Eksperyment MINOS Nowe dane dotyczace oscylacji neutrin i nie tylko

Katarzyna Grzelak

Seminarium Neutrina w laboratorium i w kosmosie 14.12.2007

The 16 1 at 1

Wprowadzenie

- 2 Oscylacje neutrin akceleratorowych w MINOS'ie
- 3 Wysokoenergetyczne miony z promieniowania kosmicznego
- 4 Neutrina z wiązki NuMI w MiniBooNE

・ 何 ト ・ ヨ ト ・ ヨ

Eksperyment MINOS

OFERMILAS #98-1321D

- Drugi w historii i jedyny obecnie zbierający dane eksperyment z długą bazą
- Bliski Detektor (ND) (1kt) w ośrodku Fermilab pod Chicago, 100m pod powierzchnią ziemi
- Daleki Detektor (FD) (5.4 kt) znajduje się 735km dalej w kopalni Soudan, w Minnesocie, 710m pod powierzchnią ziemi (2070 m.w.e.)
- Czas przelotu neutrina ~ 2.5ms

- Weryfikacja hipotezy oscylacji $\nu_{\mu} \rightarrow \nu_{\tau}$ i precyzyjny pomiar (<10%) parametrów modelu neutrin Δm_{23}^2 and $\sin^2 2\theta_{23}$
- Poszukiwania jeszcze nie zaobserwowanych przy tej skali mas, oscylacji $\nu_{\mu} \rightarrow \nu_{e}$ (poszukiwanie θ_{13})
- Poszukiwanie/wykluczenie egzotycznych hipotez: sterylne neutrina,rozpad neutrina
- Oscylacje neutrin atmosferycznych
- Badanie mionów z promieniowania kosmicznego

イロト イポト イヨト イヨト

Co bada eksperyment MINOS ?

Neutrina akceleratorowe

- Pierwsze oddziaływanie w dalekim detektorze 7 marca 2005
- Pierwsze opublikowane wyniki (zanikanie ν_{μ} : w oparciu o 1.27 × 10²⁰pot (Run I) (215 oddziaływań ν_{μ})
- Przeanalizowano 2.5×10^{20} pot (563 oddziaływań ν_{μ})
- Do chwili obecnej zebrano około 3.25 × 10²⁰ pot (Run II)
- Prace nad analizą $\nu_{\mu} \rightarrow \nu_{e}$, NC

< ロト < 同ト < ヨト < ヨト

Co bada eksperyment MINOS ?

Neutrina atmosferyczne

- Dane zbierane od lipca 2003
- Opublikowane wyniki:
 - oddziaływania z wierzchołkiem wewnątrz detektora, rozdzielone ν_{μ} i $\overline{\nu_{\mu}}$, po selekcji ~ 0.25 oddziaływania na dzień
 - miony z oddziaływań neutrin (poruszające się ku powierzchni ziemi i poziome), rozdzielone ν_{μ} i $\overline{\nu_{\mu}}$, po selekcji ~ 0.15 oddziaływania na dzień
 - Prace nad połączeniem obu analiz

イロト イポト イヨト イヨ

Miony z promieniowania kosmicznego

- pomiar N_{μ^+}/N_{μ^-}
- daleki detektor (FD): rozróżnianie ładunku mionu dla p< 250 GeV/c, częstość rejestracji mionów ~ 0.25Hz
- bliski detektor (ND): miony o średniej energii 8 GeV, częstość rejestracji mionów \sim 10 Hz

・ 同 ト ・ ヨ ト ・ ヨ ト

MINOS: BLISKI I DALEKI DETEKTOR

Bliski i Daleki Detektor eksperymentu MINOS mają tak bardzo jak to możliwe podobną budowę:

- naprzemiennie: stalowe płyty (2.54 cm) i paski scyntylatora (1cm)
- paski w co drugiej płaszczyźnie są do siebie prostopadłe

