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In this article we extend recent experimental developments [Rogers et al., Phys. Rev. Lett., 2012, 109,

098305] by providing a suitable theoretical framework for the derivation of exact expressions for the first

cumulant (initial decay rate) of the correlation function measured in Evanescent Wave Dynamic Light

Scattering (EWDLS) experiments. We focus on a dilute suspension of optically anisotropic spherical

Brownian particles diffusing near a planar hard wall. In such a system, translational and rotational

diffusion are hindered by hydrodynamic interactions with the boundary which reflects the flow incident

upon it, affecting the motion of colloids. The validity of the approximation by the first cumulant for

moderate times is assessed by juxtaposition to Brownian dynamics simulations, and compared with

experimental results. The presented method for the analysis of experimental data allows the

determination of penetration-depth-averaged rotational diffusion coefficients of spherical colloids at

low density.

1 Introduction
Rotational diffusion plays a crucial role in a number of physical,
chemical, and biological processes occurring in a variety of
systems. Notable examples include microrheology, in which
frequency-dependent viscoelastic shear moduli can be investi-
gated by measuring rotational diffusion of a tracer sphere;1

random reorientation of biomacromolecules in membranes
(like proteins in human erythrocyte membrane,2 or rhodopsin
chromophores3); rotational-diffusion controlled chemical reac-
tivity;4–6 and gaseous combustion models, where rotational
diffusion is of importance for the interpretation of coherent
anti-Stokes Raman spectroscopy data.7 Much attention has
been devoted over the last decade to rotational diffusion of bulk
systems, particularly in the context of macromolecules. Similar
systems in geometrical connement are, however, much less
understood, and are becoming a very active eld of research.
This is motivated by the fundamental importance of the effects
of connement for macromolecular solutions, which are most
pronounced in the small-scale channel ows which are an
inherent feature of micro-,8 nano-9 and optouidics.10 An

illustrative example may be given in the rapidly growing “lab-
on-a-chip” applications, in which a single colloid might be used
as a micropump,11 or by investigation of swimming microor-
ganisms,12 nutrition of which is strongly inuenced by their
hydrodynamic interactions;13 conned geometry plays a key role
also in chip-based capillary electrophoresis14 and sorting of
white blood cells.4

To investigate the effects of connement on rotational
diffusion of Brownian particles, we have employed Evanes-
cent Wave Dynamic Light Scattering15 (EWDLS), which is a
technique that probes the near-wall dynamics of submicron-
sized particles. In the experiments, only the region of the
sample close to the boundary is illuminated, as the electric
eld strength of an evanescent wave decays with distance z
away from the wall as exp(!kz/2). The characteristic length
scale 2/k, called the penetration depth, is typically of the order
of several hundred nanometers. Using this feature, one can
infer information on the effects of hydrodynamic interactions
with the surface on the dynamics of suspended colloids. By
changing the scattering vector q, the system is probed on
different length scales.

Starting with the pioneering work by Lan and Ostrowsky,15

EWDLS has been employed frequently to investigate the near
surface dynamics of somatter. The translational diffusion of
colloids has been studied in dilute solutions16–18 and in
suspensions with volume fractions up to 45 percent.19,20,21 The
dynamics of stiff polymers adsorbed to the interface22 were
investigated as well as the collective motion of end-graed
polymer brushes.23,24 With a setup that allows independent
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variation of the components of the scattering vector q||, qt,
parallel and perpendicular to the surface, respectively, it is
possible to distinguish between the diffusivities of colloidal
particles in these directions experimentally.25,26

In recent contributions,27,28 we have presented a study of
applicability of EWDLS to trace translational, as well as
rotational diffusion in dilute suspensions in which single-
particle properties completely characterise the system. By
means of cumulant expansion based on the Smoluchowski
equation, we have developed exact expressions for the initial
decay rate of the electric eld time autocorrelation function,
which is related to the experimentally determined intensity
time autocorrelation function by a generalized Siegert rela-
tion.26 In case of purely translational motion,27 terms up to
quadratic order in time have been shown to describe the
decay of the correlation function up to moderate times.
Comparison with experiments and Brownian dynamics
simulations resulted in fair agreement of the data. Using
optically anisotropic spheres,28 we were able to record
orientation-dependent signal in the correlation function and
extract from experiments the rotational diffusion coefficients
which proved to be consistent with theoretical calculations.29

Rotational diffusion of spherical particles measured by
light scattering has been extensively studied in bulk, both
theoretically,30 and experimentally using systems of
optically anisotropic spherical Brownian particles.31–33 It
seems, however, that apart from theoretical and numerical
calculations for rotational diffusion of spheres conned to
diffuse near a wall,29,34–38 or in a parallel-wall channel,39

there has been no experimental investigation of rotational
diffusion in such conned systems, and our research aims
to ll this gap using a recently developed experimental
technique followed by a thorough analysis of its theoretical
basis.

In this work, we present a detailed derivation of the rst
cumulant for translational, rotational, and coupled motion of
a Brownian sphere above a solid hard wall, extending the
analysis from our previous article28 where only the nal
experimental results were published. Theoretical develop-
ments are followed by results of experiments, and numerical
simulations.

The paper is organised as follows: in Section 2 we describe
the system and the basic quantities measured in the experi-
ments. Next, in Section 3, we introduce the Smoluchowski
equation and discuss the hydrodynamic interactions between a
spherical particle and a planar wall. This description is then
used in Section 4 to derive analytical expressions for the rst
cumulant, which describes the short-time decay of the
measured electric eld correlation functions. In Section 5, we go
beyond the short time limit by means of a Brownian dynamics
simulation. The experimental details are included in Section 6.
Section 7 contains the results of experiments compared to
numerical calculations and theoretical predictions. Finally, we
conclude our ndings in Section 8. Two appendices contain a
proof of vanishing translation–rotation coupling contribution
to the rst cumulant, and the details of our numerical code,
respectively.

