
SciPost Phys. Codebases 11 (2023)

Pychastic: Precise Brownian dynamics

using Taylor-Itō integrators in Python

Radost Waszkiewicz
?

, Maciej Bartczak , Kamil Kolasa and Maciej Lisicki

Institute of Theoretical Physics, Faculty of Physics, University of Warsaw
L. Pasteura 5, 02-093 Warsaw, Poland

?

Abstract

In the last decade, Python-powered physics simulations ecosystem has been growing

steadily, allowing greater interoperability, and becoming an important tool in numerical

exploration of physical phenomena, particularly in soft matter systems. Driven by the

need for fast and precise numerical integration in colloidal dynamics, here we formulate

the problem of Brownian Dynamics (BD) in a mathematically consistent formalism of the

Itō calculus, and develop a Python package to assist numerical computations. We show

that, thanks to the automatic differentiation packages, the classical truncated Taylor-

Itō integrators can be implemented without the burden of computing the derivatives

of the coefficient functions beforehand. Furthermore, we show how to circumvent the

difficulties of BD simulations such as calculations of the divergence of the mobility ten-

sor in the diffusion equation and discontinuous trajectories encountered when working

with dynamics on S2 and SO(3). The resulting Python package, Pychastic, is capable of

performing BD simulations including hydrodynamic interactions at speeds comparable

to dedicated implementations in lower-level programming languages, but with a much

simpler end-user interface.

Copyright R. Waszkiewicz et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 12-09-2022
Accepted 30-01-2023
Published 03-04-2023

Check for
updates

doi:10.21468/SciPostPhysCodeb.11

This publication is part of a bundle: Please cite both the article and the release you used.

DOI

doi:10.21468/SciPostPhysCodeb.11
doi:10.21468/SciPostPhysCodeb.11-r0.2

Type

Article
Codebase release

Contents

1 Introduction 2

2 Three vantage points: Langevin, Fokker-Planck, and Itō 3

3 Pychastic: description of the package 4

1

https://scipost.org
https://scipost.org/SciPostPhysCodeb.11
https://orcid.org/0000-0002-0376-1708
https://orcid.org/0000-0003-1081-3294
https://orcid.org/0000-0002-2281-1539
https://orcid.org/0000-0002-6976-0281
mailto:radost.waszkiewicz@fuw.edu.pl
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhysCodeb.11&domain=pdf&date_stamp=2023-04-03
https://doi.org/10.21468/SciPostPhysCodeb.11
https://doi.org/10.21468/SciPostPhysCodeb.11
https://doi.org/10.21468/SciPostPhysCodeb.11-r0.2

SciPost Phys. Codebases 11 (2023)

3.1 Available numerical integration packages 4
3.2 Implementation details 5

4 Examples of usage 7

4.1 First passage problems, polar random walk 7
4.2 Rotational Brownian motion, step_post_processing function 10
4.3 Bead models with hydrodynamic interactions, pygrpy package integration 13

5 Conclusion 15

A Appendix: Typos in integration schemes in Ref. [18] 16

B Appendix: Rotational Brownian motion 16

References 17

1 Introduction

The dynamics of soft and colloidal matter systems is of importance for numerous technological
and industrial processes, such as food products, pastes, creams, and gels [1]. Another impor-
tant example are biological systems which involve aqueous suspensions of colloids, macro-
molecules, polymers, and cells. The diversity of the constituent elements, together with the
tunability of their direct interactions, and the presence of hydrodynamic interactions (HI) me-
diated by the suspending fluid [2], gives rise to a multitude of complex dynamic phenomena,
which can only be explored using appropriate numerical techniques [3,4].

The choice of a suitable method derives from the characteristic time scales of the investi-
gated dynamics [5]. In the context of macromolecules, when short-time effects are of interest,
Molecular Dynamics (MD) simulations are a popular choice [6]. Short times may be compa-
rable to the solvent relaxation time scale, which for a fluid of kinematic viscosity ⌫ and speed
of sound c scales as ⌫/c2. For water, this time is of the order of 10�13 s. The idea behind MD
simulations is to solve Newtonian equations of motion for atoms or molecules, which are a
set of second-order ODEs with effective interaction potentials. In this case, HI can be resolved
using either explicit solvent methods that resolve the molecular structure of the solvent or
more approximate implicit solvent models. However, the typical time scales of colloidal mo-
tion are much longer; the velocity relaxation time for colloidal particles of size a and density
comparable to that of the fluid is approximately a2/⌫, amounting to ca. 10�8 s for a 100 nm
colloid. On coarser time scales, the colloidal velocity relaxes multiple times, and the Rayleigh
description in terms of velocity becomes irrelevant [5,7]. Instead, the description in terms of
the position of a Brownian particle becomes possible on diffusive time scales, during which a
particle diffuses over a distance of its own radius. This time scale is a2/D ⇠ ⌘a3/kB T , where
⌘ is the dynamic viscosity of the fluid, kB is the Boltzmann constant, and T is the temperature.
For the aforementioned particle, this time scale is ca. 10�3 s, and corresponds to the minimal
time resolution of typical light scattering and microscopy experiments. Thus, the description
of the dynamics on such coarse scales is made solely using the position of the particle. The
clear separation of discussed time scales, combined with the numerical stiffness of Newton’s
equations, renders MD simulations not applicable to explore diffusive dynamics.

