Hydrodynamics and Elasticity 2023/2024

Sheet 10

One of the problems will be handed in and marked.

Problem 1 A rotating sphere in Stokes flow A rigid sphere of radius *a* is immersed in an infinite expanse of viscous fluid. The sphere rotates with an angular velocity Ω . The Reynolds number $\text{Re} = \Omega a^2 / \nu$ is small, so that the slow flow (Stokes) equations

$$abla p = -\mu \nabla \times (\nabla \times \boldsymbol{v}) = 0, \qquad \nabla \cdot \boldsymbol{v} = 0,$$

apply. Using spherical polar coordinates (r, θ, ϕ) with $\theta = 0$ as the rotation axis, show that a purely rotary flow $\boldsymbol{v} = v_{\phi}(r, \theta)\boldsymbol{e}_{\phi}$ is possible provided that

$$\frac{\partial^2}{\partial r^2}(rv_{\phi}) + \frac{1}{r}\frac{\partial}{\partial \theta}\left[\frac{1}{\sin\theta}\frac{\partial}{\partial \theta}(v_{\phi}\sin\theta)\right] = 0.$$

Write down the boundary conditions which v_{ϕ} must satisfy at r = a and as $r \to \infty$, and hence solve the equation above to find

$$v_{\phi} = \frac{\Omega a^3}{r^2} \sin \theta.$$

Show that the ϕ -component of stress on r = a is $t_{\phi} = -3\mu \sin \theta$, and deduce that the torque needed to maintain the rotation of the sphere is

$$\tau = 8\pi\mu a^3\Omega,$$

which is linear in Ω just as the force on a translating sphere is linear in its translational velocity.

Problem 2 A viscous, incompressible fluid is located between two planes at z = 0 and z = h. The lower plane is stationary, while the upper plane rotates with a constant angular velocity Ω around the *z*-axis. The Reynolds number, $Re = \frac{\Omega h^2}{\nu}$, is small, so the flow satisfies the Stokes equations. Find the flow of the fluid in this system, assuming that it is purely rotational $\mathbf{u} = u_{\theta}(r, z)e_{\theta}$. Show that this leads to the equation

$$\left(\frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} - \frac{1}{r^2} + \frac{\partial^2}{\partial z^2}\right)u_\theta = 0,$$

which u_{θ} must satisfy. Look for solutions of this equation in the form $u_{\theta} = rf(z)$. After finding the velocity field, calculate the force exerted by the fluid on the unit surface of the upper plane.

Problem 3 Consider again the system described in Problem 2, but this time do not assume that the Reynolds number is is zero. Show that in this case a steady solution of the full Navier-Stokes equations of the form $\mathbf{u} = u_{\theta}(r, z)e_{\theta}$ is not possible, so that any rotary motion $u_{\theta}(r, z)$ must be accompanied by a secondary flow $(u_r, u_z \neq 0)$.

(*) **Problem 4** Determine the velocity of a spherical drop of viscosity η_p moving under the action of force F in a viscous fluid of viscosity η , assuming that the Reynolds numbers are small. (Rybczyński, 1911)

Maciej Lisicki & Piotr Szymczak