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Hydrodynamic interactions with confining boundaries often lead to drastic changes in the diffusive
behaviour of microparticles in suspensions. For axially symmetric particles, earlier numerical studies
have suggested a simple form of the near-wall diffusion matrix which depends on the distance and
orientation of the particle with respect to the wall, which is usually calculated numerically. In this
work, we derive explicit analytical formulae for the dominant correction to the bulk diffusion tensor
of an axially symmetric colloidal particle due to the presence of a nearby no-slip wall. The relative
correction scales as powers of inverse wall-particle distance and its angular structure is represented
by simple functions in sines and cosines of the particle’s inclination angle to the wall. We analyse
the correction for translational and rotational motion, as well as the translation-rotation coupling.
Our findings provide a simple approximation to the anisotropic diffusion tensor near a wall, which
completes and corrects relations known from earlier numerical and theoretical findings. Published by
AIP Publishing. [http://dx.doi.org/10.1063/1.4958727]
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. INTRODUCTION

Boundaries and interfaces are omnipresent in the colloidal
world.! Geometric confinement introduces anisotropy in the
diffusive motion of sub-micron particles, and the presence of
neighbouring walls leads to a general slow-down of Brownian
motion due to hydrodynamic interactions of the diffusing
particle with boundaries.” The central quantity in this context
is the near-wall hydrodynamic mobility tensor g which is
related to the diffusion tensor D by the fluctuation-dissipation
theorem

D = kpTp. (D

Recent years have brought significant advancement in
experimental techniques which allows to explore near-wall
dynamics in more detail, including optical microscopy>™®
and scattering techniques, such as evanescent wave dynamic
light scattering.”"!! The latter is now a well-established tool
which has profitably been used to investigate translational'?
and rotational diffusion'®'* of spherical colloids in dilute
suspensions. Due to the complex nature of the experiments,
available experimental data for non-spherical particles such as
dumbbells'> or rods are still lacking proper interpretation.
It is therefore particularly important in this context to
understand the nature of hydrodynamic interactions of an
axially symmetric particle with a wall, and has partially
motivated this work. Axisymmetric particles moving close
to a boundary experience an additional anisotropic drag
force on top of their own friction anisotropy stemming
from their non-spherical shape. This coupling leads to a
complicated behaviour, observed, e.g., in simulations of
such particles sedimenting next to a vertical wall,'®!” with
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the mobility of the particle depending on its position and
orientation. Available predictions for the near-wall mobility
of an axisymmetric particle mostly feature a slender-body
approach, yielding quite complex results for general wall-
particle orientations near a wall'® or a fluid-fluid interface,'”
analysed in detail in the context of sedimentation in several
special alignments.”’ On the other hand, previous numerical
works involve boundary integral method,?! finite element
method,”” or stochastic rotation dynamics®® from which
empirical relations are extracted. The lack of theoretical
predictions for the near-wall mobility of a rod-shaped and
non-slender particle in an arbitrary configuration requires the
use of more precise numerical methods. A possible way is to
use advanced algorithms involving bead-models which take
into account lubrication when the particles come close to the
interface,?* which are rather costly.

In order to fill this gap, in this work we derive a general
form of the dominant correction to the bulk friction tensor
due to the presence of a nearby no-slip wall from which
the mobility tensor is calculated. This allows to verify and
correct earlier predictions in terms of distance and orientation
of the particle. Importantly, the correction is valid for all
axisymmetric particles, not just slender ones, provided that
their bulk hydrodynamic properties are known. Our analysis
leads to a convenient representation of the mobility tensor in
situations when the particle is moderately far from the wall.

For the characteristic length of the body L, the relative
correction scales as (L/H)®, where H is the wall-particle
distance, and the exponent « =1,2,3 depends on the
component of the friction matrix (translational, rotational,
or coupling terms). We provide explicit analytical expressions
for the dominant correction to bulk translational and rotational
parts of the friction tensor which are the main result of the
paper. We use them to calculate the corrections to the friction

Published by AIP Publishing.
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tensor of an axially symmetric particle explicitly in terms of H
and the particle’s inclination angle 6. By inverting the friction
tensor, we then calculate the near-wall mobility tensor.

