Hydrodynamics and Elasticity 2023/2024

Sheet 1

One of the problems will be collected and marked.

Problem 1 For three vectors $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$, the volume product $\boldsymbol{a} \cdot(\boldsymbol{b} \times \boldsymbol{c})$ has the intepretation of the volume of a parallelpiped spanned by the three vectors. We can write it as a determinant

$$
\boldsymbol{a} \cdot(\boldsymbol{b} \times \boldsymbol{c})=\operatorname{det}\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right)
$$

We can also write it as $[\boldsymbol{a} \cdot(\boldsymbol{b} \times \boldsymbol{c})]_{i}=\epsilon_{i j k} a_{i} b_{j} c_{k}$ Take now two matrices

$$
\boldsymbol{M}=\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right) \quad \text { and } \quad \boldsymbol{N}=\left(\begin{array}{ccc}
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3} \\
z_{1} & z_{2} & z_{3}
\end{array}\right)
$$

composed of elements of vectors $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$ and calculate $\operatorname{det}\left(\boldsymbol{M} \cdot \boldsymbol{N}^{T}\right)$. The relationship holds for any vectors, so choose now the following basis vectors

$$
\boldsymbol{a}=\boldsymbol{e}_{i}, \boldsymbol{b}=\boldsymbol{e}_{j}, \boldsymbol{c}=\boldsymbol{e}_{k}, \boldsymbol{x}=\boldsymbol{e}_{l}, \boldsymbol{y}=\boldsymbol{e}_{m}, \boldsymbol{z}=\boldsymbol{e}_{n}
$$

and the index representation to prove the following formula

$$
\epsilon_{i j k} \epsilon_{l m n}=\delta_{i l} \delta_{j m} \delta_{k n}+\delta_{i m} \delta_{j n} \delta_{k l}+\delta_{i n} \delta_{j l} \delta_{k m}-\delta_{i n} \delta_{j m} \delta_{k l}-\delta_{i m} \delta_{j l} \delta_{k n}-\delta_{i l} \delta_{k m} \delta_{j n}
$$

and show that it follows from the formula above that

$$
\epsilon_{i j k} \epsilon_{l m k}=\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l}
$$

and that $\epsilon_{i j k} \epsilon_{i j k}=6$.
Problem 2 Prove the following identites for a scalar field ϕ, vector fields $\boldsymbol{a}, \boldsymbol{v}, \boldsymbol{u}$ and tensor field \boldsymbol{T} (a) $\nabla \cdot(\phi \boldsymbol{a})=\phi \nabla \cdot \boldsymbol{a}+\boldsymbol{a} \cdot \nabla \phi$,
(b) $\nabla \times(\nabla \times \boldsymbol{a})=\nabla(\nabla \cdot \boldsymbol{a})-\nabla^{2} \boldsymbol{a}$,
(c) $\nabla \cdot(\boldsymbol{v} \times \boldsymbol{u})=\boldsymbol{u} \cdot(\nabla \times \boldsymbol{v})-\boldsymbol{v} \cdot(\nabla \times \boldsymbol{u})$.
(d) $\operatorname{Div}(\phi \boldsymbol{T})=\boldsymbol{T} \cdot(\nabla \phi)+\phi \operatorname{Div} \boldsymbol{T}$, where the divergence is defined as $(\operatorname{Div} \boldsymbol{T})_{i}=\frac{\partial T_{i j}}{\partial x_{j}}$.

Problem 3 For a given tensor $\boldsymbol{T}=\left(\begin{array}{ccc}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$.
(a) Find the symmetric part \boldsymbol{T}^{S} and the antisymmetric part \boldsymbol{T}^{A} of \boldsymbol{T}.
(b) Find the dual (axial) vector of the antisymmetric part.
(c) Show that for any vector \boldsymbol{v} and any tensor \boldsymbol{R}, we have

$$
\boldsymbol{v} \cdot \boldsymbol{R} \cdot \boldsymbol{v}=\boldsymbol{v} \cdot \boldsymbol{R}^{S} \cdot \boldsymbol{v} \text { and } \boldsymbol{v} \cdot \boldsymbol{R}^{A} \cdot \boldsymbol{v}=0
$$

(*) Problem 4 Show that for a volume V enclosed by a surface S with a normal vector \boldsymbol{n}, the following identity holds

$$
\left.\int_{V}[(\nabla \times \boldsymbol{a}) \times \boldsymbol{b}+(\nabla \times \boldsymbol{b}) \times \boldsymbol{a}+\boldsymbol{a}(\nabla \cdot \boldsymbol{b})+\boldsymbol{b}(\nabla \cdot \boldsymbol{a}))\right] \mathrm{d} V=\int_{S}[\boldsymbol{n} \cdot(\boldsymbol{a} \boldsymbol{b}+\boldsymbol{b} \boldsymbol{a})-(\boldsymbol{a} \cdot \boldsymbol{b}) \boldsymbol{n}] \mathrm{d} S
$$

