Hydrodynamics and Elasticity 2023/2024

Training Sheet

Problem 1 The stationary flow of an ideal incompressible fluid with density ρ is rotated by an angle α by a tube of a variable cross-section and ejected into a vacuum (see the figure). Find the force acting on the bend in the tube. Consider the flow as uniform at the cross-sections S_{0} and S_{1} : the inlet velocity is equal to v_{0}.

Problem 2 Determine the friction force acting on an oscillating rigid plane, covered with a layer of fluid of thickness h and viscosity η, the upper surface of which is a free surface. The plane oscillates harmonically with amplitude A and frequency ω.

Problem 3 Show that an array of N identical point vortices of circulation Γ, placed equally about a circle of radius a, will rotate at a constant angular frequency Ω. Find the value of Ω.

Problem 4 The walls of a cylindrical pipe filled with ideal, incompressible fluid are squeezed uniformly, so that its cross-sectional area, $A(t)$, decreases in time. As the pipe is squeezed, the water begins to flow out of its ends. We assume that the x component of the flow field is of the form $v_{x}(x, y, z, t)=v_{x}(x, t)$ (with x axis directed along the pipe). For $A(t)=A_{0} \cos \omega t, 0 \leqslant t<\pi / 2 \omega$ find $v(x, t)$ and the pressure difference between points [1] i [2] (see the figure). The total length of the pipe is l and the atmospheric pressure is equal to p_{0}.

Problem 5 Two viscous, incompressible fluids flow between two parallel planes located at $z=-h / 2$ and $z=h / 2$ under the influence of a pressure gradient directed along the x-axis: $\frac{d p}{d x}=$ const. One of the fluids (with viscosity μ_{1} and density ρ_{1}) occupies the region $-h / 2<z \leqslant 0$, while the other (with viscosity μ_{2} and density ρ_{2}) occupies the region $0<z<h / 2$. Find the velocity field of both fluids. Discuss and interpret the boundary cases: $\mu_{1} \gg \mu_{2}, \mu_{1} \ll \mu_{2}$, and $\mu_{1}=\mu_{2}$.

