

For far detector events, where a snarl contains a single physics event, there will be
exactly one CandSlice object per snarl. This means that all CandStrip objects found
in the snarl are also in the CandSlice, and vice versa. So while the use of CandSlice
is of primary benefit to near detector beam events, some aspects of how to associate
elements of the *stp array with a particular higher level reconstruction object (in
this case a CandSlice) will be discussed here and may be beneficial to all users.

The SliceSRTTree class has the following members:

class SliceSRTTree : public TObject
{

UShort_t index;

Int_t ndigit;

Int_t nstrip;

Int_t *stp; //[nstrip]

DigitPulseHeightSR ph;
PlaneInfoSR plane;
¥

The integer array *stp in SliceSRTTree is an index over the *stp array in TTreeSR.
In the far detector where a snarl is equivalent to a CandSlice, the *stp array in
SliceSRTTree contains all indices from 0 up to nstrip-1. Thus if one executed the
command

reco->Draw("slc.stp","","",1,0);

one would see a histogram from 0 to nstrip-1 with all entries being filled (the 1 near
the end tells ROOT to consider only one entry, the 0 means begin with entry 0).

As xslc itself is an array (of StripSRTTree’s), and slc.*stp is also an array of
(integers), what is actually being drawn by the command above? We have not
specified any array indices. What ROOT does in this case is to first loop over all
elements of xslc, and for each element (of type StripSRTTree) loop over all elements
of slc.*stp.

If one wanted to plot only those strip indices for the 4th CandSlice:

reco->Draw("slc[3].stp","","",1,0);

Alternatively, the following command is equivalent:

reco->Draw("slc.stp[3]","","",1,0);

This command seems like it should draw the *stp array index for the 3rd CandStrip
in each CandSlice (looping over CandSlice), but in actuality it loops over all *stp
elements of the 3rd CandSlice object. ROOT apparently does not care where the
square brackets are located, instead assigning the square brackets by order found. In
this case the first square bracket ([3]) corresponds to the first array (slc), making
the two expressions above equivalent.

If one wanted to draw the xstp array index for the 3rd CandStrip in each CandSlice,
one would do

reco->Draw("slc[].stp[3]","","",1,0);

The presence of the first pair of square brackets ensures that the [3] corresponds to
the second array in this expression (in this case, slc.stp). Alternatively, one can do

reco->Draw("slc.stp[][3]","","",1,0);

One can now use this index to plot information associated with StripSRTTree. For
example, to plot the transverse versus longitudinal positions for all CandStrip objects
in the first CandSlice:

reco->Draw("stp[slc[0].stp].tpos:stplslc[0].stpl.z");

More examples of the use of stp indices are given in the next section.

One thing to note about CandSlice objects is that while it is true that all CandStrip
objects are found in a CandSlice (at least for the far detector), it is not true that
all CandDigits are found in a CandStrip. Whether a CandDigit is to be included in
a CandStrip depends on the algorithm. One possible reason why a CandDigit may
not be included a CandStrip (and therefore a CandSlice) is because it is flagged as a
crosstalk digitization. The user is referred to the specific algorithms and packages if
interested.

2.7 TrackSRTTree

The TClonesArray *trk contains elements of type TrackSRTTree. Each element of
*trk corresponds to a single 3D track. The structure of TrackSRTTree shown below:

class TrackSRTTree : public TObject
{

UShort_t index;

Int_t ndigit;

Int_t nstrip;

Int_t *stp; //[nstrip]
Float_t *stpu; //[nstrip]
Float_t *stpv; //[nstrip]
Float_t *stpx; //[nstrip]
Float_t *stpy; //[nstrip]
Float_t *stpz; //[nstripl
Float_t *stptO; //[nstrip]
Float_t *stptl; //[nstrip]

10

};

Note the presence of the CandStrip array *stp. Each TrackSRT'Tree object has
multiple arrays, all with the same index. Each array that begins with stp indicates
that it is an array over CandStrip objects or information associated with strips.