Instead, BD simulations present a convenient alternative, building on models suitable for

2

https://scipost.org
https://scipost.org/SciPostPhysCodeb.11

SciPost Phys. Codebases 11 (2023)

diffusive time scales, and involving accordingly long time steps for numerical computations.
Since the velocity of particles varies very rapidly on such time scales, the position becomes a
random variable whose properties are dictated by the fluctuation-dissipation theorem [7].

The development of a suitable theoretical description to explain the Brownian motion and
its subsequent experimental verification at the beginning of the 20th century were a ground-
breaking step that confirmed the atomic structure of matter [8]. Early works by pioneers such
as Einstein [9], Smoluchowski [10], Fokker [11], and Planck [12], led to the description of
diffusive processes through the underlying probability density functions (PDFs) for the posi-
tions of the particles and their temporal evolution, rather than representations of individual
trajectories. The realisation that the path of a Brownian particle resembles a nowhere dif-
ferentiable function paved the route for a different approach, now called stochastic calculus,
with the classical works of Kolmogorov [13], Wiener, and finally Itō [14]. With these tools,
the problem of Brownian motion can be recast in the form of stochastic differential equations
(SDEs), which offer a practical route for numerical simulations.

In this contribution, we present our approach to the implementation of such Brownian dy-
namics. Our goal was to show how modern programming techniques available in Python: re-
flective and functional programming paradigms allow one to develop concise implementations
of physically relevant problems. These constitute relatively recent developments in computer
modelling, and we follow this trend to facilitate faster modelling of diffusive phenomena.

First, in Sec. 2 we review three popular ways of describing the Brownian motion using
the Langevin equation, the Fokker-Planck equation, and Itō equation. We then provide an
overview of available numerical integration packages for SDEs in Sec. 3.1. Next, we present
our new package, Pychastic, in Sec. 3, along with three examples (in Sec. 4) of problems in
which the packages greatly facilitate numerical computations. We conclude the work in Sec. 5.

2 Three vantage points: Langevin, Fokker-Planck, and Itō

Perhaps the most popular approach to modelling the trajectories of Brownian particles dates
back to Langevin’s work of 1908 [15]. The Langevin equation can be rationalised as an ex-
tension of Newtonian mechanics to include the effects of fluctuations by adding a stochastic
force, Fn, acting on a particle. We write it below for a particle with a constant friction coeffi-
cient ⇣. The average value of the force is zero, while its covariance at temperature T is given
by the fluctuation-dissipation theorem [7], hFn(t)Fn(t 0)i= 2kB T⇣�(t � t 0), with kB being the
Boltzmann constant. The equation of motion of the particle in the presence of a deterministic
force F reads then

mẍ = �⇣ ẋ + F(x , t) + Fn(t) . (1)

For the case of a spherical particle of radius a in Stokes flow the friction coefficient is 6⇡⌘a,
⌘ being the dynamic viscosity. We note that even though x(t) is not differentiable once, and
certainly not differentiable twice at any point even in the usual distributional sense (because
the Lebesgue integral requires finite variation and realisations of the Wiener process have
infinite variation), Eq. (1) can be given a proper interpretation by transforming it into an
integral form. However, the above equation proved practical for numerical calculations, e.g.
using an integration scheme analogous to the Euler-Maruyama method.

An alternative description via the Fokker-Planck equation circumvents the difficulties of
interpreting the dynamics on a single trajectory in the Langevin equation by focussing on a
probabilistic description. On the Brownian time scale, the position of a particle is now treated
as a random variable, and the probability density function (PDF) P(x , t) of finding the particle

3

https://scipost.org
https://scipost.org/SciPostPhysCodeb.11

SciPost Phys. Codebases 11 (2023)

at a location x at a time t evolves according to the partial differential equation

@ P(x , t)
@ t

= ⇣�1 @

@ x
(F(x , t)P(x , t)) + D

@ 2P(x , t)
@ x2

, (2)

with the diffusion coefficient defined by D = kB T/⇣. The problem is now well-posed mathe-
matically, and the tools of mathematical analysis of PDEs can be employed to study the evo-
lution of the underlying probability distribution, e.g. by examining its moments. However,
questions involving individual trajectories become less straightforward: problems involving
first passage time have to be dealt with with a careful treatment of the boundary conditions
(e.g. substances vanishing in chemical reactions). Moreover, from the point of view of numer-
ical simulations, this approach becomes impractical for large systems. Using finite-difference
methods, for N particles in a 3D simulation box of size L and mesh size �x , we typically
require (L/�x)3N points to track the PDF, which may become prohibitively large.