The paper is organised as follows. First, we introduce the
notion of friction and mobility tensors for a colloidal particle
in Sec. II. In Sec. III, we sketch the idea behind the derivation
of the correction, which is then given explicitly in Sec. IV
for axially symmetric particles. The theoretical predictions
are compared to numerical simulations for an exemplary case
in Sec. V, followed by conclusions in Sec. VI. Appendix A
contains the details of the multipole method and a description
of the simulation method. Details of the derivation of the
correction are given in Appendix B.

Il. NEAR-WALL FRICTION AND MOBILITY TENSORS

We consider a single colloidal particle immersed in an
incompressible Newtonian solvent of shear viscosity 1. The
configuration of the system is described by the position of
the centre of the particle R and its orientation which, for an
axially symmetric particle, is specified by the unit vector G
pointing along the particle’s symmetry axis. On the colloidal
length scales and for time scales typical, e.g., for scattering
experiments, inertia of the fluid and the particle can be
neglected. The flow field v(r) around the particle is then
described by the stationary Stokes equations

nVv(r) - Vp(r) = ~f(r),  V-v(r)=0, 2)

where f(r) is the force density the particle exerts on the fluid
when subjected to flow, and p(r) stands for modified pressure
field which includes the effect of gravity. The flow disturbances
caused by the presence of the particle in confined geometry
are affecting the motion of the particle itself. These dynamic,
solvent-mediated hydrodynamic interactions (HI) are long-
ranged and have a pronounced effect on the dynamics of
colloidal systems. This flow field may be superposed with an
ambient linear flow v((r) satisfying the homogeneous Stokes
equations, with the vorticity and rate of strain defined at a
point r as

wo(r) = 3V xvo(r),  Eo(r) = Vv(r), 3)

with the bar denoting the symmetric and traceless part.

Given the force density, one can calculate the force,
torque, and symmetric dipole moment (stresslet) exerted by
the fluid on the particle according to

F=- /2 drf(n), )
T:—/Zdr(r—R)xf(r), (5)
S=- /2 dr (r — R)f(r), (6)

where the integrals are performed over the particle surface X.
Higher-order moments are defined in an analogous way. In
result of the external flow, motion is induced, and the particle
gains linear and angular velocities, V and €, respectively.
Owing to linearity of the Stokes equations, the force moments
F, T, and S, are linearly related to the velocity moments via
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the generalised friction (or resistance) tensor>>2

F {rt gtr gtd VQ(R) -V
T|=|¢" ¢ ¢ ||w®)-Qf. (7
S {dt {dr é«dd EQ(R)

Above, we have decomposed the generalised friction tensor
into 9 sub-matrices. The indices 7z and rr denote the
translational and rotational parts, respectively. The tensors
{"" and " describe the translation-rotation coupling, and the
tensors with superscript d describe the response of the particle
to an external elongational flow. In most cases, it is sufficient
to consider only the 6 X 6 friction matrix ¢ relating the force
and torque to linear and angular velocities. Here, we extend
the friction matrix to the symmetric dipole moment subspace,
since these elements turn out to be essential for the calculation
of the correction to the friction matrix in the presence of a
wall.

In a complementary problem, if the forces and torques are
known, the particle motion may be resolved by determining
the mobility tensor u which is related to the friction tensor by
inversion,

-1
”tl‘ ﬂtr é” {tr .
H (Hrt urr) (é»rt éwrr) ( ( )

Using the Lorentz reciprocal theorem,” one may prove the

symmetry properties of the mobility tensors. In a bulk system,
the mobility tensor and the friction tensor, denoted by g and
{o, respectively, do not depend on the position of the particle
due to translational invariance.

