Problem 1: Solution The function $y(x)$ determining the deflection satisfies the following differential equation

$$
\frac{\partial^{4} y}{\partial x^{4}}=\frac{1}{E I} q g
$$

which can be directly integrated to yield

$$
y(x)=\frac{q g}{24 E I} x^{4}+a x^{3}+b x^{2}+c x+d
$$

The constants a, b, c, d are found from boundary conditions at both fixed ends

$$
y(0)=0, \quad y^{\prime}(0)=0, \quad y(l)=0, \quad y^{\prime}(l)=0
$$

Thus we find

$$
y(x)=-\frac{q g}{24 E I} x^{2}(l-x)^{2}
$$

The maximal deflection is in the middle $y_{\max }=y(l / 2)$ and has the value

$$
y_{\max }=\frac{q g}{384} \frac{l^{4}}{E I}
$$

The torque is found from the Euler-Bernoulli law

$$
M=-E I \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}
$$

and takes the value of

$$
M(0)=-\frac{1}{12} q g l^{2}
$$

The force is given by $F=\frac{\mathrm{d} M}{\mathrm{~d} x}$, so at the ends we have

$$
R=\frac{q g l}{2}
$$

Notw This problem can be solved also by starting from the Euler-Bernoulli law

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{M(x)}{E I}
$$

where $M(x)$ is an external force moment acting on a cross-section of the rod at x. With the way the ends of the rod are fixed, there are reaction forces R and moments M_{0}, and by symmetry they must be of the same value at both ends. They contribute to the total force moment $M(x)$, just as the gravity of the rod does. The resulting total distribution of force moment has the form

$$
M(x)=-\int_{0}^{x} q g \xi \mathrm{~d} \xi+R x+M_{0}=-\frac{1}{2} q g x^{2}+R x+M_{0}
$$

From this we find the deflection of the beam as

$$
y(x)=\frac{1}{E I}\left[-\frac{1}{24} q g x^{4}+\frac{1}{6} R x^{3}+\frac{1}{2} M_{0} x^{2}+C x+C_{0}\right] .
$$

The constants R, M_{0}, C, C_{0} are determined from the terminal boundary conditions:

$$
y(0)=0, \quad y^{\prime}(0)=0, \quad y(l)=0, \quad y^{\prime}(l)=0
$$

We thus find

$$
y(x)=-\frac{q g}{24 E I} x^{2}(l-x)^{2}, \quad y_{\max }=\frac{q g}{384} \frac{l^{4}}{E I}
$$

And the unknown force and moment are:

$$
R=\frac{1}{2} q g l, \quad M_{0}=-\frac{1}{12} q g l^{2}
$$