The mathematical difficulties of the Langevin equation are absent in the proper treatment
of SDEs in the Itō formalism. If now dX denotes the position increment of a particle in a time
interval d t, we can write it as

dX = Fd t +
p

2DdW , (3)

where Fd t denotes the systematic drift of the particle and
p

2DdW denotes the stochastic
(diffusive) component of motion (provided that D is constant and the metric tensor is constant
as well). This equation is meant in the distributional sense with respect to the Itō integral, that
is

X (T) =
Z T

0
dX =
Z T

0
F(X , t)d t +
Z T

0

p
2DdW . (4)

Here, all integrals are taken in the Itō sense. Such a trajectory-focused formulation effectively
deals with the ill-defined derivatives in the Langevin equation. Using Itō’s lemma imposes
formal rules of transformation of the coefficients, freeing us from a canonical coordinate de-
scription. Finally, the estimation of observable quantities such as expected values, correlation
functions or equilibrium distributions of low-dimensional projections of evolving variables can
be recovered using a Monte Carlo approach, which for M simulations converges as

p
M , re-

gardless of dimensionality. The constant of proportionality of this convergence is controlled
only by the variance of the variable of interest, which is often independent of the dimensional-
ity of the equation. For example, in the problem of diffusion of a single particle in a semidilute
suspension, the variance of the mean squared displacement of the tracer is weakly dependent
on the number of particles in the simulation volume.

3 Pychastic: description of the package

3.1 Available numerical integration packages

Only a few SDE integration packages have been made available in recent years. Two notable
examples are DifferentialEquations.jl for Julia and ItoProcess being a part of Mathe-
matica. Now, we present Pychastic for Python, which takes advantage of the popularity of
this language. Our package source code is available on Github, up-to-date documentation on
ReadTheDocs and ready to install via pip via Python Package Index. As a preliminary com-
parison, we note that DifferentialEquations.jl has the largest variety of integrators (for
example, many options for stiff equations), while Mathematica’s ItoProcess and Pychastic
contain essentially the same algorithms. However, the biggest drawback of ItoProcess is the
lack of step post-processing. When working with SDEs defined on manifolds whose universal
cover is not Rn, such as a sphere S2 or the space of rigid rotations SO(3), any parameterisation

4

https://scipost.org
https://scipost.org/SciPostPhysCodeb.11
https://github.com/radostw/stochastic
https://pychastic.readthedocs.io
https://pypi.org/project/pychastic/

SciPost Phys. Codebases 11 (2023)

Table 1: Available SDE integration packages.

Package DifferentialEquations.jl ItoProcess Pychastic

Language Julia Mathematica Python
License MIT proprietary MIT
Codebase open closed open
scalar SDEs yes yes yes
vector SDEs yes yes yes
strong convergence up to order 1.5 up to order 1.5 up to order 1.5
weak convergence up to order 2.0 up to order 2.0 up to order 2.0
supports events yes no yes

of Rn will contain singularities, thus an integrator which cannot handle discontinuous paths
cannot reproduce, e.g. 3-dimensional rotational dynamics [16]. Table 1 contains a synthetic
comparison of the three mentioned packages.

3.2 Implementation details

Pychastic contains implementations of three numerical integration schemes based on the
Taylor-Itō expansion. They are the schemes of strong order 1/2, 1, and 3/2 which in the
package are referred to as Euler, Milstein, and Wagner-Platen schemes, respectively.

The basis for these integration schemes is the Taylor-Itō expansion [18] which generalises
the deterministic Taylor expansion to SDEs. We write it here for a one-dimensional problem
driven by a Wiener process W

dX = a(X)d t + b(X)dW . (5)

Following the notation of Kloeden & Platen [18], the Taylor-Itō expansion up to strong order
3/2 for a scalar function X has the form

X (T) =X (0) + a�+ b�W

+
1
2

bb0
�
(�W)2 ��
�

+ a0b�Z +
1
2

Å
aa0 +

1
2

b2a00
ã
�2

+ (ab0 +
1
2

b2 b00) (�W���Z) +
1
2

b
�
bb00 + (b0)2
�Å1

3
(�W)2 ��
ã
�W ,

(6)

where

� =
Z T

0
d t = T , (7)

�W =
Z T

0
dW =W (T)�W (0) , (8)

�Z =
Z T

0

Z s

0
dW (s) ds . (9)

The stochastic Euler scheme is based on the first line of this expansion, with three terms only.
The Milstein scheme includes the next term, namely the second line of Eq. (6). Finally, the
Wagner-Platen scheme includes all the terms mentioned above. We note from this expansion

5

https://scipost.org
https://scipost.org/SciPostPhysCodeb.11

SciPost Phys. Codebases 11 (2023)

that even the simplest schemes require correct computation of coefficients multiplying prin-
cipal Wiener integrals (�, �W , �Z , and others in the multidimensional case) and sampling
from correct distributions corresponding to these integrals. Importantly, an analogous expan-
sion for vector quantities is considerably more complex, and other Wiener integrals arise, as
detailed in [18]. For brevity, we do not write this expansion here explicitly, but we have im-
plemented the vector Taylor-Itō expansion in Pychastic to enable simulations of both scalar
and vector processes.

