Hydrodynamics and Elasticity 2023/2024

Sheet 8

One of the problems will be handed in and marked.

Problem 1 An ideal fluid is rotating in a gravitational field with a constant angular velocity $\boldsymbol{\Omega}$, so that the fluid velocity in the lab frame is $\boldsymbol{u}=(-\Omega y, \Omega x, 0)$. Let us find the surfaces of constant pressure, which for a particular choice of $p=p_{\text {atm }}$ will give us the shape of the free surface. According to Bernoulli's law the quantity $p / \rho+\frac{1}{2} u^{2}+g z$ is constant, so the surface of constant pressure satisfies the equation

$$
z=\text { const }-\frac{\Omega^{2}}{2 g}\left(x^{2}+y^{2}\right)
$$

But this means that the water level is the highest in the middle of a spinning bucket. What is wrong here? What is the true equation for the constant pressure surface and why?

Problem 2 An infinite cylinder of radius a is inserted into an asymptotically uniform flow with velocity U along the x-axis. Use the velocity potential method to find the resulting flow and the drag force on the cylinder.

Problem 3 Consider the purely two-dimensional steady flow of an inviscid incompressible constant density fluid in the absence of body forces. For velocity \boldsymbol{u}, the vorticity is $\boldsymbol{\omega}=(0,0, \omega)$. Let p denote the pressure and ρ the density of the fluid. We define the streamfunction $\boldsymbol{\Psi}(x, y)=\psi(x, y) \boldsymbol{e}_{z}$ such that $\boldsymbol{u}(x, y)=\nabla \times \boldsymbol{\Psi}$. Show that if ω is a constant both in space and time, then

$$
\frac{|\boldsymbol{u}|^{2}}{2}+\omega \psi+\frac{p}{\rho}=C
$$

where C is a constant.
Now consider a fluid with constant (in both space and time) vorticity ω in the cylindrical annular region $a<r<2 a$. The streamlines are concentric circles, with the fluid speed zero on $r=2 a$ and $V>0$ on $r=a$. Calculate the velocity field, and hence show that

$$
\omega=-\frac{2 V}{3 a}
$$

Deduce that the pressure difference between the outer and inner edges of the annular region is

$$
\Delta p=\left(\frac{15-16 \ln 2}{18}\right) \rho V^{2}
$$

(*) Problem 4: Blasius theorem Prove that if $w(z)$ is the complex potential describing a steady 2D flow of an ideal, incompressible fluid around a body with a contour C, then the force components acting on the body are given by

$$
F_{x}-i F_{y}=\oint_{C}\left(\frac{\mathrm{~d} w}{\mathrm{~d} z}\right)^{2} \mathrm{~d} z
$$