The situation is different if a confining boundary is
present, since symmetry is broken and the hydrodynamic
tensors depend both on the distance to the boundary and
on the relative orientation of the particle with respect to the
surface. The friction tensors of a near-wall particle, {,,, may
be written as

§w=§0+A§w‘ (9)

In the course of this work, we derive analytic formulae for
the first-order approximation to A{,, with the expansion
parameter being L/H, the ratio of the characteristic size of
the particle, L, to the wall-particle distance H. By inverting
¢y from Eq. (9), we arrive at a convenient approximation to
the near-wall mobility pu,, = ¢;!.

lll. METHOD OF THE DERIVATION

In order to determine the flow around a particle in a
half-space bounded by an infinite, planar wall at z = 0, one
has to solve Stokes equations (2) with the no-slip boundary
condition v = 0 at the surface. Due to linearity, Eq. (2) can be
transformed into the integral form

v(r) = vo(r) + / dr’ T(r,r’) - £(r"). (10)

For an unbounded fluid, the Green’s function T(r,r’)
= T(r — 1) is the Oseen tensor> To(r) = (1 + £F) /87nr, with
r =|r| and ¥ =r/r. In the presence of boundaries, the full
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Green’s tensor contains an additional part describing the
flow reflected from interfaces. For a hard no-slip wall, the
Green’s tensor has been first found by Lorentz?’ in 1907 as
T(r,r’) = To(r — ') + T, (r,r’), where the wall contribution
reads

T,(r,xr')=-Tor-r")-P

-
—2hé, - To(r — )V, - P,
+ PV 2Ty(r—r) - P (11)

for a point force at a distance & from a wall at z = 0. For a
free surface, the wall-interaction part only contains the first
term of the RHS of Eq. (11). Here, [a‘i]aﬁ = %a(, and
P =1 - é,€, denotes the reflection operator which transforms
any point into its mirror image with respect to the wall.
The asterisk denotes the mirror image, i.e., r’”* = P - r’. This
expression has been interpreted by Blake®® in terms of the
method of images for Stokes flows. The image system in this
case involves three fundamental singularities: the reflection of
the original Stokeslet and the so-called Stokeslet doublet and
source doublet. However, since their amplitude is proportional
to the wall-particle distance /&, asymptotically they die out with
distance r as 1/r. The tensor T, is often referred to as Blake’s
tensor. It can also be recast in different forms.>*

The idea of the derivation relies on the expansion of the
Blake’s tensor (11) about the line connecting the centre of
the particle and its hydrodynamic image. Thus the interaction
between any two points of the particle may be approximately
represented by the vertical component of the Blake’s tensor. By
considering the action of higher force moments, higher-order
flows incident on the particle can be found. Performing a
multipole expansion of the resulting flow field,> we project it
onto the force multipole space and eventually find the explicit
expressions for elements of the resistance matrix ¢, which
involve the elements of the bulk friction tensor {y and the
higher multipole elements of the Blake’s tensor. The details
of the derivation are presented in Appendices A and B. Below
we present specific results for an axially symmetric particle.

IV. DYNAMICS OF AXISYMMETRIC PARTICLES

It follows from symmetry properties that the bulk friction
matrix of a general axisymmetric particle has a particular
structure.”>3* Moreover, if the particle has both axial and
inversional symmetry @ < —@ (i.e., it is rod-like), its bulk
friction matrix in Eq. (7) simplifies, since £3", ¢3’, £i¢ and
{g ! vanish, i.e., translational motion is not coupled to torque
or elongational flow in the bulk case. The correction has the

following form:

o L 1, 1 1 -3

A = g 2™t G ™ T O (12
o 11 3

ALl = - —(ZH)ZB +O(H™), (13)
re_ 11 o 3

AL = -LLC +O(H™). (15)
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The form of the tensors A;,, B, C is derived from the
multipole expansion of the vertical (axial) component of the
Blake’s tensor (11) in Appendix B. As we have mentioned
in Sec. II, they depend on the ¢,r,d-components of the
bulk generalised friction tensor of the particle and the
particle’s orientation via the inclination angle 6. Explicitly,
we write them in the following for an axisymmetric
particle.

At contact, the elements of the friction matrix diverge
which is expected physically, although no lubrication effects
are included in this scheme. The mobility matrix is then
obtained by inversion p,, = {,!, and by that we assure that
the particle mobility decreases to a non-negative value at
contact, but in a way different than with lubrication effects
included.

