
Proof: We have
W ′(z) = u− iv = qe−iχ

so |u| = q. So, Bernoulli (no g, no t) says

p/ρ+ 1
2q

2 = p0/ρ

where p0 is a constant background pressure which exists in the absence of the flow. Hence

p = p0 − 1
2ρq

2.

and the force on C is given by

F = −
∫

C

pn̂ ds =

∫

C

ρq2n̂ ds

since
∫

C p0n̂ ds =
∫

C ∇p0dxdy = 0 by the divergence theorem and the fact that p0 is a constant.

By definition, the flow velocity is everywhere parallel to the boundary C and letting χ(s) denote
the angle that C makes to the positive x-axis as a function of arclength gives

dx

ds
= cosχ,

dy

ds
= sinχ, ⇒ dz = dx+ idy = eiχds.

Also, by geometrical considerations n̂ = (ys,−xs) = (sinχ,− cosχ). So if we write F = (Fx, Fy)
in terms of its components and define a complex force F = Fx − iFy then the force from above
can be written out as

F = Fx − iFy = −
∫

C

p(sinχ+ i cosχ) ds = −i

∫

C

pe−iχ ds

= i12ρ

∫

C

(q2e−2iχ) eiχ ds

= i12ρ

∫

C

(qe−iχ)2 dz = i12ρ

∫

S

(W ′(z))2 dz

6.8 Method of Images: Flows next to cylinders

Theorem: Suppose f(z) is a complex potential in the absence of a cylinder with no singularities
in |z| < a. Then

W (z) = f(z) + f(a2/z) (45)

is the complex potential representing a flow in the presence of a cylinder on |z| = a.

This is called the Milne-Thompson circle theorem.

Proof: On |z| = a, zz = a2 and so a2/z = z. Hence

f(a2/z) = f(z) = f(z)
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Thus, on |z| = a, W (z) = f(z) + f(z) and ℑ{W} = ψ = 0. The streamline may be replaced by
rigid boundary and no new singularities have emerged in |z| > a.

E.g. 6.5: Choose f(z) = Uz (§6.2, uniform flow). Then (45) gives us

W (z) = Uz + U
a2

z

I.e. stream plus horizontal dipole of strength µ = −2πUa2.

Note: Exactly the flow found in §5.3.1 for flow past a cylinder.

Using Blasius, the complex force is

Fx − iFy =
1

2
iρ

∫

C

U2

(

1−
a2

z2

)

dz =
1

2
iρU2

∫

C

(

1− 2
a2

z2
+

a4

z4

)

dz = 0

since there are no simple poles inside C. We already had this result from §5.8 when U is constant.

6.8.1 Problem: Vortex outside a cylinder

Find the complex potential for a point vortex outside a cylinder and determine its motion.

In absence of cylinder, point vortex at z0 is f(z) =
−iΓ

2π
log(z − z0). With a cylinder, radius

a < |z0| (45) gives

W (z) = −
iΓ

2π
log(z − z0) +

iΓ

2π
log

(

a2

z
− z0

)

= −
iΓ

2π

{

log(z − z0)− log

(

1

z
(−z0)

(

z −
a2

z0

))}

= −
iΓ

2π

{

log(z − z0) + log(z)− log

(

z −
a2

z0

)

− log(−z0)

}

The 2nd and 3rd terms are images at the origin and an inverse point to z0 and the last term
is a constant and can be ignored, because constants do not affect the flow velocities which are
determined by derivatives.

(i) Motion of vortex

The velocity field at z = z0 is due to the image vortices, or

u− iv = W ′(z0)− f ′(z0) = −
iΓ

2π

{

1

z0
−

1

z0 − a2/z0

}

Better to work in polar coordinates, so let z0 = r0(t)eiθ0(t) track the position of the vortex whence

qe−iχ = −
iΓ

2π

{

1

r0eiθ0
−

r0e−iθ0

r20 − a2

}

=
iΓ

2π
e−iθ0

(

a2

r0(r20 − a2)

)

=
Γa2

2πr0(r20 − a2)
e−i(θ0−π/2).
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Thus, the speed of the point vortex is Γa2/2πr0(r20 − a2) and its direction is at right angles to its
position. Remembering the representation for velocity in polars:

u = ṙ0r̂+ r0θ̇0θ̂ = −
Γa2

2πr0(r20 − a2)
θ̂

(Mech 1) means
dr0
dt

= 0,
dθ0
dt

= −
Γa2

2πr20(r
2
0 − a2)

and the first equation integrates to r0(t) = r0(0), a constant (initial radial distance to the vortex).
The second integrates to

θ0(t) = θ0(0)−
Γa2t

2πr20(0)(r
2
0(0)− a2)

.

Thus, the vortex moves at constant angular velocity in a circle around the cylinder.

(ii) Force on cylinder

From the Blasius formula and our definition of W (z) we have

Fx − iFy = 1
2iρ

∫

C

(

−
iΓ

2π

)2( 1

z − z0
+

1

z
−

1

z − a2/z̄0

)2

dz

= −
iρΓ2

8π2

∫

|z|=a

(

1

(z − z0)2
+

1

z2
+

1

(z − a2/z̄0)2

+
2

z(z − z0)
−

2

(z − z0)(z − a2/z̄0)
−

2

z(z − a2/z̄0)

)

dz

We can use Cauchy’s Residue Theorem to evaluate the integral. The first 3 terms in the integral
are poles of order 2 and don’t contribute. Also, z0 is outside |z| = a but a2/z̄0 is inside |z| = a
and only simple poles inside will count. So we get

Fx − iFy = −
iρΓ2

8π2
(2πi)

(

2

−z0
−

2

(a2/z̄0 − z0)
−

2

a2/z̄0
−

2

−a2/z̄0

)

.

The last two terms cancel and the others combine as

Fx − iFy =
ρΓ2

2π

(

−
1

z0
−

z̄0
a2 − |z0|2

)

=
ρΓ2a2

2πz0(|z0|2 − a2)
.

Writing z0 = r0eiθ0 shows that the force is of magnitude

ρΓ2a2

2πr0(r20 − a2)

and is in the direction of θ0.

E.g. if z0 = b > a, a real number, then Fy = 0 and Fx > 0 and the cylinder feels a force towards
the vortex.
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