As an example of using the *stp index, we examine a multiple muon event in the far
detector. Figure 2 shows the transverse versus longitudinal positions of the hit strips.
The two tracks (one in red, one in blue) are clearly visible. The hollow circles indicate
CandStrip objects that were not included as part of any track. The commands used

to

Float_t *stpphOsigmap; //[nstrip]
Float_t *stpphOmip; //[nstrip]
Float_t *stpphOgev; //[nstrip]
Float_t *stpphlsigmap; //[nstrip]
Float_t *stpphlmip; //[nstrip]
Float_t *stpphlgev; //[nstrip]
Float_t *stpds; //[nstrip]
Float_t *stpattnOc0O; //[nstrip]
Float_t *stpattnlcO; //[nstrip]
Float_t *stptcalOtO; //[nstrip]
Float_t *stptcalltO; //[nstrip]
Bool_t *stpfit; //[nstrip]

Bool_t #*stpfitchi2; //[nstrip]
Bool_t *stpfitprechi2; //[nstrip]
Bool_t *stpfitqp; //[nstrip]
DigitStripPulseHeightSR ph;
TrackPlaneInfoSR plane;
VertexInfoSR vtx;

VertexInfoSR end;

VertexInfoSR 1lin; // linear fit
FiducialInfoSR fidvtx;
FiducialInfoSR fidend;
FiducialInfoSR fidall;
TrackTimeInfoSR time;

Float_t ds;

Float_t range;

Float_t cputime;

MomentumInfoSR momentum;
FitTrackInfoSR fit;

generate this plot are as follows:

[1] reco->SetMarkerStyle(24);

[2] reco->Draw("stp.tpos:stp.z","","",1,0);

[3] reco->SetMarkerStyle(20);

11

| stp.tpos:stp.z |

Figure 2: tpos vs z for CandTrack objects

[4] reco->SetMarkerColor(2);
[6] reco->Draw("stp[trk[0].stp].tpos:stpl[trk[0].stp].z","","same",1,0);
[6] reco->SetMarkerColor(4);
[7] reco->Draw("stpltrk[1l].stp].tpos:stpltrk[1].stp]l.z","","same",1,0);

Line [2] draws the strip positions for all CandStrip objects. Lines [6] and [7] draw
the positions only for those CandStrip objects found in tracks. If we had wanted to
draw the strip positions for strips in any tracks, we could have done

reco—>Draw("stp[trk.stp].tpos:stpltrk.stp].z","","",1,0);

In addition to accessing StripSRTTree information through the *stp index, there is
strip associated information which is specific to each CandTrack object. For example,
given a 3D track, we can then calculate the 3D position at each hit plane (*stpu,
*Stpv, *stpx, *stpy).

For clarity, we use as an example the first track (in red) shown in Fig. 2.

[1] reco->Scan("trk[0].stp[9]","","",1,0)
S K KK KKK KKK KKK KKK KK K KoK K

12

* Row * trk[0].st *

3k 3k 3k 3k kokkokokokokok kokokokokok kokokok ok ok

* 0 x 7 *

koo o ok ok skok ok ok o ok Kok sk ok ok ok

(Int_t)1

[2] reco->Scan("stpl77].tpos:stpl[77].planeview","","",1,0)
3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k kok kosk kosk kosk koskkosk ok skoskskoskoskosk sk sk kosk sk

* Row * stpl[77].t * stpl[77].p *

sk ok o o o ok sk skok ok o o ok skok sk ok ok o ok ok ok sk skok ok ok o o o o ok

* 0 *x 1.3804974 =* 2 *

sk ok ok o o ok sk skok ok o o ok skok ok ok ok o ok ok ok sk skok ok ok o o o o ok

(Int_t)1

[3] reco->Scan("trk[0].stpul[9]:stpltrk[0].stp[9]].tpos","","",1,0)
3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k ko3k ko3k kosk koskkoskoskosk ok skoskoskoskoskoskosk sk ok sk ok

* Row * trk[0].st * stp[trk[0 *

ok ok o o ok ok sk skok ok o o ok skok ok ok ok o ok ok ok sk skok ok ok o o o K

* 0 x 1.3812383 * 1.3804974 *

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k ko3k kosk kosk kosk kosk kosk ok skoskoskokoskosk sk sk kosk ok

