Hydrodynamics and Elasticity 2023/2024

Sheet 2

One of the problems will be handed in and marked.

Problem 1 Consider a short 'needle', i.e. a section joining two points: x_0 and $x_0 + a_0$. Show that the general form of deformation of such a needle may be written as

$$\boldsymbol{a} = \boldsymbol{a}_0 + \boldsymbol{\phi} \times \boldsymbol{a}_0 + \boldsymbol{E} \cdot \boldsymbol{a}_0,$$

where $\phi = \frac{1}{2}(\nabla \times \boldsymbol{u})$, where \boldsymbol{u} is the displacement, and \boldsymbol{E} is the strain tensor. What is the interpretation of the second term?

Problem 2 Prove that the Levi-Civitta tensor ϵ is an isotropic tensor of rank 3, i.e. its representation is basis-independent.

Problem 3 Consider a cylindrical rod of radius R, with its axis **parallel** to e_3 in Cartesian coordinates. The rod is deforming according to

$$x_1 = x_1^0 - \alpha(t) x_2^0 x_3^0, \tag{1}$$

$$x_2 = x_2^0 + \alpha(t) x_1^0 x_3^0, \tag{2}$$

$$x_3 = x_3^0.$$
 (3)

(a) Find, at time t, the position of particles which at tome t = 0 constituted: (i) the cross-section of the rod, at $x_3^0 = \text{const}$, (ii) a section of the cross-sectional radius, (iii) a section parallel to the cylinder axis, and located on its surface.

(b) Find the deformation field \boldsymbol{u} and the strain tensor \boldsymbol{E} .

(*) **Problem 4** In spherical coordinates (r, ϕ, θ) , for a scalar f and vector field A, find the form of differential operators:

- (a) $\nabla \cdot A \equiv \operatorname{div} A$, (b) ∇f , (c) $\nabla \times \mathbf{A} \equiv \operatorname{rot} \mathbf{A}$,
- (d) $\nabla^2 f$,
- (e) $(\nabla A) \equiv \operatorname{Grad} A$.

Maciej Lisicki & Piotr Szymczak