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One of the problems will be handed in and marked.

Problem 1 A large container filled with an ideal, incompressible fluid of density ρ is performing
sinusoidal oscillations of amplitude A under the action of an external force. Inside the container there
is a small bubble of density ρ1 (see the figure). What is the amplitude of the motion of the bubble?
Neglect any gravitational effects.

ρ x=a cos ωt 

x=A cos ωt 

ρ1

Problem 2 An inviscid and incompressible fluid occupies the region x  0 bounded by a planar
rigid wall at x = 0. At a point (d, y0) there is a linear vortex of circulation Γ. Assuming that the
vortex moves at the local flow velocity due to everything other than itself, use the method of images
to show that the vortex moves downwards with a velocity

dy0
dt
= − Γ
4πd

Next, find the total force which the motion of the vortex exerts on the wall. Remember that – because
the vortex is moving – the flow in the laboratory frame is not stationary. What would the force be if
the vortex were fixed at (d, 0)?

Problem 3: D’Alembert’s paradox Consider the steady flow of an ideal fluid around a 3D body
which is placed in a long straight channel of uniform cross-section (see below). The body experiences
the drag force D in the downstream direction.

(a) By integrating the Euler equation over an arbitrary fixed region V enclosed by a surface S, show
that

−
∫
S pndS =

∫
S ρu(u · n)dS.



(b) Apply the obtained equation to the region in the figure. Find the net force in the downstream
direction and equate it to the downstream component of the flux of momentum to find

D =
∫
S1
(p1 + ρu21)dS −

∫
S2
(p2 + ρu22)dS.

(c) Now check the assumptions and apply the Bernoulli streamline theorem to a streamline that
runs along the channel walls to deduce that D = 0.

(*) Problem 4 The velocity field

ur =
Q

2πr
, uθ = 0

where Q is a constant, is called a line source flow if Q > 0 and a line sink if Q < O. Show that it is
irrotational and that it satisfies ∇ · u = 0, save at r = 0, where it is not defined. Find the complex
potential for such a flow.
Next, consider a mapping

Z = f(z)

where f is an analytic function of z. Provided that f ′(z0) ̸= 0, points in the neighbourhood of z = z0
are mapped by Z = f(z), according to Taylor’s theorem, in such a way that

Z − Z0 = f ′(z0)(z − z0) +O(z − z0)2

where Z0 = f(z0). Use this to show that a line source of strength Q at z = z0 is mapped into a line
source of strength Q at Z = Z0, provided that f ′(z0) ̸= 0.
Next, consider fluid which occupies the region between two plane rigid boundaries at y = ±b, and
there is a line source of strength Q at z = 0. Find the complex potential w(z) for the flow

1. by the method of images,

2. by using the mapping Z = eαz with a suitably chosen α > 0
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