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The non-Gaussian tops and tails
of diffusing boomerangs

Lyndon Koens, †a Maciej Lisicki †*ab and Eric Lauga a

Experiments involving the two-dimensional passive diffusion of colloidal boomerangs tracked off their

centre of mobility have shown striking non-Gaussian tails in their probability distribution function

[Chakrabarty et al., Soft Matter, 2016, 12, 4318]. This in turn can lead to anomalous diffusion characteristics,

including mean drift. In this paper, we develop a general theoretical explanation for these measurements.

The idea relies on calculating the two-dimensional probability densities at the centre of mobility of the

particle, where all distributions are Gaussian, and then transforming them to a different reference point.

Our model clearly captures the experimental results, without any fitting parameters, and demonstrates

that the one-dimensional probability distributions may also exhibit strongly non-Gaussian tops. These

results indicate that the choice of tracking point can cause a considerable departure from Gaussian

statistics, potentially causing some common modelling techniques to fail.

The spontaneous thermal agitation of small particles, called
Brownian motion, was first observed by a famous botanist,
Robert Brown, in grains of pollen in 1828.1 Since then, it has
been recognised as a fundamental physical process with appli-
cations in many fields of biology,2,3 chemistry,4 and physics.5–7

In the early 1900s the nature of these agitations were charac-
terised for spheres both theoretically8–10 and experimentally,11

thereby relating the internal micro-structure of a fluid to its
macroscopic transport properties. This then allowed theorists
to consider more complex systems, like the diffusion of colloids
with non-spherical shapes12,13 or the ballistic behaviour of a
particle shortly after agitation.14 Only relatively recently have
experiments managed to probe these non-spherical15–18 and
ballistic regimes.19 The ability to probe anisotropic shapes has
in turn revealed exciting new behaviours,20,21 prompting new
theoretical models to explain them.22–25

For an arbitrarily shaped three-dimensional particle moving
in a Stokes flow, there exists a special point, called the centre
of mobility (CoM), at which the translation-rotation coupling
mobility tensors are symmetric.13 This point can be found expli-
citly, given the mobility matrix at any point of the particle, using
the transformation rules given explicitly in ref. 26. At the CoM, the
full probability density functions (pdfs) remain Gaussian at all
times, in agreement with the classical arguments of Brownian
motion.23 In contrast, off this point the pdfs are not guaranteed to

have the same statistics, with both the mean and mean-squared
displacement demonstrating transient behaviour not found at the
CoM.15,20,23,27 These transient effects decay with the rotational
time scales of the system, and the long-time limit diffusion rates
are not only independent of position but also identical to those
obtained at the CoM.27

In two dimensions, where only one rotational degree of
freedom is present, the Stokes mobility matrix M becomes a
3 ! 3 tensor, composed of a 2 ! 2 translational part, a single
rotational coefficient, and two coefficients coupling the rotational
to translational motion. In this case an analogue of centre of
mobility can be defined as the point where the translation-rotation
coupling tensors vanish and in effect there is no coupling between
translations and rotation.18 For a given two-dimensional mobility
matrix the position of the analogue of the centre of mobility, which
we will refer to as the two-dimensional centre of hydrodynamics
(CoH), is determined by

r ¼ # 1

My
M2yx̂1 #M1yx̂2ð Þ; (1)

where r is a vector from the frame origin to the CoH, My is the
rotational mobility coefficient, Miy is the coupling coefficient
between rotation in the third direction and the spatial direction
i (i = 1, 2) while x̂i denotes the unit vector in the ith spatial
direction. Note the diffusion matrix D at any point is proportional
to the mobility matrix via the fluctuation-dissipation theorem,
D = kBTM, where kB is the Boltzmann constant and T is the tem-
perature. From the above equation, the corresponding diffusion
matrix at the CoH can be determined using the standard two-
dimensional mobility matrix transformation rules for Stokes
flows.26 Physically, the two-dimensional centre of hydrodynamics
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plays an identical role to the three-dimensional CoM, in that the
full pdfs determined by tracking this point remains Gaussian at
all times. Furthermore, other points will, again, not necessarily
generate the same statistics.