2 Intensity correlation function in
evanescent wave dynamic light
scattering
In EWDLS experiments, as well as in any conventional light
scattering experimental technique, one measures the scattered
light intensity time autocorrelation function g2(q, t), dened as

g2ðq; tÞ ¼
hIsðq; t ¼ 0ÞIsðq; tÞi

hIsðq; t ¼ 0Þi2
; (1)

where Is(q, t) is the intensity of light scattered at time t in the
direction given by the scattering vector q. Here h/i denotes the
equilibrium ensemble averaging. The scattered intensity is
related to the corresponding electric eld, Es, through Is(q, t) ¼
|Es(q, t)|2. By virtue of the Siegert relation,40 the function g2(q, t)
may be written in terms of the scattered electric eld autocor-
relation function

g1ðq; tÞ ¼
!
E*

s ðq; t ¼ 0ÞEsðq; tÞ
"

D
jEsðq; t ¼ 0Þj2

E : (2)

For purely homodyne detection, the Siegert relation has the
form

g2(q, t) ¼ 1 + |g1(q, t)|
2. (3)

The above relation has also been generalised to mixed
homodyne and heterodyne detection.25,26 The eld autocorre-
lation function g1(q, t) will be the main object our interest.

In a wall-bounded system, the suspension is illuminated by
an evanescent wave, in which the electric eld decays expo-
nentially with distance from the boundary. Since we are inter-
ested in the dilute limit, we restrict to single-particle quantities,
as we described in detail in earlier works.27 The scattered elec-
tric eld has the form

Esðq; tÞ % E ûð Þexpfiq$rðtÞgexp
n
! k

2
zðtÞ

o
; (4)

where r is the position of the particle at a distance z from the
wall, having the orientation û. The orientation-dependent part
E (û) is the oriented dielectric tensor of the particle41

E (û) ¼ n̂s$3(û)$n̂0, (5)

where n̂0 and n̂s are the polarisation directions of the incident
and scattered light, respectively. Since we are interested in the
dynamics of a spherical colloidal particle, the only anisotropy
comes from its optical properties. The latter may be described
by introducing the dielectric tensor of the particle41

3 ûð Þ ¼ a1þ Da

#
ûû! 1

3
1

$
; (6)

with a and Da being the complex mean polarisability and
polarisation anisotropy of the particle, respectively. They are
related to particle polarisabilties a||,t in directions parallel and
perpendicular to its axis û by
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a ¼ 1

3

%
ak þ 2at

&
; Da ¼ ak ! at: (7)

The electric eld autocorrelation function is oen analysed
by means of its initial decay rate, called the rst cumulant

G ¼ ! lim
t/0

vg1ðq; tÞ
vt

: (8)

In the course of this paper, we shall derive exact expressions
for the rst cumulant in the case of a dilute suspension of
optically anisotropic spheres.

We rst note, however, that in the limit of innitely large
penetration depth, corresponding to k / 0, eqn (4) simplies,
and we recover bulk results, known from standard depolarised
dynamic light scattering (DDLS). In this case, the decay of g1(q,
t) for a dilute suspension of spherical particles is strictly expo-
nential in time

g1(q, t) ¼ exp(!G0t). (9)

The rst cumulant contains both rotational and trans-
lational contributions

G0 ¼ Gt
0 + Gr

0. (10)

The rotational part depends on the polarisation of the
incident and scattered light beam, encoded in unit vectors
n̂0 and n̂s. If we set the polarisation direction of the incident
beam to be n̂0 ¼ (1, 0, 0), we may distinguish two cases: (i) n̂s ¼
n̂0, referred to as VV-geometry, and (ii) n̂0$n̂s ¼ 0, called the
VH-geometry. In this case n̂s ¼ (0, ny, nz) and since it is a
unit vector ny

2 + nz
2 ¼ 1. In this notation the x-direction is

normal to the plane spanned by the wave vector of the scat-
tered ks and that of the incident light ki while the y-direction
is parallel to ki.

The rst cumulant in bulk has then the following parts,
given by Berne and Pecora41†

Gt
0 ¼ q2Dt

0, (11)

VH: Gr
0 ¼ 6Dr

0, (12)

VV: Gr
0 ¼

24jDaj2

45jaj2 þ 4jDaj2
Dr

0: (13)

Here, the bulk diffusion coefficients for a sphere in an
innite uid are given by

Dt
0 ¼

kBT

6pha
;Dr

0 ¼
kBT

8pha3
; (14)

where kB is the Boltzmann constant, T is the temperature, a is
the particle radius, and h is the viscosity of the solvent.

We would like to stress that there are two essential differ-
ences between a bulk DDLS experiment and an EWDLS
measurement. Firstly, in an evanescent eld the illumination
intensity varies on the length scales of the penetration depth
2/k, comparable to the size of particles. In the presence of an
evanescent wave, the strength of the electric eld incident on
the particle decreases exponentially with its distance from the
wall. Hence only the particles staying within distances of the
order of the penetration depth from the wall scatter enough
light to be detected. Secondly, since the boundary of the
system reects the ow caused by motion of the particles,
affecting their motion in return, the hydrodynamic mobility
of particles becomes dependent on their distance from the
wall. This fact, which we will discuss in detail in the next
section, has a major impact on the dynamics of the system.
The interplay between non-uniform illumination and hydro-
dynamic effects renders the interpretation of measurements
much more involved.