Line [1] shows that the CandStrip which corresponds to element 9 in trk[0]
corresponds to element 77 in the TClonesArray *stp. From line [2] we see that
the transverse position is 1.38 m and that it is a u-view strip (planeview == 2).
Thus we can compare trk[0] .stpul[9] with stp[77].tpos and we see that they are
about the same (they are not exactly equal because 3D positions found by tracks take
a pulse height weighted average of strips in a plane). More illustrative is that instead
of referring to stp[77].tpos, we can use instead stp[trk[0].stp[9]].tpos"; this
makes it simple to combine the additional strip information found in TrackSRT Tree
with strip information found in StripSRTTree by using the same index.

It was found that older versions of ROOT may not correctly handle indices and
multiple expressions (such as in line [3] above). In particular, if one replaces the
Scan with a Draw method in line [3], it may be seen that the resultant plot is
incorrect. This has been fixed in newer versions of ROOT (beginning with 3.03/09).

There are several strip associated variables in TrackSRTTree. The previous discussion
used *stpu as an example. A listing and description of all available variables is found
in Table 1.

There are several other objects in TrackSRTTree. The variable plane is of class
TrackPlanelnfoSR and contains information about the number of hit planes in the
track and the begin and end planes, both summed over all plane views and separately.
Note that the begin plane here is not necessarily the upstream plane, as timing
information is used to determine the start of the track. The variable ntrklike is the
number of hit planes in the track which are relatively clean (free from the presence
of additional hits).

13

Name

Description

stp

stpu, stpv,
stpx, stpy, stpz
stpt0, stptl

stpphOsigmap,
stpphlsigmap
stpphOmip, tpphlmip
stpphOgev, stpphlgev
stpds

stpattnOc0, stpattnlcO
stptcal0t0, stptcallt0
stpfit

stpfitchi2
stpfitprechi2

stpfitqp

index over TClonesArray *stp
u, v, X, y, z positions at hit plane

3D times for east and west ends, corrected for
propagation delays

strip pulse height for east and west ends, corrected

for fiber attenuation

strip pulse height for east and west ends, in MIP units
strip pulse height for east and west ends, in GeV units
track path length from track end

CO0 for east and west ends from mapper results

TO offsets for east and west ends

1 if this hit strip was used in final track fit

final x? at this strip

pre x? at this strip from Kalman filter

charge over momentum at this strip from fit

Table 1:

TrackSRTTree *stp variable descriptions

There are three variables of class VertexInfoSR: vtx, end, and lin. The first and
second variables contain information at the begin and end track positions, while the
last holds information from a linear fit to the track hit positions. The structure of

VertexInfoSR is

class VertexInfoSR :

{

Float_t u;
Float_t v;
Float_t x;
Float_t y;
Float_t z;
Float_t t;
Int_t plane;
Float_t eu;
Float_t ev;
Float_t ex;
Float_t ey;
Float_t dcosu;
Float_t dcosv;
Float_t dcosx;
Float_t dcosy;
Float_t dcosz;

public TObject

14

Float_t edcosu;
Float_t edcosv;
Float_t edcosx;
Float_t edcosy;
Float_t edcosz;

};

VertexInfoSR variables which begin with the letter e’ are the uncertainties from the
track fit.

The class FiducialInfoSR contains information about fiducial containment:

class FiducialInfoSR : public TObject
{

Float_t dr;

Float_t dz;

Float_t trace;

Float_t tracez;

Int_t nplane; // number of planes extrapolated to beg/end hit planes
Int_t nplaneu; // number of planes extrapolated to beg/end hit planes
Int_t nplanev; // number of planes extrapolated to beg/end hit planes

s

The member variables {\tt dr} is the minimum transverse distance to the
detector edge (a positive value indicates containment within the detector);
{\tt dz} is the minimum longitudinal distance to the detector edge (note
that the validity of this variable depends on Plex and UgliGeometry knowing
where the active detector ends).

