## Hydrodynamics and Elasticity 2023/2024

## Sheet 3

One of the problems will be handed in and marked.

Problem 1 Consider the following state of stress in a material

$$
\widehat{\boldsymbol{T}}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & T_{33}\left(x_{1}, x_{2}\right)
\end{array}\right]
$$

Show that in the absence of external forces the general form of $T_{33}$ is

$$
T_{33}\left(x_{1}, x_{2}\right)=\alpha x_{1}+\beta x_{2}+\gamma
$$

Hint Use the structure of the components of the strain tensor $\widehat{\boldsymbol{E}}$. By definition, the components $E_{i j}$ are not independent. They are related by the so-called compatibility conditions of the strain tensor. They also imply that not every tensor of rank 2 can be a strain tensor. First derive relationships between elements of $\widehat{\boldsymbol{E}}$ (by taking appropriate derivatives and equating them), and then use them to find the general form of $T_{33}$.

Problem 2 A composite rod, formed by welding two slender bars of equal length and diameter, is loaded by an axial force $P$ as shown in the figure. If Young's moduli of the two portions are $E_{1}$ i $E_{2}$ find how the applied force is distributed between the two halves. The external walls are stiff and they do not deform.


Problem 3 Consider a cylindrical rod that is acted upon by an axial stress $T_{11}=-P$. What will be the state of stress in the rod if the lateral surface is constrained so that there is no contraction or expansion? Show that the effective Young's modulus $\left(E_{Y}\right)_{e f f}=T_{11} / E_{11}$ is equal to

$$
\left(E_{Y}\right)_{e f f}=E_{Y} \frac{(1-\nu)}{(1-2 \nu)(1+\nu)}
$$

where $\nu$ is the Poisson ratio.
(*) Problem 4 A rod the cross section of which slightly varies along its length is suspended in a vertical plane, under the action of gravity and a force $P$ uniformly distributed over the lower cross section $S_{0}$. Of what shape should it should be (find $S(x)$ ) for the tensile stress $T_{x x}$ to be identical in every cross section? Assume that $T_{x x}$ is the only nonzero component of the stress tensor.