3 Near-wall diffusion of a spherical
particle – theoretical description
We consider a dilute suspension of spherical Brownian particles
of radius a bounded by a hard wall at z ¼ 0 (see Fig. 1). In this
case, the problem reduces to a single-particle one, and the
systemmay be described in terms of the probability distribution
P(X, t) of nding the particle in conguration X at time t, with
X ¼ (r, û), where r is its position vector, and û is a unit vector
specifying the orientation of the particle, which is given by its
main optical axis, in accordance with eqn (6). The normal-
isation reads

Ð
dXP(X, t) ¼ 1, (15)

where dX ¼ drdû. The integral over X ins taken with respect to
the position of the particle r over the wall-bounded half-space,
and to and its orientation û over a spherical unit surface. This
probability density obeys the Smoluchowski equation of the
form42

v

vt
PðX ; tÞ ¼ LPðX; tÞ: (16)

Fig. 1 The geometry of the system. A single particle, placed in r and
having the orientation û, diffuses near a planar hard wall at z ¼ 0. The
z-direction is given by a unit vector k̂ h êz.

† In Section 7.3 of the book by Berne and Pecora,41 only the full expressions for the
translational and rotational parts of g1(q, t) in bulk are given. To arrive at eqn
(11)–(13), one has to calculate their derivatives at t¼ 0, in accordance with eqn (8).
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The Smoluchowski evolution operator L may be written as

LP ¼ VX$D$[bP(VXF) + VXP], (17)

where b ¼ 1/kBT, and D is the 6 ' 6 diffusion matrix. The
gradient operator is dened as

VX ¼
#
v

vr
; L

$
: (18)

The rotational operator may be written in terms of the
particle orientation as42

L ¼ û' v

vû
; (19)

where
v

vû
is the gradient operator with respect to the Cartesian

coordinates of û. Finally, the 6 ' 6 diffusion matrix D can be
related to the particle mobility matrix m by the uctuation–
dissipation relation

D ¼ kBTm. (20)

Themobility matrix m relates the force F and torque T exerted
on the particle to its linear and angular velocities, U and U, as

#
U
U

$
¼ m$

#
F
T

$
: (21)

The mobility matrix m consists of four 3 ' 3 submatrices,

m ¼
#
mtt mtr

mrt mrr

$
; (22)

where the indices tt and rr denote the translational and rota-
tional parts, respectively. The tr and rt matrices describe the
coupling between translational and rotational motion.

For an unbounded suspension, the diffusion tensors become
proportional to the isotropic unit tensor 1

Dt
0 ¼ Dt

01, D
r
0 ¼ Dr

01, (23)

and the tr and rt coupling tensors vanish.
In the wall-bounded system, due to hydrodynamic interac-

tions with the wall, all the diffusion coefficients depend on the
wall–particle distance z. However, due to the spherical shape of
the particle, its hydrodynamic properties are independent of the
orientation. From the symmetries of the system, one concludes
that the translational and rotational diffusion tensors have the
following structure

Dtt ¼ Dt
t(z)k̂k̂ + Dt

k(z)(1 ! k̂k̂), (24)

Drr ¼ Dr
t(z)k̂k̂ + Dr

k(z)(1 ! k̂k̂), (25)

Dtr ¼ Dtr(z)3$k̂, (26)

Drt ¼ Drt(z)3$k̂, (27)

where k̂ is a unit vector normal to the wall, pointing into the
uid, 1 is the identity matrix, and 3 is the Levi-Civita tensor.

In addition, the translational–rotational parts obey the
relation

Dtr ¼ (Drt)T, (28)

where T denotes transposition. Hence we conclude that Dtr ¼
!Drt. With all the symmetries described above, we have written
the Smoluchowski equation for this case in a more explicit form
in Appendix B.

As the particle approaches the wall, the components of its
mobility matrix, except for Dr

t, decrease to zero at contact due
to hydrodynamic interactions. The coefficient Dr

t attains a
nite value of

Dr
tðz ¼ aÞ ¼ Dr

0

1

zð3Þ ; (29)

with z being the Riemann zeta function, for which 1/z(3) z
0.832. The dependence of the components of the mobility
matrix on the wall–particle distance has been evaluated in
numerous works, starting with approximate solutions from over
a century ago by Lorentz43 and Faxén,44 followed by later
calculations of Brenner et al.34,37,38,45 and Dean and O'Neill.35,36

These works, however, present only coarse approximations,
valid for moderate wall–particle distances, and only for certain
parts of the mobility matrix. More recently, full solutions in
form of power series in inverse wall–particle distance t ¼ a/z,
have been obtained using high-precision numerical schemes
based on the multipole method by Cichocki and Jones.29 The
latter work provides us with the most convenient form of these
relations using the Padé approximants to incorporate both far-
eld effects and lubrication. Moreover, it contains all parts of
the mobility matrix. We shall therefore use this representation
for further calculations. For clarity, we introduce dimensionless
mobility coefficients, rescaling them by the appropriate bulk
values

Fig. 2 The rescaled diffusion coefficients, defined in eqn (24)–(27) and
(30), plotted as functions of dimensionless inverse distance from the
wall t ¼ a/z. As t / 1, the diffusivities other than Dr

t vanish, becoming
nonanalytic at t ¼ 1. The effect of coupling, vanishing both at contact
and far away from the wall, reaches its maximum of ca. 0.05 very close
to the wall.
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~D
t

k;t ¼
Dt

k;t

Dt
0

; ~D
r

k;t ¼
Dr

k;t

Dr
0

; ~D
tr ¼ Dtr

aDr
0

: (30)

We plot the dimensionless diffusion coefficients in Fig. 2 as
functions of the inverse distance from the wall. It is worth
noticing that the translational components of the diffusion
matrix are more affected by hydrodynamic interactions than the
rotational ones. The effect of translation–rotation coupling is
usually small, although it becomes nonnegligible when the
particle approaches the wall.