In an ideal world, experiments would only track the CoM and
the CoH. However, this is often impractical, as these points
could lie off the body completely. Therefore one normally tracks
a characteristic physical point of the particle, like a geometric
centre, which will experience transient, and possibly non-Gaussian
statistics. In order to characterise these statistics Chakrabarty
et al. considered the two-dimensional Brownian motion of a
boomerang-shaped particle.18,20 These shapes are useful as the
CoH of these particles lies somewhere between their two arms,
and can be displaced by varying the asymmetry in the boomerang
arm lengths.18 In order to determine the position and orientation
of the particles, high-precision tracking algorithms have been
developed.28 The results of Chakrabarty et al.18,20 experimentally
showed that the mean and mean-squared displacement of a
geometric point exhibited a crossover from short-time faster to
long-time slower diffusion with the short-time diffusion coeffi-
cients dependent on the points used for tracking. This was in
turn explained theoretically by solving a set of Langevin equa-
tions for the dynamics of the moments. Though these papers
fully explained the dynamics of the mean and mean-squared
displacement, they did not characterise how non-Gaussian the
pdfs at the geometric point were. Chakrabarty et al.21 therefore
aimed to characterise the two-dimensional (2D) Brownian motion
of a boomerang-like particle when tracked off the CoH and to
relate it to the diffusive properties of the particle. They concluded
that the pdfs for the geometric centre (CoB, Fig. 1) of the body
exhibit strongly non-Gaussian tails when no initial orientation is
imposed. These tails are not present when tracking the CoH.
Qualitative arguments presented therein related the observations
to the previously analysed general concepts of Brownian and non-
Gaussian diffusion.29 However, the non-Gaussian behaviour was
characterised by fitting empirical relations to the measured
distributions.

In this paper, we provide a quantitative theoretical description
for the pdfs observed by Chakrabarty et al.21 The integrals we
obtain are evaluated numerically before providing an analytical
expression for the case when the drag is isotropic. Both these

results replicate the experimental pdfs with no free parameters.
Integrating out one of the spatial dimensions, we also show that
these pdfs exhibit highly non-Gaussian configurations, even
close to its mean value. Our results emphasize that Gaussian
statistics do not apply when tracking off the CoH. Furthermore,
the procedure highlighted in the paper, and the results therein,
are generally applicable to any particle undergoing two-dimensional
Brownian motions.

In two dimensions, the configuration of a particle is described
by three spatial variables: two describing position, (x,y), and
one describing orientation, y (Fig. 1) which measures the angle
between the boomerang bisector angle and the x axis. The
coordinates are chosen in the laboratory frame in such a way
that at t = 0 the CoH is located at the origin. The complete
mobility tensor is thus a positive-definite 3 ! 3 matrix, which
can be decomposed into the 2 ! 2 translational diffusion tensor,
the rotational diffusion coefficient, and two off-diagonal 1 ! 2
and 2 ! 1 coupling sub-matrices.

The translational diffusion matrix in the frame of the
particle can always be written in a diagonal form with two
coefficients only,

D ¼
D11 0

0 D22

 !

; (2)

while rotations are characterised by a single rotational diffusion
coefficient, Dy. The laboratory frame diffusion matrix (denoted xy) is
then given by Dxy = Ry&D&RT

y, where Ry denotes the two-dimensional
rotation matrix of angle y. Assuming that the particle’s motion is
purely diffusive and that it is initially located at the origin with zero
deflection, the Gaussian probability distribution for the position of
the particle r = (x,y), in the CoH, reads

pxyðx; y; y; tÞ ¼ 1

4p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D11D22

p
t
exp #r &Dxy

#1 & r
4t

" #
; (3)

which is the classic solution to the Smoluchowski diffusion
equation with diffusion matrix Dxy.30

We now turn to the angular probability distribution. Typically
this distribution is required to be periodic with y0 A (#p,p) and
so should be represented by a so-called wrapped normal
distribution,31

pwrapðy0; tÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

4pDyt
p

X1

n¼#1
exp # y0 þ 2npð Þ2

4Dyt

 !