The two variables {\tt trace} and {\tt tracez} represent the path length
(in meters) between the track vertex or end and the detector edge. If

a magnetic track fitting package has been included in the reconstruction,
these represent the swum values in the magnetic field.

There are some cases in which the tracker does not pick up all hits along
the track, for example when some planes are not properly demuxed. By
analyzing the longitudinal energy distribution one may make a guess as to
where the track end points actually are. Some tracking packages will
attempt to swim or project the track from its two points where it stopped
tracking to the track ends based on longitudinal energy distributions.
The number of planes over which a projection is performed is stored

in {\tt nplane}, and in {\tt nplaneu} and {\tt nplanev} for the u and

15

v views separately.

There are

3 member objects of TrackSRTTree of class FiducialInfoSR: {\tt fidvtx},

{\tt fidend}, and {\tt fidall}. The first two represent containment
information at the vertex and end positions of the track. The last,

{\tt fidall}, contains information about the distance of closest approach

over all 3D points on the track, with the transverse and longitudinal
information calculated independently. So, for example, given a track

which enters the far detector through the first plane at the coil hole,

bends out and grazes the transverse edge of the detector, and then bends

back in and stops near the coil hole, {\tt fidall.dz} and {\tt fidall.dr} would
both be 0, while amongst {\tt fidvtx.dz}, {\tt fidvtx.dr}, {\tt fidend.dz}, and
{\tt fidend.dr} only the first would be O.

The member variable {\tt time} of class TrackTimeInfoSR holds timing
information for a particular track:

\begin{verbatim}
class TrackTimeInfoSR : public TObject
{

UShort_t ndigit;

Float_t chi2;

Float_t u0;

Float_t ul;

Float_t vO;

Float_t vi;

Float_t cdtds; // 1/beta

Float_t dtds;

Float_t tO;

Float_t du; // difference between timing based position and spatial position
Float_t dv; // difference between timing based position and spatial position

};

The variable ndigit represents the number of digitizations used in determining the
track direction from timing. Not all digitizations are necessarily used, as some may
digit times may be outliers, or some digits may not represent the earliest time of a
phototube (only the time of the first signal above threshold of a multianode phototube
is recorded, at least for the far detector). The variable chi2 represents the x? of a
fit done in the track direction determination. The four variables u0, ul, vO, and v1
hold the mean values of the fully calibrated and propagation delay corrected times

16

for the separate plane views and separate strip ends (in the case of double ended read
out). The velocity of the track is measured by comparing the corrected times to the
travel distance; the absolute value of the inverse of the track velocity (normalized to
the speed of light) is then calculated and stored in cdtds. From the time fit which
determines 1/, we have the unnormalized slope dtds and the offset t0.

For planes in the far detector which have digits at both ends, the spatial position along
the scintillator strip is calculated based on the timing difference; this is compared to
the actual position based on strip locations in the opposite view, the difference (in
meters) is then stored in du and dv.

The total path length of the track in the detector is given by ds, and the amount of
material that the track traversed is given by range (in g/cm?). The momentum of the
track from range is calculated and stored in the range variable in momentum of class
MomentumInfoSR. Note that this value for the momentum from range is calculated
in the same way regardless of whether or not a track stops in the detector. If magnetic
track fitting has been done, the momentum from curvature in the magnetic field as
well as the uncertainty from the fit are available through the variables momentum.qp
and momentum.eqp.

The total amount of time spent in the tracking package which produced the tracks in
this tree is calculated and stored in cputime.

Finally, additional information from the track fitting is stored in the class
FitTrackInfoSR:

class FitTrackInfoSR : public TObject
{

Bool_t pass;

Float_t chi2;

Int_t ndof;

Int_t niterate;

Int_t nswimfail;

Float_t cputime; // execution time in seconds

Note that some of these variables are currently defined only for the
CandFitTrackSR package.
\subsection{ShowerSRTTree}

Reconstructed shower information is contained in the class
ShowerSRTTree, whose structure is

17

\begin{verbatim}
class ShowerSRTTree : public TObject
{

UShort_t index;
Int_t ndigit;
Int_t nstrip;
Int_t *stp; //[nstrip]
DigitStripPulseHeightSR ph;
PlaneInfoSR plane;
VertexInfoSR vtx;

s

Currently this class is not as developed as TrackSRTTree. All of the member
variables of ShowerSR1Tree are also found in TrackSRTTree, and will therefore not
be described here.