MINOS: BLISKI I DALEKI DETEKTOR

MINOS: BLISKI I DALEKI DETEKTOR

- Bliski Detektor: 1kt, 282 płaszczyzny, 3.8m \times 4.8m \times 15m 100m pod powierzchnią ziemi
- $\bullet\,$ Daleki Detektor: 5.4kt, 484 płaszczyzny , 8m \times 8m \times 30m 710m pod powierzchnią ziemi
- B ~ 1.3 T w obu detektorach

OSCYLACJE NEUTRIN AKCELERATOROWYCH w MINOS'ie

K.Grzelak (UW ZCiOF)

Seminarium Neutrinowe 11 / 58

• obserwacje znikania neutrin mionowych

$${\it P}(
u_{\mu}
ightarrow
u_{\mu}) \simeq 1 - \sin^2 2 heta_{23} \sin^2 rac{1.27 \Delta m_{atm}^2 L}{E_{
u}}$$

Jednostki: $\Delta m^2 [eV^2]$ $E_{\nu} [GeV]$ L[km]

Maksimum oscylacji dla

$$\frac{1.27\Delta m_{atm}^2 L}{E_{\nu}} = \frac{\pi}{2}$$

POŁOŻENIE DETEKTORÓW

- Daleki Detektor (ND) → poszukiwanie oscylacji
- Bliski Detektor (FD) → widmo energii niezakłócone przez oscylacje

伺下 イヨト イヨ

PRZYKŁAD ANALIZY ZNIKANIA u_{μ}

4 10 10 14

 Protony o energii 120 GeV z akceleratora Main Injector w Fermilabie

イロト イポト イヨト イヨト

WIĄZKA PIERWOTNA - PROTONY LICZBA DOSTARCZONYCH PROTONÓW

イロト イポト イヨト イヨト

STRUKTURA WIĄZKI PIERWOTNEJ WIDZIANA W ND i FD

- Pierwotna wiązka protonów: wysyłana w 5-6 paczkach, w czasie 10 μs
- 2.4×10^{13} protonów/puls co 2.2s

Bliski Detektor

Daleki Detektor

K.Grzelak (UW ZCiOF)

WIĄZKA WTÓRNA - NEUTRINA

TYPY ODDZIAŁYWAŃ NEUTRIN w MINOS'ie

- $\nu_{\mu} N \rightarrow \mu X$
- Sygnaturą oddziaływania CC ν_μ jest obecność długiego toru mionu

•
$$E_{
u} = E_{shower} + E_{\mu}$$

- Rozdzielczość energetyczna $55\%\sqrt[6]{E}$
- Dokładność pomiaru pędu mionu (6% z zasięgu, 11% z krzywizny)

< ロ ト < 同 ト < 三 ト < 三 ト

TOPOLOGIE PRZYPADKÓW Z WIĄZKI NuMI

Monte Carlo, Daleki Detektor

REKONSTRUKCJA w MINOS'ie

K.Grzelak (UW ZCiOF)

REKONSTRUKCJA w MINOS'ie

K.Grzelak (UW ZCiOF)

TYPOWE ODDZIAŁYWANIA - DANE

Bliski Detektor

Kilka przypadków rejestrowanych w czasie jednego pulsu wiązki. Odróżniane dzięki informacji czasowej i przestrzennej

Częstość oddziaływań w FD znacznie niższa ($\sim 10^{-}6 \times$ częstość w ND)

- Zabezpieczenie się przed nieumyślnym naginaniem wyników do oczekiwanego
- Wszystkie dane z Bliskiego Detektora są dostępne
- Część danych z Dalekiego Detektora ukryta (zgodnie z nieznaną funkcją długości przypadku i energii zdeponowanej w detektorze)
- Przed otwarciem *puszki* wszystkie procedury dotyczące analizy danych muszą być zamrożone
- Po otwarciu puszki dla pierwszej analizy, część danych z FD na nowo ukryta przy użyciu nowej funkcji