; (4)

which can also be formulated in terms of the Jacobi theta
function of the third kind.32 However, as y only appears within
trigonometric functions outside the angular probability distri-
bution function and we plan to integrate over it, we can define
it to range from #N to N without loss of generality. In the
absence of external torques acting on the particle, instead of
using the solution (4) of the Smoluchowski diffusion equation, we
can thus take a Gaussian distribution for the angle y A (#N,N),
given by

pyðy; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
4pDyt
p exp # y2

4Dyt

" #
; (5)

Fig. 1 Sketch of the boomerang particle used in the experiments of ref. 21,
where we indicate the location of the reference point P, the geometric centre
of the body (CoB) and the centre of hydrodynamics (CoH).
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since, in this case, it yields the same averages as the wrapped
distribution (4).

From inspection of eqn (4) and (5), it is obvious how the two
probabilities are related. Both these distributions assume an
initial orientation of 0; for a general initial angle a, the argument
of the angular distribution needs be replaced y - y # a.

The complete probability distribution function (pdf) at CoH
thus reads

P(x,y,y;t) = pxy(x,y,y;t)py(y;t). (6)

The 2D pdf for the position at the fixed initial angle is then
recovered by integrating out the angular degree of freedom as

PCoHðx; y; tÞ ¼
ð1

#1
Pðx; y; y; tÞdy: (7)

Note that given the purely trigonometric dependence on y in pxy,
the above integral would obviously be identical if the wrapped
angular distribution was used instead of the Gaussian distri-
bution since the wrapped integral is equivalent to dividing the
infinite integral into 2p sections and then summing over all the
respective parts.

This integral generates Gaussian distributions with transient
non-Gaussian tails.15 These tails depend on D11–D22 and decay
with 1/Dy. If further averaged over all initial angles, however,
these non-Gaussian tails disappear, in agreement with classical
diffusion arguments.

This picture changes significantly when a different tracking
point is chosen. The pdf with respect to a different reference
point, T = (x0,y0), is found by writing the coordinates of this
point with respect to the centre of hydrodynamics and inserting
them into eqn (7). For Chakrabarty et al.’s boomerang21 the
coordinates become

x0 = x + c sin y, (8)

y0 = y + c cos y, (9)

where c = d for the geometric centre of the body (CoB). For the
purpose of demonstration, following Chakrabarty et al., we choose
a more distant point P with c = 6d. The 2D pdf, with respect to the
tracking point T, therefore becomes

PT x0; y0; tð Þ ¼
ð1

#1
P x0 # ‘ sin y; y0 # ‘ cos y; y; tð Þdy: (10)

Eqn (10) can be integrated numerically to yield the 2D pdf
for an arbitrary tracking point along the particle axis, and there-
fore theoretically predict the experimental results. We plot in
Fig. 2 the predictions of eqn (10) (middle column) and experi-
mental results of Chakrabarty et al.21 (left column) for the tracking
point P. For these numerical results, the diffusion coefficients,
D11, D22 and Dy, and d were taken to be the experimentally
determined values (0.049 mm2 s#1, 0.060 mm2 s#1, 0.045 rad2 s#1

and 1.133 mm respectively). This figure shows that eqn (10)
quantitatively captures the experimental behaviour. The slight
discrepancy between the peak values of the pdfs are probably
related to the finite sampling errors within the experiment. All
other experimental points show similar agreement. Similarly,

averaging these distributions over all initial angles captures the
Gaussian and non-Gaussian behaviour of Chakrabarty et al.’s one-
dimensional radial distribution21(not shown).

In the limit of isotropic drag, D11 = D22 = Di, eqn (10) can be
evaluated exactly. This limit can capture much of the guiding
physics and is relevant to many systems, including the boomerang
particles which were noted to behave almost isotropically with
Di E 0.058 mm2 s#1.21 In this limit, PT(x0,y0;t) becomes