Although expressions for these coefficient functions can be written explicitly in principle,
in Pychastic we take advantage of functional programming tools, which results in a greatly
simplified implementation. First, by introducing the L

0 and L
j operators (again using the

Kloeden & Platen notation), we can express all coefficient functions by repeated application of
the L operators to the a and b functions. Using the jax.grad functionality, this is implemented
directly as

1 def tensordot1(a, b):
2 return jax.numpy.tensordot(a, b, axes=1)
3

4 def tensordot2(a, b):
5 return jax.numpy.tensordot(a, b, axes=2)
6

7 # Taylor-Ito expansion operators
8 def L_t_operator(f,problem):
9 @wraps(f)

10 def wrapped(x):
11 b_val = problem.b(x)
12 val = tensordot1(jax.jacobian(f)(x), problem.a(x)) + 0.5 * tensordot2(
13 jax.hessian(f)(x), tensordot1(b_val, b_val.T)
14)
15 return val[:,jnp.newaxis,...] #indexing convention [spatial, time, ...

= noiseterms/time]
16

17 return wrapped
18

19 def L_w_operator(f,problem):
20 @wraps(f)
21 def wrapped(x):
22 val = tensordot1(jax.jacobian(f)(x), problem.b(x))[:,jnp.newaxis,...]
23 return jnp.swapaxes(val,1,-1)[:,..., 0] # indexing convention [spatial,

noiseterms, ... = noiseterms/time]
24

25 return wrapped

Second, different integration methods – Euler, Milstein, and Wagner-Platen – were imple-
mented following the book by Kloeden & Platen [18]. These methods make use of samples of
the principal Wiener integrals listed above. Unfortunately, the text contains typographic errors,
which were found by examining the mean, variance and covariance properties of fundamen-
tal multiple Itō and Stratonovich integrals using a testing suite that is part of the Pychastic
package. The errors we found were corrected appropriately and are listed in the Appendix A.

Finally, using the jax.lax.scan functionality of the package jax, we can generate many
trajectories in parallel by programmatically vectorising the code representing a and b provided
by the user.

6

https://scipost.org
https://scipost.org/SciPostPhysCodeb.11

SciPost Phys. Codebases 11 (2023)

4 Examples of usage

In the following, we show a few examples of usage that take advantage of various functional-
ities of Pychastic.

4.1 First passage problems, polar random walk

In nearly all physical applications of Brownian Dynamics, the simulated properties of the sys-
tems are observed via their moments rather than individual realisations of the underlying
stochastic process. In fact, in many situations with random forcing, the paths of the process
are only a model of reality and cannot be directly observed, as opposed to their statistical effect.
For a smooth quantity g observed through its expected value E in thermodynamic equilibrium,
it is the weak convergence rate that controls the error of E(g(Xt)) at fixed t. With this in mind,
it is tempting to dismiss methods with a high strong order of convergence as impractical.

A natural candidate for a counterexample are first passage times, where the answer re-
quires a more subtle reasoning. Since the first passage problem is path-dependent, it would
seem that strong convergence is important. However, the theorem regarding the first passage
times established by Whitt [17] shows that the weak convergence of the process approxima-
tions Xn ! X implies a weak convergence of the first passage times T (Xn) ! T (X). In con-
clusion, for all popular physical applications, the weak order of convergence is the important
one. In consequence, the Milstein scheme is never a good choice, since it is equivalent to the
Euler scheme in terms of weak order of convergence, but is more computationally intensive
and harder to implement. We illustrate the surprising result of [17] by numerical simulation
in a familiar setting.

A simple analytically solvable case of the first passage problem is a two-dimensional diffu-
sion process in the (X , Y) plane with constant drift velocity v and constant diffusion coefficient
�2 in a system with an absorbing barrier at Y = Yb = 2. The problem admits an exact solution,
in which the probability density function for the hitting time thit = argmint(Yt > Yb) is given
by

pthit
(⌧) =

Ybp
2⇡�2⌧3

exp

✓
�
(Yb � vy⌧)2

2�2⌧

◆
, (10)

and so E[thit] = 1/2.
Numerically, we calculate the sample of the first passage times and locations for

v = (vx , vy) = (0,4) with stopping condition Y = Yb = 2 and initial condition (X , Y) = (2,0).
The Itō equations for the two-dimensional diffusion driven by Wiener processes W and W 0

with drift velocities [vx , vy] take the form of

dX = vx d t +�dWt , (11)

dY = vy d t +�dW 0t , (12)

where � is a parameter that describes the strength of the noise compared to the drift. We first
transform this problem into a different set of coordinates, for which we choose polar coordi-
nates. While we retain the analytical solution, we acquire non-linear terms in the governing
equations, which will help us study the convergence issues which arise when noise and drift
terms are generally dependent on the position. Eq. (12) transformed into polar coordinates
(r,�) is expressed as

dr =
� 1

2r + vy sin� + vx cos�
�

d t +� cos�dWt +� sin�dW 0t , (13)

d� = 1
r

�
vy cos� + vx sin�

�
d t �� sin�

r
dWt +�

cos�
r

dW 0t . (14)

