Sterile neutrinos. Who cares ?

Katarzyna Grzelak

High Energy Physics Seminar 18.05.2018

Sterile neutrino:

- name introduced by B.Pontecorvo in 1967
- neutral lepton that does not take part in the weak interactions
- can mix with ν_{e}, ν_{μ} or ν_{τ}

The Nobel Prize in Physics 2015 was awarded to Takaaki Kajita and Arthur B. McDonald "for the discovery of neutrino oscillations, which shows that neutrinos have mass".

What is the neutrino mass generation mechanism ?

Simplest possibility

- Neutrinos are Dirac particles
- mass generation with the same Higgs mechanism as for other leptons and quarks
- new right-handed neutrino field (fields)
- Higgs-neutrino Yukawa couplings much smaller than couplings of charged leptons with the Higgs ⇒ no explanation of small masses of *ν*

- If there are no ν_R , the only possible mass term in the Lagrangian is the Majorana mass term
- If there are ν_R, there can be both Majorana and Dirac mass terms

There are neither theoretical limits on mass nor number of sterile neutrinos.

- $m_s = O(eV)$ experimental hints
- $m_s = O(\text{keV}) \text{Dark Matter candidate}$

Θ...

Considerable interest in search for eV-scale sterile neutrinos

- Results from MINOS, MINOS+, NOvA, IceCube, Daya Bay, NEOS (Korea), DANSS (Russia), STEREO (ILL-Grenoble)
- Dedicated future experiments: SBN (Fermilab), PROSPECT (Oak Ridge), nuPRISM (J-PARC), JSNS (J-PARC), KPipe (J-PARC), Neutrino-4 (Russia), SoLid (Belgium), CeSOX (GranSasso), BEST (Baksan), IsoDAR@KamLAND ...

Three experimental anomalies

Hints for eV-scale neutrinos

LSND anomaly- excess of $\overline{\nu}_e$ in a beam of $\overline{\nu}_{\mu}$

LSND anomaly- checked by MiniBooNE

MiniBooNE constructed to confirm or refute LSND result. Different E and L, but similar L/E ratio.

< ロ ト < 同 ト < 三 ト < 三 ト

Reactor anomaly

Deficit of $\overline{\nu}_e$ flux at short distances from reactors

Deficit of reactor neutrino flux could be explained by oscillations with $\Delta m_{\text{reactor}}^2 \gtrsim 0.2 \text{ eV}^2$.

Reactor anomaly

Commercial reactors: four main isotopes participate in fissions: ²³⁵U,²³⁸U, ²³⁹Pu, ²⁴¹Pu.

Fission products \rightarrow beta decays \rightarrow production of $\overline{\nu}_e$.

Hints for eV-scale neutrinos

Reactor anomaly Two methods to predict the reactor neutrino flux:

Summation method

- Summing spectra of all decay branches of all fission isotopes
- Based on nuclear database
- Larger uncertainty (10-20%)

Conversion method

- Uses measured electron spectra associated with ²³⁵U,²³⁸U, ²³⁹Pu, ²⁴¹Pu.
- $\overline{\nu_e}$ spectra deduced from electron spectra
- Flux recalculated with this method \rightarrow reactor anomaly

< ロト < 同ト < ヨト < ヨト

Reactor anomaly

Fuel composition (²³⁵U,²³⁸U, ²³⁹Pu, ²⁴¹Pu) changes during fuel cycle

A D > A A P >

Daya Bay result – change of $\overline{\nu_e}$ flux with the fuel evolution. (Is the ²³⁵U primary contributor to the reactor anomaly ?) Phys.Rev.Lett.118, 251801 (2017) , Phys.Rev.Lett.120,022503 (2018)

Gallium anomaly

- GALLEX, SAGE solar neutrino experiments; main reaction: $\nu_e + {}^{71}Ga \rightarrow {}^{71}Ge + e^-$
- Tests with radioactive sources ⁵¹Cr and ³⁷Ar:

 $e^- + {}^{37}Ar \rightarrow {}^{37}Cl + \nu_{e}$

Deficit of ν_e interactions could be explained by oscillations with $\Delta m_{Ga}^2 \gtrsim 1 \text{ eV}^2$.