4 Short-time dynamics – derivation
of the first cumulant
We start from a general expression for a time correlation
function of two arbitrary phase-space functions f and g42

hf(t)g(0)i ¼
Ð
dXf(X)exp{L t}[g(X)Peq(X)], (31)

where the equilibrium probability distribution Peq is given by
the wall–particle interaction potential F(X) as Peq % e!bF(X), and
X ¼ (r, û), as dened before. Here we follow the notation and
way of derivation outlined in earlier work of Cichocki et al.21 We
note that the electric eld correlation function g1(q, t), dened
in eqn (2) is identical to eqn (31) with,

f ðXÞ ¼ Esðq;XÞ ¼ E ûð Þexpfiq$rgexp
n
! k

2
z
o
; (32)

g(X) ¼ f*(X), (33)

in accordance with eqn (4).
Now, since we are interested in short-time dynamics, we

approximate the exponential operator in eqn (31) to leading
order in time

exp{L t} z 1 + L t + O (t2). (34)

The expressions for the rst cumulant are most conveniently
evaluated by noting that using eqn (17), and performing a
partial integration, we may write

Ð
dXf(X)L [g(X)Peq(X)] ¼ !

Ð
dXPeq(X)[VXf(X)]$D$[VXg(X)], (35)

where the action of gradient operators is restricted to square
brackets. Due to the particular structure of the diffusion tensor
(22), the Smoluchowski operator can be decomposed into four
parts

L ¼ L tt + L tr + L rt + L rr. (36)

From now on, we will also drop the double index in tt and rr,
simply writing t and r instead. With the help of (35), we can
write the four contributions to the rst cumulant as

Gt ¼ hVEs$D
tt$VE*

si/h|Es|
2i, (37)

Gr ¼ hLEs$D
rr$LE*

si/h|Es|
2i, (38)

Gtr ¼ hVEs$D
tr$LE*

si/h|Es|
2i, (39)

Grt ¼ hLEs$D
rt$VE*

si/h|Es|
2i, (40)

where the averages are taken with respect to the equilibrium
probability distribution Peq. For brevity, we dropped the argu-

ments of Es and denoted V ¼ v

vr
. From the symmetry of the

diffusion tensors (28) and the fact they depend solely on the
distance to the particle from the wall and not on its orientation,
it follows in a straightforward calculation that

Gtr + Grt ¼ 0, (41)

in both VH- and VV-geometry. The proof of this fact can be
found in Appendix A. The rst cumulant simplies then to

G ¼ Gt + Gr, (42)

and one may write explicit expressions for the translational and
rotational parts

Gt ¼ !
(#

iq! k

2
k̂

$
$Dtt$

#
iqþ k

2
k̂

$)

k

; (43)

Gr ¼

(ð
dû LE ûð Þ½ )$Drr$ LE* ûð Þ½ )​

)

kð ​
dû

++E ûð Þ
++2

; (44)

where the exponentially weighted ‘k-average’ is dened as

hAik ¼

ðN

a

dze!kðz!aÞe!bFðzÞAðzÞ ​

ðN

a

dze!kðz!aÞe!bFðzÞ ​
: (45)

The rotational operator acting on the oriented dielectric
tensor may be explicitly written as

LE (û) ¼ L(n̂s$3(û)$n̂0) ¼ Da[(n̂s$û)û ' n̂0 + (n̂0$û)û ' n̂s]. (46)

We shall now decompose the scattering vector q into its
components parallel and perpendicular to the wall

q ¼ qtk̂ + qk. (47)

Evaluating eqn (43) and (44), we nd the well-known
expression for the translational contribution27

Gt ¼
!
Dt

k
"
k
qk

2 þ
!
Dt
t

"
k

#
qt

2 þ k2

4

$
; (48)

which is independent of the scattering geometry. The expres-
sions for the rotational contribution, depending on the VV or
VH alignment of the experimental setup read28

Gr
VH ¼ hDr

kik(2 + 3nz
2) + hDr

tik(1 + 3ny
2), (49)

Gr
VV ¼ 12jDaj2

45jaj2 þ 4jDaj2
,!

Dr
k
"
k
þ
!
Dr
t

"
k

-
: (50)
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Interestingly, in the VH geometry, due to normalisation of g1 so
that g1(0) ¼ 1, the rotational component is independent of the
optical properties of the particle. In the VV geometry, the pre-
factor depends on the characteristic polarisability properties of
the material.

The expressions (48)–(50) are valid for an arbitrary potential
of direct sphere–wall interactions. We will now restrict to hard–
core interactions, so that F¼ +N when there is overlap between
the sphere and the wall, and F¼ 0 otherwise. Then, the average
(45) reduces to

hAik ¼ k

ðN

a

dze!kðz!aÞAðzÞ: (51)

To provide a fast predictive tool, we have tabulated the
k-averaged diffusion coefficients in Table 1. This allows for a
convenient evaluation of theoretical predictions for the initial
decay rate of g1(q, t), without the need to use expensive
computer simulations. For the numerical integration of diffu-
sion coefficients, we have used the expressions for the hydro-
dynamic interaction functions by Cichocki and Jones.29 The
values of the cumulants can now be reproduced from eqn (48)–
(50) by using the averaged values of the diffusion coefficients
from Table 1.

It is worth noticing that for small penetration depths (cor-
responding to large values of ka), the averaged diffusion coef-
cients tend to their contact values at z ¼ 0. It can be
understood, as in this regime only the near-wall region is

illuminated and only particles in the proximity of the boundary
contribute to the measured correlation function, and in
consequence the hindrance effects of the wall are more
pronounced. In general, the scaled values of averaged rotational
diffusion coefficients are larger than the translational ones due
to a much weaker dependence of Drr on the distance from the
wall, compared to the tt part, as presented in Fig. 2.