We note that different elements of the friction matrix
behave differently with distance. The hydrodynamic effect
of the wall is most pronounced for translational motion
where A{!! ~ 1/H. Rotational motion is least affected with
A" ~ 1/H3. This is in contrast with earlier numerical
results due to Padding and Briels,”® whose empirical finding
was that both corrections scale as 1/H, with a simple
fitted angular dependence of the mobility components on
0. Our findings provide exact expressions for the angular
dependence, given as low-order polynomials in sinf and
cos 6, correcting the previous empirical formulae. The source
of the discrepancy lies in the inaccuracies of the numerical
methods used in Ref. 23. They are also in complete
agreement with the slender body expressions obtained by
De Mestre and Russel,’ for the cases 6 = {0,7} provided
that the slender body results for £/* and /" are used as
nput.

In order to discuss in detail the dependence of the
correction terms on the orientation of the particle, we introduce
two coordinate systems exploiting the symmetries of the
problem, as sketched in Fig. 4. The laboratory coordinate
system (LAB) consists of three basis vectors {&,,&,,8,}, with
the z-axis normal to the wall and the normal vector i = €,. The
particle resides in the xz-plane. The rod-wall (RW) system is
a body-fixed set of basis vectors {@,l, 1,0 5}, where @ is the
unit vector along the long axis of the particle, @i, is parallel
to the wall and perpendicular to the particle axis, and @,
completes the orthonormal basis. The basis vectors are then
given by i, = (i x @)/ [ X @] and G, = @, X G. We note
that cos 6 = i - .

For an axially symmetric particle, it is convenient to use
the representation of the mobility matrix in the RW frame,
in which the bulk tensors ¢** and {"" are diagonal. The
structure of the near-wall tensors is identical to that given
in Ref. 22. In the body-fixed frame of reference RW, the
correction tensors in Eqgs. (12)—(15) may be explicitly written
in terms of the inclination angle 6. In the formulae, we find
the elements of the bulk friction tensor of the particle, namely
the coefficients of translational and rotational friction in the
directions parallel and perpendicular to the body axis, given,
respectively, by ¢ = aa: g and (T =(1-00): L5,
where @ = {t,r} and : denotes double contraction. In addition,
the correction terms for rotational motion and rotation-
translation coupling contain the coefficient /9. As seen
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from Eq. (7), it quantifies the stresslet exerted on the
particle rotating with a prescribed angular velocity. These
coefficients can be taken from bulk results for friction of
axisymmetric particles. For ellipsoidal particles, analytical
expressions are available,” whereas for more complex
shapes the coefficient may be determined using bead-3' or
shell-models.*

Now we can write the tensors in Egs. (12)—(15) explicitly
in the body-fixed frame RW. For the translational part (12),
we find the correction’s angular dependence as

(§ﬁ)2(1 +cos?d) 0 —{{! sinfcos
Ar=-3 0 tshy 0 :
~{j¢isinfcos® 0 (£D)*(1+sin6)
(16)
9 Ay 0 Ay
Av=2| 0 An 0|, (17)
A, 0 Ap

with A = (£1)* and

A= ({ﬁ)3(1 +cos?0)% + ﬁ({ﬁ)zsinz 6 cos’ 6,
Ar = (£1)°(1 +sin”0)” + (£1)*¢ sin” 0 cos” 6, (18)
Ay = =LA+ cos’0) + £ (1 + sin® )] sin 6 cos 6.

We note here that since the axis perpendicular to
the rod and parallel to the wall (in the direction of
0;,) is invariant with respect to the LAB to RW frame
transformation, the middle element of the matrix above
is angle-independent. The translation-rotation coupling part
reads
0 ¢ + cos>6) sin 6 0
0 0 cosO|. (19)
0 —Z'(1+sin*@)cosd 0

3dr
B:{

Finally, the rotational tensor C in Eq. (15) is a sum of three
contributions and has the form

(§ﬁ)2(5 —3cos?0) 0 3¢ ¢ sinfcos O
C=-3 0 5(¢1)° 0
3¢| ¢ sinfcosé 0 (£7)%(5 = 3sin6)
300 0 0 £ sinf cos @
+ 0 —2£7(1 = 2cos*6) 0
£ sinfcos @ 0 2¢7cos* 0
0 0 0
dry2
—3(42 ) 0 3+cos’d—cos*d 0
0 0 1 +2cos*6
(20)

