# Tensors and their transformations 

Maciej Lisicki*

## I. COMPONENTS OF A TENSOR

Consider a vector $\boldsymbol{a}$ and a tensor $\boldsymbol{T}$, which transforms the vector $\boldsymbol{a}$ into $\boldsymbol{b}$, that is

$$
\begin{equation*}
b=T a . \tag{1}
\end{equation*}
$$

In the Cartesian basis of $\mathbb{R}^{3}, \boldsymbol{a}$ has a decomposition

$$
\begin{equation*}
\boldsymbol{a}=a_{1} \boldsymbol{e}_{1}+a_{2} \boldsymbol{e}_{2}+a_{3} \boldsymbol{e}_{3} \tag{2}
\end{equation*}
$$

similarly to $\boldsymbol{b}$. We would like to find the components of $\boldsymbol{T}$. We have

$$
\begin{equation*}
\boldsymbol{b}=\boldsymbol{T} \boldsymbol{a}=a_{1} \boldsymbol{T} \boldsymbol{e}_{1}+a_{2} \boldsymbol{T} \boldsymbol{e}_{2}+a_{3} \boldsymbol{T} \boldsymbol{e}_{3} . \tag{3}
\end{equation*}
$$

From the above, multiplying by the respective unit vectors, we get the components of $\boldsymbol{b}$

$$
\begin{align*}
b_{1} & =\boldsymbol{e}_{1} \cdot \boldsymbol{b}=a_{1} \boldsymbol{e}_{1} \cdot \boldsymbol{T} \boldsymbol{e}_{1}+a_{2} \boldsymbol{e}_{1} \cdot \boldsymbol{T} \boldsymbol{e}_{2}+a_{3} \boldsymbol{e}_{1} \cdot \boldsymbol{T} \boldsymbol{e}_{3}  \tag{4}\\
b_{2} & =\boldsymbol{e}_{2} \cdot \boldsymbol{b}=a_{1} \boldsymbol{e}_{2} \cdot \boldsymbol{T} \boldsymbol{e}_{1}+a_{2} \boldsymbol{e}_{2} \cdot \boldsymbol{T} \boldsymbol{e}_{2}+a_{3} \boldsymbol{e}_{2} \cdot \boldsymbol{T} \boldsymbol{e}_{3}  \tag{5}\\
b_{3} & =\boldsymbol{e}_{3} \cdot \boldsymbol{b}=a_{1} \boldsymbol{e}_{3} \cdot \boldsymbol{T} \boldsymbol{e}_{1}+a_{2} \boldsymbol{e}_{3} \cdot \boldsymbol{T} \boldsymbol{e}_{2}+a_{3} e_{3} \cdot \boldsymbol{T} \boldsymbol{e}_{3} \tag{6}
\end{align*}
$$

We call the subsequent products the matrix elements $T_{i j}$ of the tensor $\boldsymbol{T}$ and write the above equation as

$$
\left(\begin{array}{c}
b_{1}  \tag{7}\\
b_{2} \\
b_{3}
\end{array}\right)=\left(\begin{array}{lll}
T_{11} & T_{12} & T_{13} \\
T_{21} & T_{22} & T_{23} \\
T_{31} & T_{32} & T_{33}
\end{array}\right)\left(\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)
$$

which in the matrix form is simply

$$
\begin{equation*}
[\boldsymbol{b}]=[\boldsymbol{T}][\boldsymbol{a}] . \tag{8}
\end{equation*}
$$