In the limit k / 0, corresponding to an innite penetration
depth, all of the above described quantities should converge
towards their bulk DLS analogues. Indeed, our nal results, eqn
(48)–(50), reduce to well-known expressions from bulk scat-
tering, given in eqn (11)–(13).

5 Beyond the first cumulant –
numerical predictions
The decay of g1(q, t) for longer times, when the approximation
by the rst cumulant fails, is less understood, since there seems
to be no exact expression for the decay rate. The relaxation of
the correlation functions in EWDLS beyond the rst cumulant
may be studied by means of higher cumulants. This, however,
may not always be possible due to their divergence. The higher
cumulants contain higher-order derivatives of the diffusion
coefficients, integrals of which are divergent due to the
nonanalytic behaviour of those derivatives at contact with the
wall, resulting from lubrication. We have discussed this matter
in more detail in our earlier work.27 To infer knowledge about
the longer-time decay of g1, we have therefore decided to employ
a numerical Brownian dynamics scheme.

In our numerical simulations, we calculate the electric eld
correlation function g1(q, t) by averaging the expression (2) over
many trajectories of a Brownian particle in its conguration
space X ¼ (r, û). We typically generated N ¼ 105 trajectories to
obtain a statistical error of the order of 1%. The starting points
are distributed initially according to an exponential weight
e!kz/2. The statistics are then improved by exploiting the Markov
property of diffusion processes, which allows multiple use of
the same trajectories with different moments of time taken as
starting points.46

The Brownian dynamics technique47 relies on numerical
integration of the Langevin equation, corresponding to the
relevant Smoluchowski equation.48,49 Explicit expressions for
the Brownian dynamics increments to position and orientation,
given in general by Dickinson et al.,50 are discussed for a sphere
in the presence of a wall in the work of Jones and Alavi.51 Details
of the algorithm are given in Appendix B. The length scale in the
problem is set by the particle radius a, while the time scale is
related to the structural relaxation time s ¼ a2/Dt

0, i.e. time
needed by the particle to diffuse over a distance of its own
radius.

Comparison of the approximation by the rst cumulant and
BD simulation is presented in Fig. 3. Due to the presence of an
additional relaxation mode, Grr, the decay of g1 is generally
faster than compared to isotropic spherical particles exhibiting
only translational motion. This effect is, however, much more

Table 1 Components of first cumulant approximation to g1(q, t) for
hard–core interactions between the wall and the particle obtained by
numerical integration of distance-dependent diffusivities of the
particle near a wall. The coefficients are given here in the dimen-
sionless form, in accord with eqn (30)

ka

Translational
coefficients Rotational coefficients

h~Dt
kik h~Dt

tik h~Dr
kik h~Dr

tik

0.1 0.884 0.781 0.983 0.994
0.2 0.831 0.682 0.968 0.989
0.3 0.791 0.612 0.954 0.983
0.4 0.761 0.559 0.942 0.979
0.5 0.736 0.516 0.931 0.976
0.6 0.715 0.481 0.920 0.971
0.7 0.697 0.451 0.910 0.968
0.8 0.681 0.425 0.901 0.965
0.9 0.667 0.403 0.892 0.962
1 0.654 0.383 0.884 0.960
1.1 0.643 0.365 0.876 0.957
1.2 0.632 0.349 0.868 0.955
1.3 0.622 0.335 0.861 0.952
1.4 0.614 0.322 0.854 0.949
1.5 0.605 0.310 0.848 0.947
1.7 0.591 0.288 0.836 0.944
1.9 0.578 0.270 0.825 0.940
2 0.572 0.262 0.820 0.939
5 0.473 0.140 0.716 0.907
7 0.442 0.108 0.677 0.896
9 0.420 0.088 0.647 0.888
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pronounced for VH-scattering, since the rotational contribution
is independent of the dielectric properties of the particle.

6 Experimental details
6.1 Samples and Instrumentation

Experiments were performed on optically anisotropic spheres
(Ausimont) made of a copolymer of tetrauoroethylene (TFE)
suspended in an aqueous NaCl-solution, with a salt concen-
tration of 10 mmol l!1, corresponding to a Debye screening
length of 3 nm. This is sufficiently small to allow approximation
of the interactions between the colloids and the wall by a hard
core potential. The particles were dialysed extensively against
10!2 mol l!1 NaCl solution to ensure that all surfactants from
the emulsion polymerisation were removed and therefore no
steric stabilisation layers are present. The refractive index and
the viscosity of the solvent were approximated by the values for
water, that is n2 ¼ 1.33 and h¼ 1 mPa s at T¼ 293 K. The radius
of the particles was determined by bulk depolarized dynamic
light scattering (DDLS) measurements to be a ¼ 112 nm with a

polydispersity of less than 10 percent, as indicated in Fig. 4. The
fact that rotational and translational diffusion coefficients yield
the same hydrodynamic radius when introduced into eqn (14)
prove that the particles are of spherical shape.