PT ¼
b
ffiffiffi
k
p

p3=2

ð1

#1
e#b r2þ‘2ð Þþ2‘br sinðyþfÞ#ky2dy; (11)

where b = 1/4Dit, k = 1/4Dyt and we have written x and y in polar
coordinates (x0 = r cosf, y0 = r sinf). The sinusoidal term in
eqn (11) can be expanded into a set of Fourier modes using the
Jacobi–Anger expansion,

eiz cos y ¼
X1

n¼#1
inJnðzÞeiny; (12)

thereby reducing the integral to an infinite series as

PT ¼
b
p
e#b r2þ‘2ð Þ I0ð2‘brÞ½

þ 2
X1

n¼1
Inð2‘brÞ cos

n

2
ðp# 2fÞ

% &
e#

n2

4k

#
;

(13)

where Jn(z) is the Bessel function of the first kind of order n and
In(z) = inJn(#iz) is the order n modified Bessel function of the
first kind. Clearly, the above expansion converges quickly for
t a 0 and remains normalised for any summation truncation
with n > 0. At long times, t - N, In(2cbr) - dn0 and so the
system returns to a simple Gaussian, while at short times t - 0, all
the separate Fourier modes become equally important (k - N)
and the probability becomes skewed to a delta function located
at r = c, f = p/2. This indicates that the non-Gaussian behaviour
is again a transient effect which decays with 1/Dy, consistent
with the experimental result.21 However, unlike the anisotropy
effect, this non-Gaussian behaviour still occurs if D11 # D22 = 0
and instead depends critically on the value of c.

In Fig. 2 (right column) we plot the prediction from eqn (13) for
the point P using Di = 0.058 mm2 s#1. In each case the infinite
summation was truncated at 10 terms. Again, a similar agreement
is found for all the experimentally tracked points. For long times,
the leading-order term is enough to reproduce the observed
behaviour, while the stronger anisotropy at short times typically
requires more terms.

In order to further demonstrate and quantify the non-Gaussian
nature of these intermediate regimes, it is best to consider the
one-dimensional distribution. This distribution can be obtained
theoretically by further integrating eqn (10) over one of the spatial
dimensions. Specifically, we choose to integrate out y to obtain a
pdf which symmetric in x for all times, i.e.

PT;1ðx; tÞ ¼
ð1

#1
PTðx; y; tÞdy: (14)

Experimentally this is equivalent to constructing a pdf from the
laboratory x positions for a given initial angle of y = 0. Note this
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is different from the one-dimensional radial distribution used
by Chakrabarty et al. which averaged over all initial angles and
observed a Gaussian core with non-Gaussian tails.21

We display in Fig. 3 the theoretical (dashed black lines) and
experimental (solid red lines) one-dimensional distributions
for the point P. Theoretical dashed curves have been obtained
by integrating out the y-dimension, as in eqn (14). The solid red
lines have been obtained by numerically integrating the 2D
experimental data from Fig. 2. The discrepancy between theory
and experiment is again probably arising from experimental
sampling limitations. Initially, the distribution shows a Gaussian
like configuration which ultimately returns to a Gaussian as
t - N. However, at intermediate times both the experiment
and theory predict a highly non-Gaussian shape with two peaks.
This multiply peaked structure reinforces the result that Gaussian
statistics do not apply when tracking a particle off the CoH. This is
especially true around the mean value of the system, where the
central limit theorem would traditionally ensure Gaussian-like
behaviour. This breakdown occurs because, when tracking a

point off the CoH, the jumps in position are not independent,
identically distributed random variables but are correlated with
a ‘hidden variable’, y. Therefore the sum of these jumps do not
necessarily have to follow the central limit theorem, and so
Gaussian statistics do not necessarily follow.

This is particularly relevant for many experimental and
theoretical models which inherently assume that the pdf is roughly
Gaussian. The Fokker-Plank and Langevin equations are two such
examples, both of which assume that the system is described
sufficiently by the first two moments of the fluctuations, i.e. a
Gaussian. These models typically work well for the behaviour
of the CoH or when the full particle configuration is being
resolved. However, as Fig. 3 shows, the Gaussian assumption
breaks down when the dynamics of an arbitrary point with
marginalised configuration dimensions is analysed. Therefore,
in these cases it is inappropriate to write down the equations in
their traditional form. Rather, when the behaviour of a point
other than the CoH is desired, it is best to use models that
do not assume Gaussian behaviour, like the Master equation,30

Fig. 2 Two-dimensional probability distribution function, P(x,y,t), at the point P located outside the boomerang. The experimental data (left), originally
shown in ref. 21, and provided by the authors to be re-plotted here. The theoretical predictions (middle) are obtained by numerical integration of eqn (10),
while the theoretical approximation (right) are obtained by truncating the series expansion in eqn (13) after 10 terms.

