Proof: We have

$$
W^{\prime}(z)=u-i v=q \mathrm{e}^{-i \chi}
$$

so $|\mathbf{u}|=q$. So, Bernoulli (no g, no t) says

$$
p / \rho+\frac{1}{2} q^{2}=p_{0} / \rho
$$

where p_{0} is a constant background pressure which exists in the absence of the flow. Hence

$$
p=p_{0}-\frac{1}{2} \rho q^{2}
$$

and the force on C is given by

$$
\mathbf{F}=-\int_{C} p \hat{\mathbf{n}} \mathrm{~d} s=\int_{C} \rho q^{2} \hat{\mathbf{n}} \mathrm{~d} s
$$

since $\int_{C} p_{0} \hat{\mathbf{n}} \mathrm{~d} s=\int_{C} \nabla p_{0} d x d y=0$ by the divergence theorem and the fact that p_{0} is a constant.
By definition, the flow velocity is everywhere parallel to the boundary C and letting $\chi(s)$ denote the angle that C makes to the positive x-axis as a function of arclength gives

$$
\frac{d x}{d s}=\cos \chi, \quad \frac{d y}{d s}=\sin \chi, \quad \Rightarrow \quad d z=d x+i d y=\mathrm{e}^{i \chi} d s
$$

Also, by geometrical considerations $\hat{\mathbf{n}}=\left(y_{s},-x_{s}\right)=(\sin \chi,-\cos \chi)$. So if we write $\mathbf{F}=\left(F_{x}, F_{y}\right)$ in terms of its components and define a complex force $F=F_{x}-i F_{y}$ then the force from above can be written out as

$$
\begin{aligned}
F=F_{x}-i F_{y}=-\int_{C} p(\sin \chi+i \cos \chi) \mathrm{d} s & =-i \int_{C} p \mathrm{e}^{-i \chi} \mathrm{~d} s \\
& =i \frac{1}{2} \rho \int_{C}\left(q^{2} \mathrm{e}^{-2 i \chi}\right) \mathrm{e}^{i \chi} \mathrm{~d} s \\
& =i \frac{1}{2} \rho \int_{C}\left(q \mathrm{e}^{-i \chi}\right)^{2} \mathrm{~d} z=i \frac{1}{2} \rho \int_{S}\left(W^{\prime}(z)\right)^{2} \mathrm{~d} z
\end{aligned}
$$

6.8 Method of Images: Flows next to cylinders

Theorem: Suppose $f(z)$ is a complex potential in the absence of a cylinder with no singularities in $|z|<a$. Then

$$
\begin{equation*}
W(z)=f(z)+\bar{f}\left(a^{2} / z\right) \tag{45}
\end{equation*}
$$

is the complex potential representing a flow in the presence of a cylinder on $|z|=a$.
This is called the Milne-Thompson circle theorem.

Proof: On $|z|=a, z \bar{z}=a^{2}$ and so $a^{2} / z=\bar{z}$. Hence

$$
\bar{f}\left(a^{2} / z\right)=\bar{f}(\bar{z})=\overline{f(z)}
$$

Thus, on $|z|=a, W(z)=f(z)+\overline{f(z)}$ and $\Im\{W\}=\psi=0$. The streamline may be replaced by rigid boundary and no new singularities have emerged in $|z|>a$.
E.g. 6.5: Choose $f(z)=U z$ (§6.2, uniform flow). Then (45) gives us

$$
W(z)=U z+U \frac{a^{2}}{z}
$$

I.e. stream plus horizontal dipole of strength $\mu=-2 \pi U a^{2}$.

Note: Exactly the flow found in $\$ 5.3 .1$ for flow past a cylinder.
Using Blasius, the complex force is

$$
F_{x}-i F_{y}=\frac{1}{2} i \rho \int_{C} U^{2}\left(1-\frac{a^{2}}{z^{2}}\right) \mathrm{d} z=\frac{1}{2} i \rho U^{2} \int_{C}\left(1-2 \frac{a^{2}}{z^{2}}+\frac{a^{4}}{z^{4}}\right) d z=0
$$

since there are no simple poles inside C. We already had this result from $\S 5.8$ when U is constant.

6.8.1 Problem: Vortex outside a cylinder

Find the complex potential for a point vortex outside a cylinder and determine its motion.

In absence of cylinder, point vortex at z_{0} is $f(z)=\frac{-i \Gamma}{2 \pi} \log \left(z-z_{0}\right)$. With a cylinder, radius $a<\left|z_{0}\right|$ (45) gives

$$
\begin{aligned}
W(z) & =-\frac{i \Gamma}{2 \pi} \log \left(z-z_{0}\right)+\frac{i \Gamma}{2 \pi} \log \left(\frac{a^{2}}{z}-\overline{z_{0}}\right) \\
& =-\frac{i \Gamma}{2 \pi}\left\{\log \left(z-z_{0}\right)-\log \left(\frac{1}{z}\left(-\overline{z_{0}}\right)\left(z-\frac{a^{2}}{\overline{z_{0}}}\right)\right)\right\} \\
& =-\frac{i \Gamma}{2 \pi}\left\{\log \left(z-z_{0}\right)+\log (z)-\log \left(z-\frac{a^{2}}{\overline{z_{0}}}\right)-\log \left(-\overline{z_{0}}\right)\right\}
\end{aligned}
$$

The 2nd and 3rd terms are images at the origin and an inverse point to z_{0} and the last term is a constant and can be ignored, because constants do not affect the flow velocities which are determined by derivatives.