For completeness of the discussion, it is worth noting that
it is possible to find analytically the leading order behaviour
of the mobility functions by expanding the inverted friction
matrix (12)—(15). In this way, the dominant terms of the
correction may be evaluated as functions of 6 and indicate
very simple angular relations for the components, namely
low-order polynomials in sinf and cosf. However, as we
noted before, this is not an optimal strategy, since the mobility
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functions obtained by inversion may become negative when
the particle approaches the wall (H is small compared to L).
Therefore, it proves better to first calculate the wall-corrected
friction tensor, and then invert it to obtain the mobility
tensor.

V. NUMERICAL RESULTS

In order to assess the applicability range of the correction,
we compare our theoretical result to precise numerical
simulations using the HypromurmipoLE package.”* As a
representative test example, we consider a rod-like particle
of aspect ratio p = L/D =10 constructed out of N =10
spherical beads glued together along a straight line. For
the needs of demonstration, we choose one inclination
angle, w = cos @ = 0.5, implying the minimal contact distance
H = 0.275L. We plot the components of the mobility matrix
calculated using the procedure outlined above, and compare
them to the corresponding accurate numerical predictions.
To this end, we introduce the following notation in the
body-fixed RW frame.

Taking into account the invariant properties of the rod-
wall system and the Lorentz symmetry, we can write the

a —*—
02 B t T
b — b — -
d o
0 1 1 1 1 1 1 1
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

.o 06 ]
3 U
=
04 r k
al o
02 br A |
d"
O 1 1 1 1 1 1 1 1 1
0.1 02 03 04 05 06 07 08 09 1

(H/LY

FIG. 1. Comparison of the near-wall mobility of a rod of aspect ratio
p =10 at an angle cos #=0.5 to the wall, as predicted by the correc-
tion (solid lines) and precise HypromurLripoLE numerical simulations (data
points). The coeflicients are normalised by their corresponding bulk values,
so that they all tend to unity at H — co. Top: Diagonal elements of the
translational mobility matrix in the RW frame. Bottom: Rotational diagonal
elements.
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translational part of the mobility matrix as

a,(z,w) 0 ci(z,w)
iy (z,0;0) = 0 bi(z,w) 0o |, @n
c(z,w) 0 d(z,w)

where w =cosf. The matrix u""(z,@;fi) has a similar
structure with elements a,, b,, c¢,, and d,, respectively. In
both cases, the elements a, b, and d are even functions of w
and the elements c are odd ones. For the fr part, we have

0 ar(z,w) 0
ui(z,0;8) = | by(z,w) 0 cir(z,w) |. (22)
0 dtr(Z,LU) O

The elements a,, and b,, are even functions of w, while ¢;,
and d,, are odd ones. By taking the transposition of the above
matrix we get the (rt) part.

The diagonal components of the translational and
rotational diffusion tensor of the rod are plotted in Fig. 1.
They reveal that for translational motion in this particular
case the correction accurately represents the actual mobility
even up to H/L ~ 0.4, and the asymptotic inverse-distance
behaviour of the correction is evident. Similarly, the rotational

0.1 — T T T T T T

0.08

0.06

<:l/c1fJ

0.04

0.02 1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
H/L

-0.001 |3 :

-0.002 1

cr/c(r)
L]

-0.003 1

-0.004 1

-0.005 1

-0.006 L L L L L L L L L
01 02 03 04 05 06 07 08 09 1

HL)?

FIG. 2. Non-diagonal components of the near-wall translational and rota-
tional mobility tensors for the inclination angle cos 8 =0.5. The data points
are predictions of multipole simulations with lubrication included, while the
solid lines are predicted by our analytical formulae for the correction. The
coeflicients are normalised by bulk average values of the diagonal terms, e.g.,

t,r _ t,r t,r
Co TAH ML -
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o1l —m—0—
0.05 % -
.
..; - ;'Q;;v;;;;’v' """"""""""
5 )
=
=
=3 Y
o :_:: tr — e
; Ctr ———e
: dtr g
oq b 4