Using index notation, we can write the above as

$$
\begin{equation*}
b_{i}=T_{i j} a_{j} \tag{9}
\end{equation*}
$$

Note: we assume a convention, according to which the tensor $\boldsymbol{T}$ acts on the unit vectors of the Cartesian basis as

$$
\begin{equation*}
\boldsymbol{T} \boldsymbol{e}_{i}=T_{j i} \boldsymbol{e}_{j} \tag{10}
\end{equation*}
$$

so that $\boldsymbol{T} \boldsymbol{e}_{1}=T_{11} \boldsymbol{e}_{1}+T_{21} \boldsymbol{e}_{2}+T_{31} \boldsymbol{e}_{3}$, etc. We take up this convention, because then we can write the $m$-th component of $\boldsymbol{b}$ as

$$
\begin{equation*}
b_{m}=\boldsymbol{b} \cdot \boldsymbol{e}_{m}=a_{i} T_{j i} \boldsymbol{e}_{j} \cdot \boldsymbol{e}_{m}=a_{i} T_{j i} \delta_{j m}=T_{m i} a_{i}, \tag{11}
\end{equation*}
$$

which corresponds to the matrix relationship (8). Had we decided otherwise, that is

$$
\begin{equation*}
\boldsymbol{T} \boldsymbol{e}_{i}=T_{i j} \boldsymbol{e}_{j} \tag{12}
\end{equation*}
$$

then the matrix equation we would get (it is easy to check) would have the form

$$
\begin{equation*}
[\boldsymbol{b}]=[\boldsymbol{T}]^{\mathrm{T}}[\boldsymbol{a}] . \tag{13}
\end{equation*}
$$

This would correspond to a tensor equation $\boldsymbol{b}=\boldsymbol{T} \boldsymbol{a}$, which is less natural.

[^0]
## II. ORTHOGONAL TRANSFORMS

We define an orthogonal transform to be one that does not change the length or angles between vectors. The tensor $\boldsymbol{Q}$ which corresponds to such a transformation, has the following property

$$
\begin{equation*}
Q Q^{\top}=Q^{\top} Q=1 \tag{14}
\end{equation*}
$$

It follows that the determinant of a matrix that corresponds to an orthogonal transformation must be equal to

$$
\begin{equation*}
\operatorname{det} \boldsymbol{Q}= \pm 1 \tag{15}
\end{equation*}
$$

Note that any two Cartesian frames of reference $\left\{\boldsymbol{e}^{\prime}\right\}$ and $\{\boldsymbol{e}\}$ are related by an orthogonal transformation $\boldsymbol{Q}$ such that

$$
\begin{equation*}
e_{i}^{\prime}=Q e_{i} \tag{16}
\end{equation*}
$$

so, according to our convention

$$
\begin{equation*}
\boldsymbol{e}_{i}^{\prime}=Q_{j i} \boldsymbol{e}_{j} \tag{17}
\end{equation*}
$$

It is now easy to check that the components of $[\boldsymbol{Q}]$ are given by

$$
\begin{equation*}
Q_{m n}=\cos \left(\boldsymbol{e}_{m}, \boldsymbol{e}_{n}^{\prime}\right), \tag{18}
\end{equation*}
$$

so they are cosines of the angles between unit vectors of the 'old' and 'new' basis. This matrix of cosines is called the transformation matrix from the non-primed to the primed frane. One can check that if we can express new basis unit vectors $\boldsymbol{e}_{i}^{\prime}$ in terms of old basis vectors $\boldsymbol{e}_{i}$, then we can readily write the matrix $\boldsymbol{Q}$, columns of which are new vectors (expressed in terms of old vectors)

$$
\begin{equation*}
Q=\left(e_{1}^{\prime}\left|e_{2}^{\prime}\right| e_{3}^{\prime}\right) \tag{19}
\end{equation*}
$$

## III. DEFINITION OF TENSORS THROUGH THEIR TRANSFORMATION RULES

a. Transformation of Cartesian components of a vector Consider a transformation of the Cartesian components of a vector $\boldsymbol{a}$ between two bases $\{\boldsymbol{e}\}$ and $\left\{\boldsymbol{e}^{\prime}\right\}$. In both, the vector has a decomposition

$$
\begin{equation*}
\boldsymbol{a}=a_{i} \boldsymbol{e}_{i}=a_{j} \boldsymbol{e}_{j}^{\prime} . \tag{20}
\end{equation*}
$$