In EWDLS experiments, laser light of vacuum wavelength l0,
incident on the glass wall of the container lled with suspen-
sion at a great angle ai larger than the critical angle of total
reection, undergoes total internal reection resulting in an
evanescent wave entering the sample. The electric eld strength
of this wave decreases with the distance z from the wall as
exp(!kz/2), where the penetration depth 2/k is given by

2

k
¼ l0

.
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1 sin aiÞ2 ! n22

q
; (52)

with n1, n2 being the refractive indices of glass and solvent,
respectively. By varying the incident angle, the penetration
depth can be tuned, typically in the range of 100–800 nm. The
scattering vector q ¼ ks ! ki is the difference between the
evanescent and scattered light wave vectors, ki and ks. For the
needs of this analysis we decompose it into the components q||,
qt, parallel and perpendicular to the wall, respectively, as
dened in eqn (47). In the EWDLS setup constructed in For-
schungszentrum Jülich (Germany), these components can be
independently changed by varying the angles ar and q, where ar
is the angle between the vector ks and the wall, and q is the angle
between the projection of ks on the wall and ki (see Fig. 5). The
angles and the components of q are related by

qk ¼ 2pn2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos2 ar ! 2 cos ar cos q

p .
l0; (53)

qt ¼ 2pn2 sin ar/l0. (54)

In the present study we decided not to make use of this
feature, since also the polarization vector of the scattered light
depends on the scattering angles by

Fig. 3 Comparison of approximation by the first cumulant (9) and the
BD simulation. Here, we assumed |a| ¼ |Da| ¼ 1 and ny ¼ nz ¼ 1=

ffiffiffi
2

p
in

VH mode. In both cases the decay may be accurately described by the
first cumulant even for moderate times– up to 0.5 of the initial value of
g1 for VV, and even for longer times for VH-geometry. The decay is
generally faster in the VH case, as the additional rotational relaxation
mode is more pronounced. The statistical error of simulation data is of
the order of point size.

Fig. 4 The first cumulant Gmeasured as a function of q2 in bulk DDLS
experiments in VV and VH geometry. From the slopes of the depen-
dencies, and the intercept of the VH curve, in accord with eqn (11)–
(13), one may calculate the hydrodynamic radius of particles from the
relevant diffusion coefficients (14), which confirms the spherical shape
of the particles.
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n̂s ¼

0

@
!sin ar sin q cos aþ cos q sin a

!sin ar cos q cos a! sin q sin a

cos ar cos a

1

A; (55)

with a being the angle between the analyser transmission
direction and the plane spanned by the wave vector of the
scattered light and its projection onto the reecting surface, as
indicated in Fig. 5 (see also ref. 28). Therefore, it is rather
cumbersome to maintain VV- or VH-geometry, while scanning
only one of the scattering vector components. We rather choose
to keep q ¼ 0 and scan only ar from 30 to 130 degree.

Hence, the decay rates of the measured correlation function
depend on the penetration depth and two components of q.
Small values of k!1 correspond to probing near-wall motion,
while for larger values the results converge towards their bulk
values. Relative magnitudes of the components of the scattering
vector distinguish between measurements of diffusion along
the wall (large q||), or towards and away from the wall (large qt).

6.2 Data analysis

Compared to conventional DLS experiments, the analysis of
correlation functions measured in EWDLS is usually hampered

by two problems. Firstly, there is always a static contribution to
the scattered intensity, which originates from surface rough-
ness and small impurities. This leads to a mixing of homodyne
and heterodyne detection. To account for this, a general
formulation of the Siegert relation has to be used to relate the
eld correlation function g1(t) to the measured intensity corre-
lation function g2(t)

g2(t) ¼ 1 + 2C1g1(t) + (C2g1(t))
2 (56)

where C2 ¼ 1!
ffiffiffiffiffiffiffiffiffiffiffi
1! A

p
and C1 ¼ C2 ! C2

2, with A being the
intercept of g2(t).26 Secondly, EWDLS correlation functions oen
exhibit a very slow decay at large times. Although the physical
origin of this slow relaxation has not been claried yet, it was
conjectured that the slow decay is due to inevitable stray-light
originating from surface corrugations which is scattered into
the detector by solute particles. The scattering vector of this
contribution, qadd would be roughly two orders of magnitude
smaller than the regular scattering vectors for the given setup.27

Accordingly, the scattered eld which is detected contains an
additional contribution with the phase qadd$r(t), and the cor-
responding correlation function will show an additional expo-
nential relaxation at long times. Therefore we t the long time
part of the experimental TCF, typically at t > 10 ms, by an
exponential and subtract this contribution from the experi-
mental data, which results a TCF which decays to g2(t) ! 1 ¼
0 for large times. Subsequently the initial part (t < 0.2 ms) of the
resulting TCF is tted with

g2(t) ¼ 1 + 2C1 exp{!Gt} + (C2 exp{!Gt})2 (57)

to determine the rst cumulant, G.

7 Results
Examples for the initial part of typical correlation functions are
shown in Fig. 6. There we compare experimental data obtained at
different scattering geometries to theoretical rst cumulant
predictions, and simulations. The measured intensity TCFs were
non-linear least squares tted using the procedure described in
Section 6.2, and the obtained parameter values were used to
calculate the normalised eld correlations functions, g1(t), shown
in the plots. The simulation data, which were calculated free of
adjustable parameters match the experimental data almost
perfectly down to a correlation level of ten percent. Somewhat
surprisingly, the rst cumulant predictions agree very well with the
experimental and the simulated data up to long times, which we
demonstrate for a chosen set of data in Fig. 7. It is expected that
the variation of the particles' diffusion coefficients along the
z-direction, in combination with the evanescent illumination
prole, causes a deviation of the TCF from a single exponential,
similar to the deviation observed for TCFs obtained from samples
with a large size polydispersity in bulk. However, if the penetration
depth in an EWDLS experiment is small, as in the present case, the
distribution of diffusion coefficients within the illuminated
volume is small and consequently the correlation functions will
deviate signicantly from a single exponential only at large times.

