Hydrodynamics and Elasticity 2023/2024

Sheet 10

One of the problems will be handed in and marked.

Problem 1 A rotating sphere in Stokes flow A rigid sphere of radius a is immersed in an infinite expanse of viscous fluid. The sphere rotates with an angular velocity Ω. The Reynolds number $\operatorname{Re}=\Omega a^{2} / \nu$ is small, so that the slow flow (Stokes) equations

$$
\nabla p=-\mu \nabla \times(\nabla \times \boldsymbol{v})=0, \quad \nabla \cdot \boldsymbol{v}=0
$$

apply. Using spherical polar coordinates (r, θ, ϕ) with $\theta=0$ as the rotation axis, show that a purely rotary flow $\boldsymbol{v}=v_{\phi}(r, \theta) \boldsymbol{e}_{\phi}$ is possible provided that

$$
\frac{\partial^{2}}{\partial r^{2}}\left(r v_{\phi}\right)+\frac{1}{r} \frac{\partial}{\partial \theta}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(v_{\phi} \sin \theta\right)\right]=0
$$

Write down the boundary conditions which v_{ϕ} must satisfy at $r=a$ and as $r \rightarrow \infty$, and hence solve the equation above to find

$$
v_{\phi}=\frac{\Omega a^{3}}{r^{2}} \sin \theta
$$

Show that the ϕ-component of stress on $r=a$ is $t_{\phi}=-3 \mu \sin \theta$, and deduce that the torque needed to maintain the rotation of the sphere is

$$
\tau=8 \pi \mu a^{3} \Omega
$$

which is linear in Ω just as the force on a translating sphere is linear in its translational velocity.

Problem 2 A viscous, incompressible fluid is located between two planes at $z=0$ and $z=h$. The lower plane is stationary, while the upper plane rotates with a constant angular velocity Ω around the z-axis. The Reynolds number, $R e=\frac{\Omega h^{2}}{\nu}$, is small, so the flow satisfies the Stokes equations. Find the flow of the fluid in this system, assuming that it is purely rotational $\mathbf{u}=u_{\theta}(r, z) e_{\theta}$. Show that this leads to the equation

$$
\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}-\frac{1}{r^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) u_{\theta}=0
$$

which u_{θ} must satisfy. Look for solutions of this equation in the form $u_{\theta}=r f(z)$. After finding the velocity field, calculate the force exerted by the fluid on the unit surface of the upper plane.

Problem 3 Consider again the system described in Problem 2, but this time do not assume that the Reynolds number is is zero. Show that in this case a steady solution of the full Navier-Stokes equations of the form $\mathbf{u}=u_{\theta}(r, z) e_{\theta}$ is not possible, so that any rotary motion $u_{\theta}(r, z)$ must be accompanied by a secondary flow $\left(u_{r}, u_{z} \neq 0\right)$.
(*) Problem 4 Determine the velocity of a spherical drop of viscosity η_{p} moving under the action of force F in a viscous fluid of viscosity η, assuming that the Reynolds numbers are small. (Rybczyński, 1911)