According to our convention, we know how basis vectors transform:

$$
\begin{equation*}
\boldsymbol{e}_{i}^{\prime}=Q_{m i} \boldsymbol{e}_{m} \tag{21}
\end{equation*}
$$

so that

$$
\begin{equation*}
a_{i}^{\prime}=\boldsymbol{a} \cdot Q_{m i} \boldsymbol{e}_{m}=Q_{m i} a_{m} . \tag{22}
\end{equation*}
$$

In the matrix notation, this means

$$
\begin{equation*}
[\boldsymbol{a}]^{\prime}=[\boldsymbol{Q}]^{\top}[\boldsymbol{a}] . \tag{23}
\end{equation*}
$$

Note: We need to distinguish two objects here: the equation above concerns the same vector, represented in a different basis. It is not equivalent to $\boldsymbol{a}^{\prime}=\boldsymbol{Q}^{\top} \boldsymbol{a}$, in which $\boldsymbol{a}$ and $\boldsymbol{a}^{\prime}$ are different vectors related by the action of a tensor $\boldsymbol{Q}^{\top}$.
b. Transformation of Cartesian components of a tensor We can similarly show, that Cartesian components of a tensor $\boldsymbol{T}$ in two bases can be related by the following transformation

$$
\begin{equation*}
T_{i j}^{\prime}=\boldsymbol{e}_{i}^{\prime} \cdot \boldsymbol{T} \boldsymbol{e}_{j}^{\prime}=Q_{m i} \boldsymbol{e}_{m} \cdot \boldsymbol{T} Q_{n j} \boldsymbol{e}_{n}=Q_{m i} Q_{n j} \boldsymbol{e}_{m} \boldsymbol{T} \boldsymbol{e}_{n}=Q_{m i} Q_{n j} T_{m n} \tag{24}
\end{equation*}
$$

which can be written in a matrix form as

$$
\begin{equation*}
[\boldsymbol{T}]^{\prime}=[\boldsymbol{Q}]^{\mathrm{T}}[T][\boldsymbol{Q}] . \tag{25}
\end{equation*}
$$

Of course, the previous Note holds sway, so this equation is not equivalent to writing $\boldsymbol{T}^{\prime}=\boldsymbol{Q}^{\top} \boldsymbol{T} \boldsymbol{Q}$, which relates two tensors $\boldsymbol{T}$ i $\boldsymbol{T}^{\prime}$, and not components of the same tensor in different bases.
c. Transformation properties and tensorial character From the considerations above we conclude that to characterise a vector or tensor quantity, it is enough to know its components in a certain basis, because then we know how to transform them to a different basis. We can generally classify different objects according to how they transform under a change of basis. Consider again two bases $\left\{\boldsymbol{e}_{1}^{\prime}, \boldsymbol{e}_{2}^{\prime}, \boldsymbol{e}_{3}^{\prime}\right\}$ and $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right\}$, along with an orthogonal transformation $\boldsymbol{e}_{i}^{\prime}=Q e_{i}$.

We define the Cartesian components of tensors:

$$
\begin{array}{ll}
\alpha^{\prime}=\alpha & \text { scalar (tensor of rank 0) } \\
a_{i}^{\prime}=Q_{m i} a_{m} & \text { vector (tensor of rank 1) } \\
T_{i j}^{\prime}=Q_{m i} Q_{n j} T_{m m} & \text { tensor (tensor of rank 2) } \\
D_{i j k}^{\prime}=Q_{m i} Q_{n j} Q_{p k} D_{m n p} & \text { tensor of rank 3 } \\
C_{i j k l}^{\prime}=Q_{m i} Q_{n j} Q_{p k} Q_{q l} C_{m n p q} & \text { tensor of rank 4 }
\end{array}
$$


[^0]:    * mklis@fuw.edu.pl