< ロト < 同ト < ヨト < ヨト

WIDMA ENERGII W BLISKIM DETEKTORZE

- Dane były zbierane przy 7 różnych konfiguracjach wiązki (różne pozycje tarczy i rórne prądy w rogach magnetycznych)
- Różnica pomiędzy MC a danymi zmienia się dla różnych konfiguracji wiązki ⇒ to sugeruje że źródłem rozbieżności są niedoskonałości w modelowaniu wiązki, a nie nieznajomości przekrojów czynnych

SELEKCJA PRZYPADKÓW CC u_{μ}

- Co najmniej jeden dobrze zrekonstruowany tor (kandydat na mion)
- Wierzchołek oddziaływania w wiarygodnym obszarze detektora (fiducial volume):
 - ND: 1m < z < 5m, R < 1m od środka wiązki
 - FD: *z* > 20cm od pierwszej płaszczyzny, *z* > 2m od ostatniej płaszczyzny , *R* < 3.7m od środka detektora

- 3 Miony z ujemnym ładunkiem (wybór u_{μ})
- Cięcie na parametrze PID (Particle IDentification), używanym do selekcji oddziaływań NC i CC

< ロト < 同ト < ヨト < ヨト

Bliski Detektor: porównanie danych i MC

Wielkości które różnicują oddziaływania CC ν_{μ} i NC

イロト イポト イヨト イヨト

K.Grzelak (UW ZCiOF)

ODRÓŻNIANIE ODDZIAŁYWAŃ CC ν_{μ} i NC

Cięcie na CC ν_{μ} : PID>0.85

・ 同 ト ・ ヨ ト ・ ヨ

SELEKCJA ODDZIAŁYWAŃ Z WIĄZKI W FD

Oddziaływania w Dalekim Detektorze są selekcjonowane na podstawie czasu ich rejestracji i topologii :

- Czas rejestracji oddziaływań musi być w koincydencji z czasem wiązki NuMI (w 50 μs oknie)
- Kierunek neutrin musi być zgodny z osią wiązki (kąt toru względem osi wiązki < 50°)

Oczekiwane tło z mionów z promieniowania kosmicznego: < 0.5 przypadków MINOS PRELIMINARY

$\mathsf{EKSTRAPOLACJA}\;\mathsf{ND}\to\mathsf{FD}$

- Dane z Bliskiego Detektora są używane do przewidywania rozkładów energii w Dalekim Detektorze
- Niepewności związane z modelowaniem wiązki i przekrojami czynnymi, wspólne dla ND i FD, istotnie się skracają

 ND widzi wiązkę ν jako źródło rozciągłe, FD - jako punktowe
 Funkcja przejścia wiąże ze

sobą prawdziwą energię ν w ND z prawdziwą energią w FD

Metoda **BEAM MATRIX**

э

< □ > < □ > < □ > < □ > < □ >

Kolejne kroki w metodzie BEAM MATRIX

Błędy systematyczne na Δm_{23}^2 and sin² 2 θ_{23}

- Duże niepewności związane z modelowaniem wiązki i z przekrojami czynnymi, dzięki ekstrapolacji w większości się kasują
- Z pozostałych błędów systematycznych największe są te związane z domieszką przypadków NC i względną normalizacją (niedokładna znajomość wiarygodnego obszaru detektorów (*fiducial mass*), różnice we względnej efektywności rekonstrukcji w ND i FD)

Błąd systematyczny	Shift in	Shift in
	Δm_{23}^2	$\sin^2 2\theta_{23}$
Normalizacja ND/FD \pm 4 %	0.065	< 0.005
Absolutna, hadronowa skala energii \pm 10 %	0.075	< 0.005
Tło od NC \pm 50 %	0.010	0.008
Inne systematyczne niepewności	0.007	< 0.005
Całkowity błąd systematyczny	0.10	0.008

Cięcie	Liczba przypadków	
Tor w fiducial volume	847	
Dobra jakość danych	830	
Czas zgodny z czasem wiązki	828	
Dobra jakość wiązki	812	
Tor dobrej jakości	811	
Ładunek toru <=0	672	
Parametr PID >0.85	564	
Zrekonstruowana $E_{\nu} < 200 GeV$	563	

