Problem 1: Solution The function y(x) determining the deflection satisfies the following differential equation
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which can be directly integrated to yield
(x) = %x‘l + ax® + br? + cx + d.

The constants a, b, ¢, d are found from boundary conditions at both fixed ends

Thus we find

499 24 N2

The maximal deflection is in the middle ¥4, = y(I/2) and has the value
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The torque is found from the Euler-Bernoulli law
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and takes the value of 1
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The force is given by F' = %’ so at the ends we have
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Notw This problem can be solved also by starting from the Euler-Bernoulli law
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where M (x) is an external force moment acting on a cross-section of the rod at x. With the way the ends of the rod
are fixed, there are reaction forces R and moments My, and by symmetry they must be of the same value at both ends.
They contribute to the total force moment M (), just as the gravity of the rod does. The resulting total distribution of
force moment has the form
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From this we find the deflection of the beam as
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The constants R, My, C, Cj are determined from the terminal boundary conditions:

We thus find
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