K.Grzelak ()

Experiment	Source	Channel	Significance
LSND	μ^+ decay at rest	$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$	3.8 σ
MiniBooNE	accelerator	$\nu_{\mu} \rightarrow \nu_{e}$	3.4σ
MiniBooNE	accelerator	$\overline{ u}_{\mu} \to \overline{ u}_{e}$	2.8 σ
Reactors	beta-decays	$\overline{\nu}_e$ disapp.	3.0σ
GALLEX,SAGE	radioactive source,	ν_e disapp.	2.9 σ
	electron capture		

All anomalies could be explained by the existence of eV-scale neutrino

Sterile neutrinos can modify standard neutrino oscillation pattern.

Probability of $\nu_{\alpha} \rightarrow \nu_{\alpha}$ disappearance in model with two neutrinos

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$$

Neutrino oscillation matrix in the three-flavour model

$$ert
u_j
angle = \sum_{lpha = \mathbf{e}, \mu, au} oldsymbol{U}_{lpha j} ert
u_lpha
angle.
onumbol{U}$$
 $\mathrm{U} = \left(egin{array}{ccc} oldsymbol{U}_{\mathrm{e}1} & oldsymbol{U}_{\mathrm{e}2} & oldsymbol{U}_{\mathrm{e}3} \ oldsymbol{U}_{\mu 1} & oldsymbol{U}_{\mu 2} & oldsymbol{U}_{\mu 3} \ oldsymbol{U}_{ au 1} & oldsymbol{U}_{ au 2} & oldsymbol{U}_{ au 3} \end{array}
ight).$

 $|U_{\alpha j}|^2$, describe the neutrino flavour- α fraction of ν_j

Extended oscillation matrix:

$$\mathbf{U} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} & \dots \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} & \dots \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} & \dots \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$

< = > < = > < = >

Active-sterile mixing must be small:

$$|U_{\alpha i}|^2 \ll 1$$
 $(\alpha = \mathbf{e}, \mu, \tau; i = 4, \dots, N).$

Mixing matrix U can be parameterized by the mixing angles θ_{34} , θ_{24} , θ_{14} , phases δ_2 and δ_3 in addition to θ_{23} , θ_{13} and θ_{12} and δ_1 ,

$$\begin{split} |U_{e4}|^2 &= \sin^2 \theta_{14}, \\ |U_{\mu4}|^2 &= \cos^2 \theta_{14} \sin^2 \theta_{24}, \\ |U_{\tau4}|^2 &= \cos^2 \theta_{14} \cos^2 \theta_{24} \sin^2 \theta_{34}. \end{split}$$

For small angles $|U_{e4}|^2 = \sin^2 \theta_{14}$, $|U_{\mu4}|^2 \simeq \sin^2 \theta_{24}$ and $|U_{\tau4}|^2 = \sin^2 \theta_{34}$.

type of measurement	sensitive to	
ν_e or $\overline{\nu}_e$ disappearance	$ U_{ei} $	
$ u_{\mu} \text{ or } \overline{ u}_{\mu} \text{ disappearance}$	$ U_{\mu i} $	
$ u_{\alpha} \rightarrow \nu_{\beta} \text{ appearance}$	$ U_{\alpha i} $ and $ U_{\beta i} $	

Most results (including all anomalies !) related to $|U_{e4}|$ or $|U_{\mu4}|$. The weakest constraints are on $|U_{\tau4}|$.

Constraints on the electron-sterile mixing

Sources of data:

- Gallium experiments
- reactors
- solar
- atmospheric

New results from reactor experiments NEOS and DANSS. More to come.