-2

イロト イヨト イヨト イヨト

Zaobserwowana vs oczekiwana liczba zdarzeń

Próbka danych	FD	Przewidywanie	Dane/Przewidywanie
	Dane	(bez osc.)	(Beam Matrix)
$ u_{\mu} CC_{like} $	563	738 ± 30	0.76 (4.4 σ)
$\nu_{\mu} CC_{like}$ (< 10 GeV)	310	496 ± 20	0.62 (6.2 σ)
$ u_{\mu} CC_{like} \ (< 5 \ { m GeV}) $	198	350 ± 14	0.57 (6.5 <i>σ</i>)

э

< 回 ト < 三 ト < 三

Widmo energii w FD i krzywa oscylacyjna

Parametry oscylacji z najlepszego dopasowania:

•
$$\Delta m_{23}^2 = 2.38^{+0.20}_{-0.16} \times 10^{-3} eV^2$$

•
$$\sin^2 2\theta_{23} = 1.00_{-0.08}$$

Dozwolony obszar

K.Grzelak (UW ZCiOF)

- Dalsza poprawa dokładności pomiaru Δm^2_{23} and $\sin^2 2\theta_{23}$
- Potencjał do zaobserwowania przejścia $\nu_{\mu} \rightarrow \nu_{e}$ albo poprawa limitu na θ_{13} o czynnik 2-3
- Pomiary NC ($\nu_{\mu} \rightarrow \nu_{s}$, pojawianie się τ) będą możliwe dla większej liczby danych

イロト イポト イヨト イヨト

WYSOKOENERGETYCZNE MIONY Z PROMIENIOWANIA KOSMICZNEGO

K.Grzelak (UW ZCiOF)

Seminarium Neutrinowe 39 / 58

4 10 10 14

- Pierwotne promieniowanie kosmiczne: w większości dodatnio naładowane
- Pierwotne promieniowanie kosmiczne ma dodatni ładunek \Rightarrow produkowanych jest więcej kaonów i pionów dodatnio naładowanych niż ujemnie \Rightarrow jest więcej μ^+ niż μ^-
- Celem analizy jest zmierzenie stosunku $R = N_{\mu^+}/N_{\mu^-}$ dla wysokoenergetycznych mionów
- Pomiar istotny dla modelowania oddziaływań promieni kosmicznych w atmosferze, a także dla obliczeń strumienia neutrin atmosferycznych i testowania oczekiwanego stosunku ν/ν

< ロト < 同ト < ヨト < ヨト -

Podsumowanie selekcji

	\mathbf{DF}^{a}	\mathbf{DR}^b
# events before cuts	$N=29.0 \times 10^{6}$	$N=8.9\times10^{6}$
cut	Fraction Remaining	
No Cuts	1.0	1.0
Pre-Analysis Cuts:		
1. no reconstruction	0.790	0.832
2. multiples	0.733	0.776
3. coil status	0.730	0.772
Analysis Cuts:		
1. 20 plane cut	0.554	0.585
2. 2m track length cut	0.551	0.582
3. fiducial cut	0.534	0.565
4. fit quality cut: $\chi^2_{fitter}/ndf < 1.5$	0.427	0.452
Charge-sign quality cuts		
1. $(q/p)/\sigma_{q/p} \ge 2.2$	0.141	0.147
2a. <i>MIC</i> cut	0.048	0.050
2b. BdL cut	0.033	0.031

^{*a*} DF = cosmic data set, forward field

^b DR = cosmic data set, reverse field

э

イロト イポト イヨト イヨト

$\overline{R} = N_{\mu}^{+}/N_{\mu}^{-}$ pod powierzchnią Ziemi

Wyniki dla dwóch kierunków pola magnetycznego

Z prezentacji B.Rebel'a

K.Grzelak (UW ZCiOF)