02 04 06 038 1 12 14 16 18 2
(H/LY

FIG. 3. Components of the translation-rotation coupling mobility tensor
p'” for the inclination angle cos @ =0.5. The data points are predictions
of multipole simulations with lubrication included, while the solid lines are

predicted by our analytical formulae for the correction. The coefficients are
normalised by a combination of bulk coefficients {/u’ u”. The deviations

are most pronounced in the coupling tensor. The overall values are, however,
rather small, not exceeding 5% for H =0.4L.

components are even less sensitive to the effect of the wall
due to the rapid decay of the HI for rotational motion. For
larger distances, the mobility matrix obeys the necessary
symmetries, with ' = d" and b" = d" asymptotically.

The presence of the wall introduces also a non-diagonal
component to the mobility tensors, which we depict in Fig. 2.
Normalised by the appropriate combinations of bulk mobility
coefficients, these elements are rather small. Nevertheless,
the numerical results are again in agreement with theoretical
predictions up to quite close wall-particle distances, both for
translations and rotations.

The translation-rotation coupling tensors become more
significant as the particle approaches the wall, as seen
from Fig. 3. Compared to the characteristic bulk quantities,
however, they seem to play a marginal role in this case.
With the derived correction, we are able to reproduce them
accurately again up to H/L ~ 0.5.

The comparison of the correction to numerical results
in the case of a relatively long (p = 10) rod-like particle is
quite favourable. Indeed, we expect the correction to work
even better for more slender particles, since it can be shown
analytically using the slender body results for the bulk friction
that the relative correction to the translational mobility tensor
(e.g., a'/a() decreases slowly with increasing aspect ratio as

1/log p.

VL. CONCLUSIONS

We have presented a simple analytical scheme which
allows for the representation of the near-wall friction and
mobility tensors of a rod-like colloid close to a planar
no-slip wall. The correction to bulk mobility, expressed in
terms of the bulk hydrodynamic properties of the particle,
is valid for general axially symmetric colloids, which need
not be slender. Our results show that the distance dependence
varies between the types of motion in focus (translational,
rotational, and ¢r-coupling). Moreover, we have demonstrated



034904-6 Lisicki, Cichocki, and Wajnryb

by analytical formulae that near-wall friction and mobility for
particles at moderate distances from the wall indeed depend
on their orientation via simple polynomials in sine and cosine
of the inclination angle 6, as conjectured by Padding and
Briels.”> By that we have also verified earlier theoretical
developments and recent numerical predictions.?? Our results
are in agreement with numerical calculations even in the case
when L/H ~ O(1), rendering them practical for large and
moderate wall-particle distances.
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APPENDIX A: THE MULTIPOLE EXPANSION

The idea of the multipole method relies on expressing
the force densities and velocities on the surfaces of many
spheres immersed in the fluid in the form of a boundary
integral equation, which is then projected onto a complete set
of multipolar solutions of the Stokes equations. The resulting
system of linear equations may then be truncated and solved
numerically for a conglomerate of spheres moving together.
By projecting the many-particle friction matrix obtained
in this way onto the subspace of rigid body motions of
the conglomerate, the friction tensor of a complex-shaped
particle is found. The method has been greatly developed
over the last decades, and is presented in more detail, e.g., in
Refs. 26 and 31.

With the use of the concept of induced forces due to
Bedeaux and Mazur,® the validity of the Stokes equations
(2) may be formally extended inside the particles by taking
an appropriate surface distribution of the forces f;(r) on the
surfaces of the particles i = 1,...,N. For the stick boundary
conditions, the velocities on the surfaces read

Vi(l') = V,‘ + Q,‘ X (I’ — R[), (Al)

and Eq. (10) on the surfaces of the particles takes the form

N

vi(r) = vo(r) + > / dr' T(r,r') - £,(r'), rex, (A2)
j=1

where v((r) represents an ambient flow in the absence of the

spheres.

