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Problem 4

We will prove the following identity:
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The complex potential w is defined as w = ¢ + i), and it’s differential is dw = d¢ + idy. At the body boundary,
the velocity must be tangent to the surface, this means that the contour C' is a streamline of the flow. The stream
function v is constant along streamlines, so on C we have di¢p = 0. This allows us to write dw = d¢ = dw. Using
this fact we can transform the contour integral:
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For steady, incompressible fluid we can use the Bernoulli’s law:
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Integrating the constant ¢ over a closed contour will give a zero contribution, we will only consider the term with p.
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Where we have used the fact that force in x direction is the integral of pressure over y "surface”, — fo pdy, and y
force is the same for x surface, fo pdx. The signs of the integrals is dependent on the contour orientation. Here
we choose the standard anti-clockwise direction to get a minus sign in x and plus in y to obtain the form of the
formula from the theorem.