Reactor experiments

$$\begin{split} P^{3\nu}_{(\overline{\nu_e} \to \overline{\nu_e})} &\simeq 1 - \cos^4 \theta \sin^2 2\theta_{12} \sin^2(\frac{1.27\Delta m_{21}^2 L}{E_{\nu}}) \\ &- \sin^2 2\theta_{13} (\cos^2 \theta_{12} \sin^2(\frac{1.27\Delta m_{31}^2 L}{E_{\nu}}) + \sin^2 \theta_{12} \sin^2(\frac{1.27\Delta m_{32}^2 L}{E_{\nu}})) \end{split}$$

Comparison of data with 3-flavour and 3+1 predictions

Currently $R = 0.943 \pm 0.008(exp) \pm 0.023(model)$

Very short baseline reactor experiments ! $\overline{\nu}_e$ detected with reaction $\overline{\nu}_e + p \rightarrow e^+ + n$

DANSS

- in Russia
- varied distance from the reactor core: 10.7 m-12.7 m.
- segmented plastic scintillator (volume 1 m³)
- \sim 5000 $\overline{\nu}_e$ per day
- ratio of prompt energy spectra at two positions

NEOS

- in Korea
- \sim 24 m from the reactor core
- Gd-doped liquid scintillator
- ullet ~ 2000 $\overline{
 u}_e$ per day
- prompt energy spectrum normalized to Daya Bay spectrum

- + E ►

NEOS and DANSS

Results independent on flux predictions.

Constraints on the muon-sterile mixing

MINOS and MINOS+ - sensitive to wide range of Δm_{41}^2 .

Sources of data:

- accelerator: MINOS, MINOS+, also CDHS
- atmospheric: IceCube, Deep Core, SuperKamiokande
- MiniBooNE disappearance data

Long-baseline accelerator experiments

Neutrino oscillation probabilities in the 3-flavour model

ND – MINOS+ Near Detector (1 km from the neutrino source) FD – MINOS+ Far Detector (735 km from the neutrino source)

Long-baseline accelerator experiments Monoenergetic beam, $\Delta m^2_{41} = 10 \text{ eV}^2$

Long-baseline accelerator experiments Non-monoenergetic beam, $\Delta m_{41}^2 = 10 \text{ eV}^2$

Long-baseline accelerator experiments Non-monoenergetic beam, $\Delta m_{41}^2 = 0.05 \text{ eV}^2$

Long-baseline accelerator experiments Non-monoenergetic beam, $\Delta m_{41}^2 = 0.5 \text{ eV}^2$

Long-baseline accelerator experiments Non-monoenergetic beam, $\Delta m_{41}^2 = 5 \text{ eV}^2$

Long-baseline accelerator experiments Non-monoenergetic beam, $\Delta m_{41}^2 = 100 \text{ eV}^2$

Oscillations can be present in both detectors

Two approaches. Three-flavour and 3+1 oscillations models fitted to:

- ratios of Far/Near energy spectra
- energy spectra in Near Detector and Far Detector (simultaneous fit)
- in both cases fit to CC (charged-current) ν_{μ} and NC (neutral current) samples

Far/Near analysis

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Two-detector simultaneous analysis

イロト イ団ト イヨト イヨト

Constraints on the tau-sterile mixing

< A

Not many sources of data. No beams of ν_{τ} . τ appearance experimentally challenging.

Possibilities to study tau-sterile mixing:

- via matter effects
- Neutral Current interactions
- ν_{τ} appearance

 u_{τ} appearance in MINOS+

Neutrino oscillation probabilities at short-distances in the 3+1 model

 ν_{τ} appearance in Near Detector not present in the three-flavour model !

$$egin{aligned} &\mathrm{P}_{
u_{\mu}
ightarrow
u_{ au}}(L,E)\simeq4|U_{\mu4}|^2|U_{ au4}|^2\sin^2\left(rac{\Delta m_{41}^2L}{4E}
ight)\ &=\sin^22 heta_{\mu au}\sin^2\left(rac{\Delta m_{41}^2L}{4E}
ight) \end{aligned}$$

$$egin{aligned} & \mathrm{P}_{
u_{\mu} o
u_{\mu}}(L,E) \simeq 1 - 4 |U_{\mu4}|^2 (1 - |U_{\mu4}|^2) \sin^2\left(rac{\Delta m_{41}^2 L}{4E}
ight) \ &= \sin^2 2 heta_{\mu\mu} \sin^2\left(rac{\Delta m_{41}^2 L}{4E}
ight) \end{aligned}$$