Fig. 5 The geometry of EWDLS setup. (a) The illuminating light is the
evanescent wave, which has the wave vector ki, while the detector
records light scattered in the direction of ks. Note that here the x-
direction is normal to the plane spanned by the primary and the totally
reflected beam, while the z-direction is normal to the reflecting
interface. (b) The angles ar and q define the scattering vector, while a is
the angle between the detector transmission direction and the plane,
marked in blue, spanned by the wave vector of the scattered light and
its projection onto the reflecting surface. The latter angle determines
the scattering geometry (VH or VV).
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The rst cumulant values obtained from the data tting are
shown in Fig. 8. In the top part we plot G in dependence of the
total scattering vector magnitude squared, while in the bottom

part the cumulants are plotted versus nz
2. From both represen-

tations it is obvious that the parameter-free predictions for the
rst cumulant describe the experimental data correctly.
Although the experimental data are scattered, it is obvious, that
they follow the non linear variation with qtotal

2, which is pre-
dicted by the theory. This non-linearity is due to the fact that
qtotal z qt for low scattering angles, while at high angles q|| is
the dominating component. Accordingly, values of G are
dominated by the diffusion normal to the interface at low qtotal
while at high qtotal the diffusion parallel to the interface is
prominent.

The expressions for the rst cumulant in EWDLS (48)–(50)
and DDLS (11)–(13) reect an important distinguishing prop-
erty – even for large optical anisotropy, the amplitude of the
rotational contribution in the VV case is much smaller than in
the VH case. From bulk SLS measurement we determine the
ratio of averaged scattered intensities to be IVH/IVV z 1/20.
Since41

IVH
IVV

¼ jDaj2

15jaj2 þ 4

3
jDaj2

; (58)

we may then use this ratio and eqn (49) and (50) to estimate
the rotational contribution to G in the VV case to be of the
order of 5% at (qa)2 z 2 and decreasing with increasing qa.

Fig. 6 Normalized electric field correlation functions g1(t) recorded with different scattering geometries as indicated in the individual headlines.
Blue circles are experimental data, red squares are simulation results and the full lines are theoretical first cumulant predictions, i.e. exp(!Gt).

Fig. 7 Longer time decay of g1 – comparison of experimental data
(blue circles), results of the BD simulations (red squares) and predic-
tions by means of the first cumulant. Results are presented for a
chosen set of parameters. The agreement is good even for moderate
times.
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Therefore, as this ratio is not very large, we might approxi-
mate the rst cumulant in VV-geometry not to have any
rotational contribution. One can then measure the sole rota-
tional component in the VH case, described by eqn (49), by
measuring the full initial decay rate in VH and VV and sub-
tracting one from the other

Gr
VH z GVH ! GVV. (59)

In this way, at the level of the rst cumulant, translations
and rotations may be decoupled and therefore purely rotational
properties become experimentally accessible.28

The rotational contribution to the TCF relaxation, Gr
VH is

plotted vs. nz
2 in Fig. 9. As these data represent the difference of

two sets of experimental results, which each have a relative error
of ve to ten percent, the Gr

VH are rather scattered. Nevertheless,
they show the linear trend predicted by eqn (49), which is added
as a solid line to the graph. Since nz2 + ny

2 ¼ 1, eqn (49) may be
reformulated as

Gr
VH ¼ 2hDr

kik + 4hDr
tik + 3(hDr

kik ! hDr
tik)nz2 (60)

indicating that averaged rotational diffusion constants can be
determined from the intercept and the slope of a linear
regression of Gr

VH vs. nz
2. In Fig. 9, a linear t to data results in a

fair agreement with theoretical predictions, with both diffusiv-
ities differing by less than 8% from the theoretical predictions.

8 Conclusions
In this article, we have presented a broad perspective on the
theoretical framework, within which it is possible to derive
exact expressions for the translational and rotational contri-
butions to the rst cumulant of the electric eld correlation
function, which can be measured in experiments on wall-
bounded colloidal suspensions at low densities. We have
demonstrated the importance of some inherent features of
evanescent wave dynamic light scattering, including the effects
of non-uniform illumination of the sample, and the hindrance
of particles' diffusivities near a hard boundary. The averaged
diffusion coefficients, which we have calculated and presented
in a table for a wide range of penetration depths, constitute a
practical tool for experimentalists, as it provides a convenient
way to calculate the rst cumulant, using the expressions given
in the paper.

In order to investigate the quality of approximation by the
rst cumulant, and to go beyond its applicability, we have also
developed a Brownian dynamics simulation, predictions of
which have been found in good agreement with the rst
cumulant, as well as with the experimental data measured on a
dilute suspension of optically anisotropic spherical colloids
using an EWDLS setup in Jülich (Germany).

Finally, by removing the slow mode contribution from the
experimental data to account for the effects of a nonzero base-
line, we have found very good agreement between theoretical
predictions and experimental results, free of adjustable
parameters. This in turn gives us the possibility to extract the
averaged diffusion coefficients, both translational and

Fig. 8 First cumulants vs. the total scattering vector squared (top) and
vs. the z-component of the scattered light polarization vector squared
(bottom). Symbols are experimental data obtained in VV (red triangles)
and VH (blue circles) while the lines represent theoretical predictions
for the first cumulant.

Fig. 9 Rotational relaxation rate vs. the z-component of the scattered
light polarization vector squared. The points represent the experi-
mental data, as given by eqn (59), while the theoretical prediction
linear in nz

2, marked with the solid line, follows from eqn (60). A linear
fit to data results in diffusion coefficients differing from theoretically
predicted hDr

kik and hDr
tik by 5% and 7.5%, respectively.
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rotational, and opens a new way of determining the effects of
connement on colloidal dynamics experimentally.