Seminarium Neutrinowe 43

43 / 58

$R=N_{\mu}^{+}/N_{\mu}^{-}$ na powierzchni Ziemi

< 17 ▶

- MINOS: R = 1.371 ± 0.003(stat)+0.012-0.010(sys) (energie 1 - 7 TeV)
- L3+C: R=1.285 ± 0.003(stat) ± 0.019(sys) (energie < 300 GeV)
- Stosunek liczby mionów dodatnich do ujemnych powinien rosnąć w miarę jak rośnie liczna kaonów (stosunek K^+/K^- jest większy niż π^+/π^-)

イロト イポト イヨト イヨト

Porównanie z innymi danymi

3

イロト イポト イヨト イヨ

• MINOS obserwuje wzrost stosunku $R = N_{\mu^+}/N_{\mu^-}$ dla mionów z promieniowania kosmicznego, dla energii na powierzchni Ziemi 1-7 TeV energii

不同 とうきょうき

NEUTRINA z WIĄZKI NuMI w MiniBooNE

K.Grzelak (UW ZCiOF)

Seminarium Neutrinowe 48 / 58

A The local

- Eksperyment MiniBooNE znajduje się w Fermilabie, niedaleko Bliskiego Detektora MINOS'a
- Korzysta z innej wiązki neutrin niż MINOS (Booster Neutrino Beam), ale ... rejestruje neutrina z wiązki NuMI !
- Pierwszy eksperyment off-axis → ustawiony poza osią wiązki, pod kątem 110 mrad (6.3°)

< ロト < 同ト < ヨト < ヨト

MOTYWACJA

- MiniBooNE zbudowany w celu sprawdzenia wyniku LSND (oscylacje $\nu_{\mu} \rightarrow \nu_{e}$ dla $\Delta m^{2} > 2 \times 10^{-2} eV^{2}$)
- Pierwsze wyniki (04.2007) wykluczają oscylacje typu LSND, ale niewyjaśniona nadwyżka przypadków dla niskich energii

- Obserwacja i analiza wiązki off-axis
- Pomiar składowych wiązki pochodzących od rozpadów π i K
- Źródło wzbogacone w ν_e do badania rekonstrukcji i algorytmów do identyfikacji oddziaływań w MiniBooNE
- Analiza komplementarna do oscylacyjnej analizy w MiniBooNE

Neutrina z NuMI w MiniBooNE

Skład wiązki NuMI w detektorze MiniBooNE: 81% ν_{μ} , 5% ν_{e} , 13% $\overline{\nu_{\mu}}$, 1% $\overline{\nu_{e}}$,

- Detektor schowany w 3 metrowym nasypie ziemnym
- Sfera o średnicy 12m
- Wypełniony 800 t czystego oleju mineralnego (CH₂) (*Fiducial volume*: 450 t)
- Sfera jest podzielona na dwa, koncentryczne, optycznie rozdzielone obszary (main i veto)
- główny obszar jest wyposażony w 1280 fotopowielaczy, obszar veto w 240 fotopowielaczy

< ロト < 同ト < ヨト < ヨト

Identyfikacja cząstek

Oddziaływania neutrin rozróżniane dzięki promieniowaniu Czerenkowa

Selekcja oddziaływań z wiązki NuMI

 Czas rejestracji oddziaływań musi być w koincydencji z czasem wiązki NuMI (w 20 μs oknie)

ODDZIAŁYWANIA ν_{μ} CCQE

$$\frac{1}{2} = \frac{1}{2} \frac{1}{M_p - E_l + \sqrt{(E_l^2 - m_l^2)} \cos \theta}$$

< 🗇 🕨

ODDZIAŁYWANIA ν_e CCQE

Wyselekcjonowano 783 przypadków (MC przewiduje 662)

K.Grzelak (UW ZCiOF)

- Analiza oddziaływań neutrin z wiązki NuMI w detektorze MiniBooNE dla 1.42 × 10²⁰ pot
- W ramach (dużych) błędów systematycznych, zgodność pomiędzy danymi a MC dla kwazi-elastycznych oddziaływań CC ν_μ i CC ν_e jest dobra
- W przyszłości prace nad zmniejszeniem efektów systematycznych i nad połączeniem tej analizy z analizą oddziaływań z wiązki MiniBooNE

イロト イポト イヨト イヨト