2.8 EventSRTTree

Reconstructed showers and tracks are associated together based on proximity in space
as well as time to form candidate events. In general a reconstructed candidate event
may contain any number of tracks and showers (by construction an event will contain
at least one track or shower). Much of the information that users would want about
reconstructed events are actually contained in the tracks and showers that make up
the events, and so perhaps the most useful information contained in EventSRT Tree
are indices over reconstructed tracks and showers.

The TObjArray *evt is an array of reconstructed events of class EventSRT Tree:

class EventSRTTree : public TObject
{

UShort_t index;

Int_t ndigit;

Int_t nstrip;

Int_t *stp; //[nstrip]
Int_t ntrack;

Int_t *trk; //[ntrack];
Int_t nshower;

Int_t x*shw; //[nshower];
DigitStripPulseHeightSR ph;

18

PlaneInfoSR plane;

VertexInfoSR vtx;

VertexInfoSR end;
+s;

The index *stp is an index over the StripSRTTree array *stp in the top level class
TTreeSR. Note that an event may contain strips which are not in any track or shower
constituting the event. Also, the index evt[i].stp[] does not double count strips,
whereas it is possible for either index evt [i].trk[].stp[] or evt[i].shw[].stp[]
to count the same strip twice (if, for example, an event contains two tracks which
share the same strip).

The indices *trk and *shw work in the same way as the index *stp. For example, to
draw the momentum from range for all tracks which belong to the first reconstructed
event for snarl i:

reco->Draw("trk[evt [0] .trk] .momentum.range","evthdr.snarl==i");

2.9 MCTruthSR

Summary truth information for monte carlo events are stored in the MCTruthSR
class which has the branch name mc:

class MCTruthSR : public TObject
{

Float_t vtxx;
Float_t vtxy;
Float_t vtxz;

Int_t inu;

Int_t inunoosc;
Int_t itg;

Int_t iboson;
Int_t iresonance;
Int_t iaction;
Float_t a;
Float_t z;
Float_t sigma;
Float_t p4neul4];
Float_t p4neunoosc[4];

19

Float_t p4tgtl[4];
Float_t p4shw[4];
Float_t p4mul[4];
Float_t p4mu2[4];
Float_t p4ell[4];
Float_t p4el2[4];
Float_t p4taul4];
Float_t x;
Float_t y;
Float_t q2;
Float_t w2;
Float_t emfrac;

Currently these are filled in only for the first NeuVtx and NeuKin objects (from the
REROOT Classes package). These variables are taken straight from those classes, so
interested parties can find the definition in these two classes.

2.10 FLSDigitSR

Digit truth information for monte carlo events can be found in the flsdgt branch
which is of the class FLSDigitSR:

class FLSDigitSR : public TObject
{

Int_t Plane;

Int_t Strip;
Float_t TPos;
Float_t RawA;
Float_t RawB;
Float_t CorrA;
Float_t CorrB;
Float_t CorrSum;
Float_t TDCA;
Float_t TDCB;

Int_t TubePixelA;
Int_t TubePixelB;
Float_t SignalPEA;
Float_t SignalPEB;
Float_t InitialTDCA;
Float_t InitialTDCB;

20

Float_t SumETrue;
Float_t AveDistTrueA;
Float_t AveDistTrueB;
Int_t HitBits;

These variables are lifted directly from the FLSDigit class in REROOT _Classes.

Note that the default behavior is to not write out this branch. Users who wish
to have this branch written out should set the parameter WriteFLSDigit to 1 in
EventSRListModule.

References

[1] NuMI-NOTE-COMP-916 A Description of the MINOS Reconstruction Frame-
work

21