We now separate the second term on the RHS of (A2)
into the contribution from distinct particles and the self-
contribution. The self-part is found by considering a single
particle i in an ambient flow v". The force density f; it
exerts on the fluid is linearly related to the relative velocity
at the surface, viz. f; = —Zo(i)(v; — vI") where the integral
operator Z(i) is called the single-particle resistance operator,
or the friction kernel,** and depends solely on the internal
composition and surface properties of the particle.’*** For the
distinct part (i # j), we introduce the Green’s integral operator
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(propagator) G(ij),

[G(@ij)E](r) = /dr’ T(r,x') - £;(x'), rex;, (A3)
which allows Eq. (A2) to be written as
N
vi—vVo=25'()fi + D GG, i=1,...,N. (Ad)

Jj#i
The above equations can be transformed into an infinite
set of algebraic equations by expanding the velocity field and
induced force densities in a basic set of irreducible multipoles
developed by Felderhof and co-workers.>*3!3-37 For the
velocity, the irreducible multipoles are linear combinations of
Lamb’s solution of the homogeneous Stokes equations.?® They
are labelled by three numbers: / = 1,2,...,m = —[,...,[l and
o € {0,1,2}. The force multipoles can likewise be described
by the labels (Imo). The details of the expansion, along with
explicit form, are given in Refs. 24, 30, and 38.
We include the expansion coefficients of the velocities
V; — Vo in an infinite-dimensional vector ¢ which encompasses
all the velocity multipoles for all the particles. In a similar
manner, we arrange the force multipole moments in the
vector f. After the multipole expansion is performed, the
integral operators Zy and G become matrices and Eq. (A4) is
transformed into an algebraic equation

c=(Z,"+G) f. (A5)

The multipole matrix elements of Z, for different particle
models are given in Ref. 30, while the elements of G have
been calculated in Ref. 29 for the case of an unbounded fluid,
a fluid bounded by a free surface, and a fluid bounded by a
hard wall.

In the friction problem, the forces acting on the particles
are sought, given their velocities. Upon inverting the above
relation, the grand resistance matrix Z is found as

f=2Z-c, Z=(Z;'+G)". (A6)

The friction matrix defined in Eq. (7) can be found by
projecting Z on the subspaces t,r,d, corresponding to (Imo)
equal to (1m0), (1m1), and (2m0), respectively. For example,
the force multipole t with / = 1 and o = 0 has three spherical
components m = —1,0, 1 corresponding to three components
of the total force.

In numerical computations, infinite matrices Zy and G in
Eq. (A5) are truncated at the multipole order £, so that only the
elements with [ < ¢ are considered.?! After such a truncation,
the matrix (Z; '+ G) is inverted, and the force multipoles
are determined. To improve numerical convergence of this
scheme, the obtained grand friction matrix Z in Eq. (A6) is
additionally corrected for lubrication effects.>®*! The matrix
Z constructed in the multipole method is not pairwise additive,
and accounts fully for many-body hydrodynamic interactions.
The approximation is introduced at the level of truncation of
the multipoles, and its error may be controlled.

The procedures outlined above have been implemented
in a Fortran code Hypromurripore®’* by Wajnryb and
collaborators. The method for calculating the near-wall
hydrodynamic tensors has been laid out by Cichocki ef al. in
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Ref. 24. We employ these codes to calculate the friction tensors
of non-spherical particles represented by their bead-models.
Once the friction matrix { is known, the mobility matrix g is
found by inversion.

APPENDIX B: DETAILS OF THE DERIVATION

For a wall-bounded fluid, it follows from the form of
Eq. (11) that the propagator G can be decomposed as

G =Gy + Gy, B

where the part Go consists of the multipole elements of the
Oseen tensor,”* while G,, describes the wall contribution, the
multipole matrix elements of which are calculated for a free
surface and a hard wall in Ref. 29 (see also Ref. 24).

In order to find the asymptotic correction to the bulk
friction of a particle moving close to a wall, we employ
the scattering expansion.*> We start from rewriting the grand
resistance matrix in Eq. (A6) in the following form:

Z=(Z;'"+Gy+G,)". (B2)

When the wall-particle distance is considerably larger than
the particle itself, we expect the wall contribution G, to be a
small correction. Expanding Eq. (B2) yields the form of the
correction to the bulk resistance matrix

A=7Z- Zb = —ZwaZb + ZwaZwaZb — ey (B3)

with Z;, being short for the bulk resistance matrix of the
particle (Z;' + Go)~'. Further on, we evaluate the dominant
terms of the correction for all the elements of the friction
matrix in the 7,7 subspace.