7

https://scipost.org
https://scipost.org/SciPostPhysCodeb.11

SciPost Phys. Codebases 11 (2023)

The transformed equations are nonlinear, coupled, with nondiagonal, noncommutative
noise terms. Vector equations in the package Pychastic are defined by providing both the
drift vector a and the noise matrix b as callable to the SDEProblem constructor. Denoting the
configuration by q = (r,�), we write

1 import jaq.numpy as jnp
2

3 y_drift = 4. 0
4 sigma = 1
5 y_barrier = 2
6

7 def drift(q):
8 return jnp.array(
9 [1 / (2 * q[0]) + y_drift * jnp.sin(q[1]), y_drift * jnp.cos(q[1]) / q[

0]]
10)
11

12 def noise(q):
13 return sigma * jnp.array(
14 [[jnp.cos(q[1]), jnp.sin(q[1])], [-jnp.sin(q[1]) / q[0], jnp.cos(q[1])

/ q[0]]]
15)
16

17 problem = pychastic.sde_problem.SDEProblem(
18 a=drift,
19 b=noise,
20 x 0=jnp.array([2. 0, 0. 0]),
21 tmax=2. 0,
22)

The jax.numpy package is a functional cousin of numpy [19], which is the fundamental
package for scientific computing with Python [20]. The functional focus of jax.numpy enables
automatic differentiation, and thus facilitates the use of the high-order method without the
need for numerical differentiation, which can be imprecise and computationally costly. We
obtain the trajectories using the solve method of SDESolver.

1 solver = pychastic.sde_solver.SDESolver(dt=2**(-5), scheme=’milstein’)
2 solution = solver.solve_many(problem,n_samples,seed= 0)

Pychastic supports simulating many trajectories simultaneously with the solve_many
method. Our strategy allows for concurrency in computation of random variables and equa-
tion coefficients thanks to the jax package we use as back-end (which in turn relies on vec-
torised mathematical operations provided by the XLA supporting architecture of most modern
processors). The jax package is a fusion of three capabilities: numpy-like API for array-based
computing, functional transformations (such as vectorisation, parallelisation and automatic
differentiation), and modular back-end, allowing developers to test their work with just CPU
and deploy the same code later on a GPU (or TPU) capable hardware. Furthermore, we avoid
notoriously slow Python loops by using jax.lax.scan routines, taking advantage of just-in-
time compilation and asynchronous dispatch, avoiding the problem of global interpreter lock,
which cripples imperatively coded Python programmes. A more detailed guide on the advan-
tages (and common pifalls) of jax package can be found in its documentation on ReadTheDocs.

Importantly, even though the Milstein and Wagner-Platen schemes require the values of
spatial derivatives of noise and drift terms, we did not have to provide them explicitly. They
were calculated using an automatic differentiation procedure from the coefficient functions
provided in the SDEProblem constructor.

We compare the results obtained with different solvers and time steps in Fig. 1. Sample

8

https://scipost.org
https://scipost.org/SciPostPhysCodeb.11
https://jax.readthedocs.io/

SciPost Phys. Codebases 11 (2023)

a) b)

d)c)

Figure 1: a) Four sample trajectories generated from Eq. (14) using the Euler al-
gorithm together with the barrier r sin� = y = 2. b) Distribution of hitting times
for two different step sizes in the Euler algorithm together with the analytic solu-
tion of the problem, given by Eq. (10). Large step sizes typically overestimate the
hitting time. c) Strong (path-wise) error of the hitting time for different step sizes
and solvers together with power-law eye guides: d t1/4, d t1/2, d t. d) Error of the
expected value of the first passage time together with eye-guides: d t1/2, d t. Con-
trary to the strong error case, here Euler and Milstein algorithms coincide by Whitt’s
theorem.

trajectories starting from the point (r,�) = (2, 0) are shown in Fig. 1a. The barrier at y = 2
becomes a curve in polar parameterisation. In Fig. 1 we present the resulting distribution of
hitting times measured from an ensemble of N = 1000 trajectories with two different time-
step sizes and compared to the exact solutions. Choosing a too large step size can lead to an
overestimation of the typical hitting time. Having implemented three stochastic integration
algorithms, we compare the strong error of estimation of the hitting time in Fig. 1c. It is a
measure of the numerical error per trajectory, defined as h|⌧̃� ⌧|i, where ⌧̃ is the numerical
estimate of hitting time and ⌧ is actual hitting time that can be computed using the exact solu-
tion and a particular realisation of the Wiener process. The average is taken over an ensemble
of realisations of the Wiener process. For different schemes, the strong error scales differently
with the step size – from the linear dependence on d t1/4 for the Euler scheme, through d t1/2

for the Milstein algorithm, to d t for Wagner-Platen. We note that these exponents are different
(smaller) than for strong convergence at a fixed time [18]. Similarly, in Fig. 1d we present the
weak error of estimation of the average value of the hitting time. The weak error is defined
as |h⌧̃i � h⌧i|, and reflects the difference between the ensemble average value of hitting time
estimate and the true ensemble average hitting time (computed directly from the theoreti-