Appendix A – vanishing of the tr and rt
parts of the first cumulant
We shall now prove that the coupling contribution to the rst
cumulant vanishes, Gtr ¼ Grt ¼ 0, independently of the scattering
geometry, provided that the dielectric tensor of the particle has
the form as in eqn (6). The starting point here is the expressions
for those contributions given in eqn (39) and (40). In those
expressions, due to the fact that the diffusion matrix and the
interaction potential depend only on the position of the particle
and not on its orientation, using the form of electriceld as in eqn
(5), one encounters angular averages involving the expression

E (û)LE*(û), (61)

and its complex conjugate. According to eqn (6), the quantity
E (û) contains an isotropic part proportional to a, and an
orientation-dependent contribution proportional to Da. Since L
can be regarded as differentiation with respect to angles
describing the orientation, we have

Ð
dûL(.) ¼ 0, (62)

for an arbitrary function of orientation. Using this property, we
immediately conclude that the isotropic part of E (û), producing
in eqn (61) a term proportional to LE*(û), averages out to zero.
Therefore only the anisotropic part contributes, resulting in an
expression Da(n̂s$ûû$n̂0)LE*(û). The rotational operator acting
on E (û) acts also only on the nonisotropic part, as the orienta-
tion-independent term vanishes under the action of a deriva-
tive. The result of this operation is proportional to the complex
polarisability anisotropy Da. Due to the structure of eqn (39)
and (40), in both terms we arrive at real-valued expressions

jDaj2 n̂s$ûû$n̂0ð ÞL n̂s$ûû$n̂0ð Þ ¼ 1

2
jDaj2L n̂s$ûû$n̂0ð Þ2; (63)

which again average out to zero.

Appendix B – Brownian dynamics
algorithm for a sphere near a wall
The Langevin equation,48 which lies at the root of Brownian
dynamics simulations, is usually obtained from the corre-
sponding Smoluchowski equation (eqn (16)). In case of a single
hard–core particle in a wall-bounded uid, we may use the
structure of the diffusion matrix D, given in eqn (24)–(28) to
rewrite the Smoluchowski equation in a more explicit form

vP

vt
¼ v

vz

#
Dt
tðzÞ

vP

vz

$
þDt

kðzÞ
#

v2

vx2
þ v2

vy2

$
PþDr

kðzÞLz
2P

þDr
tðzÞ

/
L2 ! Lz

2
0
Pþ 2DtrðzÞ$ðV' LÞzP;

(64)

where the versor k̂ indicates again the direction normal to the
wall, and we have denoted Az ¼ k̂$A for any vector A. The Euler
integration scheme basing on a corresponding Langevin

equation was given earlier by Jones and Alavi.51 Below, we briey
describe the update rules for the conguration X ¼ (r, û) of the
particle in a short period of time Dt. We use the dimensionless
units described in Section 5. In the following, we rescaled the
diffusivities by their bulk values, as dened in eqn (30). Suppose
the initial coordinates at the beginning of the step to be (r0, û0)
at time t0. In a time step of Dt the coordinates attain their new
values (r, û) in accordance with the following update rules

r ¼ r0 þ
d ~D

t

t

dz
k̂Dtþ st; (65)

û ¼ u0

ju0j
; (66)

where

u0 ¼ û0 !
3

4

,
~D
r

t ! ~D
r

k

-
uz;0

2û0 ! uz;0k̂
, -

Dtþ sr ' û0; (67)

with uz,0 ¼ k̂$û0. All the diffusivities on the right-hand side are
evaluated at the initial position z0. The random displacement
vector S ¼ (ast, sr) has to satisfy the conditions

hSi ¼ 0, hSSi ¼ 2DtD, (68)

where D is the diffusion matrix for a sphere at (r0, û0). The
explicit expressions for the noise term may be obtained by
performing standard47 Cholesky decomposition of the diffusion
tensor Dij ¼ BikBjk and generating six independent Gaussian
random variables fi having the stochastic properties

hfii ¼ 0, hfifji ¼ 2dijDt. (69)

The indices i ¼ 1, 2, 3 refer to translational components
along x, y, z, respectively, while i ¼ 4, 5, 6 describe the rotations
along these axes. We may now write the required noise terms as

si ¼
X6

j¼1

Bijfj ; (70)

where the components of B are given by51,52

B11 ¼ B22 ¼
ffiffiffiffiffiffi
~D
t

k

q
;B33 ¼

ffiffiffiffiffiffiffi
~D
t

t

q
;

B42 ¼ !B51 ¼ ! 3

4

~D
tr

ffiffiffiffiffiffi
~D
t

k

q ;

B44 ¼ B55 ¼
3

4

1ffiffiffiffiffiffi
~D
t

k

q
#
4

3
~D
t

k
~D
r

k !
%
~D
tr&2

$1=2

;

B66 ¼
1

2

ffiffiffiffiffiffiffiffiffi
3 ~D

r

t

q
:

(71)

We would like to emphasize that the routine presented here
can be simplied by reducing the number of degrees of freedom,
provided that we disregard the translational–rotational motion
coupling. Indeed, letting Dtr ¼ 0 in eqn (64), we arrive at an
equation describing rotational and translational diffusion with
only coupling encoded in the z-dependence of the diffusion
matrix. Wemay now proceed as follows – due to the translational
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invariance of the system in the parallel (xy) plane, we may
perform a two-dimensional Fourier transform in these direc-
tions, thus eliminating x and y in favour of q||, which is a xed
parameter. Therefore, the description reduces to three indepen-
dent variables (z, û) and eqn (64) reduces to a diffusion-reaction
equation with a sink. For purely translational motion, this
procedure has been described in detail in our earlier work.27

These results can be easily generalised to include rotations. The
simplied routine greatly reduces the time needed for simula-
tions. In this article, however, we have decided to perform full BD
simulation. The validity of the simplied scheme, with the
neglect of tr coupling, still needs further investigation.
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