The propagator G,, connects the beads building up the
particles with the beads of the image particle. Consider two
interacting beads p and ¢* building up the conglomerate and
its image, respectively, as illustrated in Fig. 4. Introducing
coordinates relative to the centre of each conglomerate, we
have R, =Ry +r, and Rfl =Ry + rZ. Hence the distance
between the particles may be written as

R, =R, R, =2Hn0 + (r, — 1)), (B4)
where we have used the fact that Ry — Ry = 2H1. For the wall-
particle distance H large compared to the particle size L, and
thus for [r, — ry| < H, we may expand the distance between
each pair around the direction normal to the wall. Then, in
leading order, the propagator takes the form G, (R = 2H1).
Due to this fact, its multipole elements have the axial symmetry
around the normal direction fi. In this case, the bulk grand
resistance matrix Z; reduces to the single-particle bulk friction
matrix £y as in Eq. (7).

The dominant correction may thus be looked upon as
interaction of a particle of a given bulk friction matrix {, with
an image particle via the propagator G, which accounts for
the flow reflected by the wall. The matrix elements of G,
decay according to their multipole indices as

1 1 [+]'+o+0'-1
G*R =2HA) = — [ — ab(gp), (B5
SR = 2mi = o (] £(®). (BS)
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FIG. 4. The relevant coordinate systems and a schematic illustration of the
expansion of the distance between interacting points of the particle (e.g., a
rod) and its image. We depict the interaction between the point p with the
image g* of point g. For large wall-particle distances, it may be expanded
around the vertical line connecting the particles’ centres lying at a distance
2H apart, so that R+~ Ro—Rj=2He,.

with the multipolar indices denoted by a,b € {t,r,d}. The
indices [, refer to the superscript a, while I’c”’ refer to b.
The directional tensors g(ii) depend only on the direction of the
normal vector fi. To derive the correction for an axisymmetric
particle, we need the following elements:

3
8op = —3nang - 5((505 — ngng),

5
g(rlrﬁ = —hHahpg — 5(611,8 - nan,b’)’

—{aB)
d d
ga;?y = _g;ﬁ(l = JNa€pyo Nes

9 (@B) —_—(ep) (B6)

gﬁf’ﬁy = g;fl,ﬁ = 3Naltp Ny +3na(6py — ngn,)
dd 3,—.(‘15)'_|(VV) ,_|(0,B)(7v)
8apyy = THNlallp nyn, - 125(1'}/”an
(@)
_36075/31/ .

The bar indicates the symmetric and traceless part of the
respective tensors with respect to the indices in brackets. The

—{aB)
symbol indicates the symmetric and traceless part in
the index pair (@, B). The appropriate reductions read
ap) :
nahg = Nahg — 3048,
—{aB)yv) . X
5(xy6Bv = 5(5(1/75Bv + 5(YV6ﬁ’y) - §6ab’6’yw
af)
no(8py — ngny) = %(naéﬁy + 1g0ay) — Ralighy,
— B (B7)
n(tfﬁy(r Ng = E(nafﬁyo'n(f + nﬁe(tyo'na')»
—{B)yv) | '
6ayn5nv = §6aﬁ6yv — 5(60'3}%),111, + nanﬁdw)

+ % (6(,7nﬁnv + Oarvnighy + Oy Nahy
+ Opylany) .
Taking into account the symmetries of the bulk friction

matrix o of an axisymmetric particle (i.e., the lack of #r and
td elements), we find explicit expressions for the correction
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terms in Eqgs. (12)—(15) as

A] — g(t)tgtté'tt’
A2 _ gttgtté'tlgl‘l{lt
= %o 0 )
B = {(t)tgtdgdr’ BT — (l]’dgdt{tt,
C = g«(})’rgrr{(r)’r +{6‘rgrd§61r + é«(})’dgdré’gr +§6dgdd§dr’
where appropriate contractions of the tensors are taken. The

evaluation of these expressions using Egs. (B6) and the general
form of £ (cf. Ref. 25) leads to expressions (16)—(20).
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