9

https://scipost.org
https://scipost.org/SciPostPhysCodeb.11

SciPost Phys. Codebases 11 (2023)

cal distribution). This quantity highlights the lack of difference between Euler and Milstein
schemes, in agreement with Whitt’s theorem [17] stating the dependence of the expected first
passage time on the weak convergence rate of the scheme only. The power laws for conver-
gence – d t1/4 for Euler and Milstein algorithms and d t for the Wagner-Platen scheme – again
have smaller exponents than for those for weak convergence at a fixed time.

4.2 Rotational Brownian motion, step_post_processing function

To highlight the ease-of-use features of the Pychastic package, we present the problem of
rotational Brownian diffusion simulations. General BD simulations that involve rigid bodies
require the application of finite rotations to diffusing objects. The resulting algorithms are
widely applied to study problems in physics and biology. While resolving translational motion
is straightforward, e.g. with the standard Ermak-McCammon (Euler) algorithm [21], the ro-
tational part is more involved to simulate, because the domain of rotational motion is SO(3)
and this has to be taken into account when solving the equations of motion. One difficulty lies
in the commonly used rotational coordinate systems, such as Euler angles [22], which contain
strong singularities around the polar orientations. When curvilinear coordinates are used to
describe the motion, the metric tensor gives rise to nontrivial additional terms in the equations
of motion, the so-called metric or drift terms, which are frequently overlooked in rotational
BD algorithms. For a summary, see Ref. [23].

To overcome these limitations, we reimplement the problem following the rotation-vector-
based formulation of Evensen et al. [24]. We describe the angular position of the particle by
the angle of rotation � around a unit vector � collinear with the axis of rotation. Generalised
coordinates are encoded in the vector q = ��. The rotational mobility matrix of the particle
in the body-fixed frame is µbody. We transform it into the laboratory frame by

µ = ⌦T ·µbody ·⌦ , (15)

where ⌦ is the relevant rotation matrix. We also define a velocity transformation matrix ⌅ to
further introduce the transformed mobility bµ by

bµ = ⌅ ·µ ·⌅T . (16)

Now we can write the Itō SDE corresponding to the evolution of the generalised coordinates
as

dq = bµ ·
Å
@

@ q
log V
ã

d t + kB T
Å
@

@ q
· bµ
ã

d t +
∆

2kB T bµ1/2 · dW . (17)

Here, V is the density of the volume element (SO(3) Haar measure) with respect to the
Lebesgue measure on R3. In the literature @ log V/@ q is often called the metric force F

(m).
Explicit expressions for ⌅, ⌦ and log V are given in Appendix B.

Since the evolution equation depends on the divergence of a product of two orientation-
dependent matrices, writing Eq. (17) explicitly is quite cumbersome. Earlier works of [24]
and [26] avoid this difficulty by approximating the gradients by sampling the transformed
mobility matrix at nearby locations in the phase space. We can address this problematic term
directly thanks to the automatic differentiation capabilities of the jax package.

1 def metric_force(q):
2 # Metric force, providing the Boltzmann distribution in equilibrium.
3 phi = jnp.sqrt(jnp.sum(q ** 2))
4 scale = jax.lax.cond(# Taylor expansion for the polar orientations.
5 phi < 0. 01,
6 lambda t: -t / 6. 0,
7 lambda t: jnp.sin(t) / (1. 0- jnp.cos(t)) - 2. 0/ t,

10

https://scipost.org
https://scipost.org/SciPostPhysCodeb.11

SciPost Phys. Codebases 11 (2023)

a) b)

Figure 2: a) Distribution of rotation angles � after a long time in N = 104 simulations
compared with the SO(3) symmetric distribution Peq(�) given by Eq. (18). b) Com-
parison of the time-dependent correlation structure arising from equation (17) for a
spherical particle. Dashed lines show exact predictions from Ref. [25] and Eq. (19).
Solid, colored lines show average values of 103 simulations (blue line corresponds
to equation (17) and orange trajectories correspond to Ref. [24] containing a typo in
their Eq. 12). Note that even though equilibrium distributions coincide, time depen-
dent correlation structure is different.

