Hydrodynamics and Elasticity 2023/2024

Sheet 2

One of the problems will be handed in and marked.

Problem 1 Consider a short 'needle', i.e. a section joining two points: \boldsymbol{x}_{0} and $\boldsymbol{x}_{0}+\boldsymbol{a}_{0}$. Show that the general form of deformation of such a needle may be written as

$$
\boldsymbol{a}=\boldsymbol{a}_{0}+\boldsymbol{\phi} \times \boldsymbol{a}_{0}+\boldsymbol{E} \cdot \boldsymbol{a}_{0}
$$

where $\boldsymbol{\phi}=\frac{1}{2}(\nabla \times \boldsymbol{u})$, where \boldsymbol{u} is the displacement, and \boldsymbol{E} is the strain tensor. What is the interpretation of the second term?

Problem 2 Prove that the Levi-Civitta tensor $\boldsymbol{\epsilon}$ is an isotropic tensor of rank 3, i.e. its representation is basis-independent.

Problem 3 Consider a cylindrical rod of radius R, with its axis parallel to \boldsymbol{e}_{3} in Cartesian coordinates. The rod is deforming according to

$$
\begin{align*}
& x_{1}=x_{1}^{0}-\alpha(t) x_{2}^{0} x_{3}^{0} \tag{1}\\
& x_{2}=x_{2}^{0}+\alpha(t) x_{1}^{0} x_{3}^{0} \tag{2}\\
& x_{3}=x_{3}^{0} \tag{3}
\end{align*}
$$

(a) Find, at time t, the position of particles which at tome $t=0$ constituted: (i) the cross-section of the rod, at $x_{3}^{0}=$ const, (ii) a section of the cross-sectional radius, (iii) a section parallel to the cylinder axis, and located on its surface.
(b) Find the deformation field \boldsymbol{u} and the strain tensor \boldsymbol{E}.
$\mathbf{(*)}^{*}$ Problem 4 In spherical coordinates (r, ϕ, θ), for a scalar f and vector field \boldsymbol{A}, find the form of differential operators:
(a) $\nabla \cdot A \equiv \operatorname{div} A$,
(b) ∇f,
(c) $\nabla \times \boldsymbol{A} \equiv \operatorname{rot} \boldsymbol{A}$,
(d) $\nabla^{2} f$,
(e) $(\nabla \boldsymbol{A}) \equiv \operatorname{Grad} \boldsymbol{A}$.