Paper Soft Matter

Pu
bl

ish
ed

 o
n 

24
 M

ar
ch

 2
01

7.
 D

ow
nl

oa
de

d 
by

 U
ni

w
er

sy
te

t W
ar

sz
aw

sk
i o

n 
31

/0
3/

20
17

 1
5:

24
:4

4.
 

View Article Online

http://dx.doi.org/10.1039/C6SM02649D


This journal is©The Royal Society of Chemistry 2017 Soft Matter

or to transform the equations from the CoH to the relevant
point before or after they are solved.

The results derived in this paper can be applied to colloids of
any shape, provided its 2D translational and rotational mobility
matrix is known. In order to illustrate the application to a more
complex shape, we consider a diffusing silhouette of a Cambridge
landmark – the King’s College Chapel.33 The shape is constructed
out of rod-like segments, as shown in Fig. 4, and the total
mobility matrix is then calculated using resistive force theory
with the assumptions for the drag coefficients perpendicular
and parallel to a unit segment to be z> = 2z8 = 2.34,35 If the
centre of mobility is chosen as reference point, the procedure
outlined in our note leads to the expected Gaussian distribution
(Fig. 4a). However, when a more convenient tracking point is
chosen, such as the corner P, the resulting distributions are
inherently non-Gaussian (Fig. 4b).

We further remark that in three dimensions the mobility
matrix, measured from the centre of mobility, will have non-
vanishing coupling components if the particle is chiral. This
means that translation and rotation cannot be decoupled and
so the marginal pdfs may not be Gaussian, even at short times,
although the underlying full-dimensional (spatial and orienta-
tional) pdf at CoH would be Gaussian at all times. To understand
this phenomenon, a more general analysis will be needed.

In summary, classical Brownian motion arguments accurately
describe the particle’s dynamics when tracking the centre of
mobility (CoH). Recently, however, two-dimensional experiments
have shown that anomalous diffusion occurs when tracking a
different point, generating mean displacements and non-Gaussian
tails in the particles probability distribution function.21 In this
paper, we developed a general theoretical procedure to explain the
non-Gaussian effects seen by the experiments. This method can be
solved either numerically or analytically in the case of isotropic
drag. Using the mobility matrix reported in ref. 21, both methods
quantitatively captured the non-Gaussian experimental results
without any additional free parameters. Similarly to the experi-
ment, we observed that this non-Gaussian behaviour is transient,
decaying with 1/Dy. However, further exploration of the experi-
mental and theoretical results revealed that in addition to the

Fig. 4 Two-dimensional pdfs P(x,y,t) for the diffusing King’s College Micro-Chapel silhouette (sketched), obtained when tracking (a) the centre of
hydrodynamics CoH and (b) the corner P of the particle at an early time t = 0.3.

Fig. 3 One-dimensional pdfs P(x,t) for the point P calculated by integrating
out one dimension from the 2D pdfs from eqn (10), and plotted in black
dashed lines, show strongly non-Gaussian tops. Red solid lines have been
determined using the experimental data from ref. 21.
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non-Gaussian tails seen previously, the one-dimensional pdf
(defined by eqn (14)) has highly non-Gaussian behaviour near its
mean. This occurs because the orientation angle y is correlated
to the positional jumps when off the CoH, thereby violating the
central limit theorem assumptions of independent identically
distributed random variables. These correlations may render
it inappropriate to use the Fokker-Planck formulation for an
arbitrary point. The results in this paper are thus very general
and can be applied to any two-dimensional diffusing particle
with known translational and rotational diffusion coefficients,
either taken from experiments, or computed using a variety
of numerical methods,34,36–40 such as a silhouette of King’s
College Chapel (Fig. 4) or even any useful shape that does not
look like a famous landmark.
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