8 phi,
9)

10 return jax.lax.cond(
11 phi > 0. 0, lambda: (q / phi) * scale, lambda: jnp.array([0. 0, 0. 0, 0. 0

])
12)
13

14 def t_mobility(q):
15 # Mobility matrix transformed to rotation vector coordinates.
16 Return transformation_matrix(q) @ mobility @ (transformation_matrix(q).T)
17

18 def drift(q):
19 # jax.jacobian has the differentiation index last (like mu_ij d_k) so

divergence is contraction of the first and last axis.
20 return (
21 t_mobility(q) @ metric_force(q)
22 + jnp.einsum("iji->j", jax.jacobian(t_mobility)(q))
23)

First, including the divergence of the mobility matrix in the new coordinate system is as
simple as adding a correct contraction of jax.jacobian of the mobility tensor. To obtain this,
we use the convenient jnp.einsum tool. This function, similarly to its analogue np.einsum,
takes in a tensor, represented in the memory by an array of arrays of arrays etc. with the
number of levels corresponding to the tensor rank, and performs contraction described sym-
bolically by the index notation. In our case "iji->j" means ‘contract the first index with the
last index of a rank-3 tensor to produce a vector.’

Second, the domain of the equation is SO(3), which is not covered by R3 (since
⇡1(SO(3)) = Z2 [16]). As a result, some trajectories, continuous in SO(3), will necessar-
ily be discontinuous in the R3 parameterisation. We adopt the method proposed by Ref. [24],
where after each step of integration we project on the principal value of the rotation angle. In
pychastic, we achieve this using the step_post_processing capability.

11

https://scipost.org
https://scipost.org/SciPostPhysCodeb.11

SciPost Phys. Codebases 11 (2023)

1 def canonicalize_coordinates(q):
2 phi = jnp.sqrt(jnp.sum(q ** 2))
3 max_phi = jnp.pi
4 canonical_phi = jnp.fmod(phi + max_phi, 2. 0* max_phi) - max_phi
5 return jax.lax.cond(
6 phi > max_phi,
7 lambda canonical_phi, phi, q: (canonical_phi / phi) * q,
8 lambda canonical_phi, phi, q: q,
9 canonical_phi,

10 phi,
11 q,
12)
13 solver = pychastic.sde_solver.SDESolver(dt= 0. 01)
14 trajectories = solver.solve_many(
15 problem,
16 step_post_processing=canonicalize_coordinates,
17 n_trajectories=1 000
18)

The simulations were validated by checking the equilibrium properties and the time-
dependent correlation structure. The equilibrium distribution Peq(�) for the rotation angle
� is given by

Peq(�) =
1� cos�
⇡

. (18)

To characterise the time evolution, we use the components of the modified rotation vector
components �uk(t) = �1

2✏i jk⌦i j(t), for which exact theoretical predictions were derived by
Cichocki et al. [25] for an arbitrarily shaped molecule. For a spherical particle, the correlation
functions are given by

h�uk(t)�ul(t)i0 =
ï

1
6
� 5

12
e�6Dr t +

1
4

e�2Dr t
ò
�K

kl , (19)

where �K is the Kronecker delta. The diffusion coefficient for a sphere is Dr = kB T/⇡⌘d3,
where d is the diameter of the particle.

In Fig. 2, we present a comparison between the results obtained with an algorithm based
on Eq. (17) (blue lines), and a similar method based on equations (5-12) from Ref. [24] (or-
ange). Fig. 2a shows the equilibrium distribution of the rotation angle �, together with the
analytical prediction of Eq. (18). We note that although the equilibrium distribution predicted
by both algorithms shows exact agreement with the theoretical predictions, the transforma-
tion matrix ⌅ in Eq. (12) of Ref. [24] contains an error. We corrected this typographical error
and present the proper formulation of the equations of motion matrices in the Appendix B.
The discrepancy is visible in the time-dependent correlation function in Fig. 2b. Although at
long times the system tends to the same equilibrium solution for both approaches, we see the
agreement of our algorithm with the theoretical predictions of Eq. (19) (dashed line) and the
deviation of the orange lines. This discrepancy highlights the need for better test cases that
reliably test all properties of the simulated equation, and not solely the equilibrium distribu-
tion.

As mentioned above, the algorithm based on Ref. [24] is singularity-free, contrary to ap-
proaches based on Euler angles, which contain strong singularities around the polar orienta-
tions. However, it should be noted that the implementation of the code may still face some
limitations, such as the computational inability to calculate sin�/� for �! 0. For these nu-
merically restricted cases, we implemented the Taylor expansion of ⌅, ⌦ and log V , based on
Ref. [26]. However, we also report some typos in this publication. Therefore, in Appendix B
we provide correct formulations of the Taylor-expanded terms.

12

https://scipost.org
https://scipost.org/SciPostPhysCodeb.11

SciPost Phys. Codebases 11 (2023)

4.3 Bead models with hydrodynamic interactions, pygrpy package integration

Hydrodynamically interacting beads (with and without springs) have been used successfully in
modelling the properties of elastic macromolecules [21,27–31]. Some questions about elastic
macromolecules can be answered by computing the equilibrium ensemble of conformations
(with methods such as Markov Chain Monte Carlo [32]). Simulations involving hydrodynamic
interactions can, on the other hand, provide access to the dynamics and answer questions, e.g.,
about time scales of conformational change [33], mechanisms of protein association [34],
pore translocation [35–37], near-wall hindered diffusion [38], and many other dynamical
processes.