(i) Motion of vortex

The velocity field at $z=z_{0}$ is due to the image vortices, or

$$
u-i v=W^{\prime}\left(z_{0}\right)-f^{\prime}\left(z_{0}\right)=-\frac{i \Gamma}{2 \pi}\left\{\frac{1}{z_{0}}-\frac{1}{z_{0}-a^{2} / \overline{z_{0}}}\right\}
$$

Better to work in polar coordinates, so let $z_{0}=r_{0}(t) \mathrm{e}^{i \theta_{0}(t)}$ track the position of the vortex whence

$$
\begin{aligned}
q \mathrm{e}^{-i \chi}=-\frac{i \Gamma}{2 \pi}\left\{\frac{1}{r_{0} \mathrm{e}^{i \theta_{0}}}-\frac{r_{0} \mathrm{e}^{-i \theta_{0}}}{r_{0}^{2}-a^{2}}\right\} & =\frac{i \Gamma}{2 \pi} \mathrm{e}^{-i \theta_{0}}\left(\frac{a^{2}}{r_{0}\left(r_{0}^{2}-a^{2}\right)}\right) \\
& =\frac{\Gamma a^{2}}{2 \pi r_{0}\left(r_{0}^{2}-a^{2}\right)} \mathrm{e}^{-i\left(\theta_{0}-\pi / 2\right)}
\end{aligned}
$$

Thus, the speed of the point vortex is $\Gamma a^{2} / 2 \pi r_{0}\left(r_{0}^{2}-a^{2}\right)$ and its direction is at right angles to its position. Remembering the representation for velocity in polars:

$$
\mathbf{u}=\dot{r_{0}} \hat{\mathbf{r}}+r_{0} \dot{\theta_{0}} \hat{\boldsymbol{\theta}}=-\frac{\Gamma a^{2}}{2 \pi r_{0}\left(r_{0}^{2}-a^{2}\right)} \hat{\boldsymbol{\theta}}
$$

(Mech 1) means

$$
\frac{d r_{0}}{d t}=0, \quad \frac{d \theta_{0}}{d t}=-\frac{\Gamma a^{2}}{2 \pi r_{0}^{2}\left(r_{0}^{2}-a^{2}\right)}
$$

and the first equation integrates to $r_{0}(t)=r_{0}(0)$, a constant (initial radial distance to the vortex). The second integrates to

$$
\theta_{0}(t)=\theta_{0}(0)-\frac{\Gamma a^{2} t}{2 \pi r_{0}^{2}(0)\left(r_{0}^{2}(0)-a^{2}\right)}
$$

Thus, the vortex moves at constant angular velocity in a circle around the cylinder.

(ii) Force on cylinder

From the Blasius formula and our definition of $W(z)$ we have

$$
\begin{aligned}
F_{x}-i F_{y}= & \frac{1}{2} i \rho \int_{C}\left(-\frac{i \Gamma}{2 \pi}\right)^{2}\left(\frac{1}{z-z_{0}}+\frac{1}{z}-\frac{1}{z-a^{2} / \bar{z}_{0}}\right)^{2} d z \\
= & -\frac{i \rho \Gamma^{2}}{8 \pi^{2}} \int_{|z|=a}\left(\frac{1}{\left(z-z_{0}\right)^{2}}+\frac{1}{z^{2}}+\frac{1}{\left(z-a^{2} / \bar{z}_{0}\right)^{2}}\right. \\
& \left.\quad \frac{2}{z\left(z-z_{0}\right)}-\frac{2}{\left(z-z_{0}\right)\left(z-a^{2} / \bar{z}_{0}\right)}-\frac{2}{z\left(z-a^{2} / \bar{z}_{0}\right)}\right) d z
\end{aligned}
$$

We can use Cauchy's Residue Theorem to evaluate the integral. The first 3 terms in the integral are poles of order 2 and don't contribute. Also, z_{0} is outside $|z|=a$ but a^{2} / \bar{z}_{0} is inside $|z|=a$ and only simple poles inside will count. So we get

$$
F_{x}-i F_{y}=-\frac{i \rho \Gamma^{2}}{8 \pi^{2}}(2 \pi i)\left(\frac{2}{-z_{0}}-\frac{2}{\left(a^{2} / \bar{z}_{0}-z_{0}\right)}-\frac{2}{a^{2} / \bar{z}_{0}}-\frac{2}{-a^{2} / \bar{z}_{0}}\right) .
$$

The last two terms cancel and the others combine as

$$
F_{x}-i F_{y}=\frac{\rho \Gamma^{2}}{2 \pi}\left(-\frac{1}{z_{0}}-\frac{\bar{z}_{0}}{a^{2}-\left|z_{0}\right|^{2}}\right)=\frac{\rho \Gamma^{2} a^{2}}{2 \pi z_{0}\left(\left|z_{0}\right|^{2}-a^{2}\right)} .
$$

Writing $z_{0}=r_{0} \mathrm{e}^{i \theta_{0}}$ shows that the force is of magnitude

$$
\frac{\rho \Gamma^{2} a^{2}}{2 \pi r_{0}\left(r_{0}^{2}-a^{2}\right)}
$$

and is in the direction of θ_{0}.
E.g. if $z_{0}=b>a$, a real number, then $F_{y}=0$ and $F_{x}>0$ and the cylinder feels a force towards the vortex.