ν_{τ} appearance in MINOS+

- Unique signature of sterile neutrinos in Near Detector
- Unlike in NOvA and T2K most of the energy spectrum above the threshold for τ production
- High statistics of collected events in Near Detector
- It is possible to select channel with smallest systematics
- Detector of low-granularity hardly reducible background

CC ν_{τ} , $\tau \rightarrow \mu$ selection

Main steps of the analysis

- Preselection 1 track with vertex in the fiducial volume
- Preselection 2 to remove neutral current (NC) events
- kNN, multivariate selection to reduce the dominant background from CCν_μ
- >99.5% of NC background is removed
- >92% of charged-current (CC) ν_{μ} background is removed
- Fit to energy spectrum in the Near Detector
- Grid of points in the $(\sin^2 2\theta_{\mu\tau}, \Delta m_{41}^2)$ plane
- Minimization of χ^2 with nuisance parameter $\sin^2 2\theta_{\mu\mu}$
- Profile likelihood method

< ロト < 同ト < ヨト < ヨト

MINOS+ ν_{τ} appearance – CC ν_{τ} , $\tau \rightarrow \mu$ selection

Variables used as inputs to kNN after preselection

イロト イポト イヨト イヨト

CC $\nu_{\tau}, \tau \rightarrow \mu$ selection

Numbers for 3 imes 10²⁰ POT Dominant background from CC ν_{μ}

-

э

MINOS+ ν_{τ} appearance – statistics only sensitivities

90% CL sensitivity contours Left: Constant (1.04 km) vs variable baseline. Right: Comparison of sensitivities for different baselines

Image: A matrix and a matrix

MINOS+ ν_{τ} appearance

Comparison of 90% CL MINOS+ sensitivities with 90% CL limits from CHORUS, NOMAD, OPERA i CDHS.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Recent global analyses of neutrino data

 Gariazzo2017 – S. Gariazzo, C. Giunti, M. Laveder, Y.F. Li, Updated global 3+1 analysis of short-baseline neutrino oscillations,

J. High Energy Phys 1705, 135 (2017)

 Dentler2018 – M. Dentler, A. Hernandez-Cabezudo, J. Kopp, P. Machado, M. Maltoni, I. Martinez-Soler, T. Schwetz, Updated global analysis of neutrino oscillations in the presence of eV-scale sterile neutrinos,

arXiv:1803.10661, 28 March, 2018

Dentler 2018

Reactor neutrino data (mainly DANSS and NEOS) – preference for sterile oscillations with $\Delta m_{41}^2 \sim 1.3 \, {\rm eV}^2$, $U_{e4} \sim 0.1$. Result independent from predicted neutrino fluxes.

Strong exclusion limits driven by MINOS and MINOS+ in the wide range of Δm_{41}^2

A D > A A P >

Dentler 2018

Constraints on tau-sterile and muon-sterile mixings

Dentler 2018

▲□▶▲圖▶▲圖▶▲圖▶ = 善 のへで

Constraints on the LSND result

Gariazzo 2017, strong tension between appearance and disapperance data

K.Grzelak ()

Constraints on the LSND result

Gariazzo 2017, in pragmatic scenario (low-energy MiniBooNE data removed) tension is reduced

K.Grzelak ()

Dentler 2018

Anomalies in $\overline{\nu}_{e}$ appearance(LSND) in strong tension with results from ν_{μ} disappearance. Explanation of LSND anomaly in model with one sterile neutrino is excluded at the 4.7 σ level.

A D > A A P >

Possible exclusion of LSND effect does not mean the hypothesis of sterile neutrinos is excluded.