The starting point is often the Hamiltonian, which describes intramolecular interactions
between the constitutive subunits of the molecule, modelled by a collection of beads. The
potential energy landscape can then be used to compute the interaction forces. Thanks to the
jax autograd capabilities, the forces arising from many-body mechanical interactions can be
automatically calculated from the potential energy of the system.

The computation of hydrodynamic interactions, encoded in the mobility tensors of the
respective macromolecules is a more involved task. Numerous methods are available, vary-
ing in scope, degree of precision, and complexity. For a review of popular methods applied
to macromolecules, see Ref. [39]. For completeness, we supplemented pychastic with the
package pygrpy for the calculation of grand mobility tensors in the Rotne-Prager-Yamakawa
(RPY) approximation [40, 41], generalised to beads of different sizes [42]. The procedure
is a Python port of the GRPY package [39]. The Python package pygrpy simplifies the imple-
mentation of similar bead-spring simulations, both stochastic and deterministic. Furthermore,
pygrpy is compatible with the jax functional paradigm and allows automatic differentiation
and vectorisation.

The RPY approximation is by far the most popular method of accounting for hydrodynamic
interaction in numerical models of soft matter systems [43]. The mobility tensors calculated
in this way preserve positive definiteness and are divergence-free, significantly simplifying the
BD algorithm [21]. In essence, RPY is a far-field approximation that includes all terms that
decay slower than the inverse third power of the interparticle distances, but is less accurate
at smaller distances. When the particles come close together, it is necessary to include higher-
order terms of the multipole expansion [44] and lubrication corrections [45]. However, as
shown by Żuk et al. [42], the RPY approximation can be generalised to overlapping particles,
and thus it can also be used to model complex-shaped particles as conglomerates of rigidly
glued overlapping spheres, in particular to calculate hydrodynamic properties of biological
macromolecules, as in the GRPY method [39].

To highlight the ease of use and interoperability of pychastic and pygrpy, we implement
a benchmark problem proposed by Cichocki et al. [46]. It concerns the diffusion coefficient of
an elastic "macromolecule" composed of 4 beads of radii ri 2 {3,1, 1,1} joined into a string,
as shown in Fig. 3a. Here, the length scale is the radius of a small bead a. The neighbouring
beads interact directly via harmonic potentials, with the equilibrium distance di = 4 and the
spring constant k = 5.5 kB T/a, and indirectly through hydrodynamic interactions.

We determine the diffusion coefficient D by tracking the mean square displacement
h(x (t)� x (0))2i (MSD) of a point x of the molecule. If the observation time is long enough,
MSD ⇡ 6Dt. However, for shorter times, the coefficient of proportionality in the MSD(t)
curve is different and depends on the choice of the reference point on the molecule. Although
biophysical experiments typically measure the long-time diffusion coefficient, numerical sim-
ulations have easier access to short-time diffusivity. To minimise the difference, one should
choose a particular point, called the centre of diffusion, which can be constructed as a weighted
average of the positions of beads with weights determined from the hydrodynamic mobilities
of an ensemble of equilibrium configurations of the elastic molecule [46].

13

https://scipost.org
https://scipost.org/SciPostPhysCodeb.11

SciPost Phys. Codebases 11 (2023)

a) b)

Figure 3: a) Representative configurations of four co-diffusing beads connected with
harmonic springs at time (bottom to top) t/⌧d = 2, 2000, 4000, 6000. b) Mean
square displacement of three different tracked locations: the small bead at the end
of the chain (blue), the large bead at the other end (orange) and the weighted aver-
age of all four beads with weights corresponding to the effective centre of diffusion,
defined according to Ref. [46]. The dashed line corresponds to numerical results re-
ported in [46] based on an extremely long, single-trajectory simulation.

We use this system to test our algorithm. In Fig. 3b, we show the temporal evolution of the
MSD when different reference points on the elastic molecule are chosen: the small terminal
bead, the large bead, and the centre of diffusion. The time is scaled by ⌧d = ⇡⌘d3/kB T . We
computed hydrodynamic interactions using the package pygrpy, which allows computations
of mobility tensors for macromolecules composed of unequally sized and possibly overlapping
spherical beads in the Rotne-Prager-Yamakawa approximation. The dashed line is the numer-
ical result of [46] where the diffusion coefficient was estimated using a single very long BD
trajectory. Indeed, we see that tracking the centre of diffusion provides a good estimate of
the long-time behaviour of the MSD. When one chooses to track one of the smaller beads or
one of the beads further away from the middle of the molecule, precision decreases primarily
because rotational diffusion plays a bigger role in the motion of such tracers. The strength of
our algorithm is that we use many trajectories instead of a single long one, thus avoiding the
need for a more complex method of calculating the diffusion coefficient, involving recursive
subdivisions of the simulation interval described by Frenkel and Smit [47].

1 radii = jnp.array([3. 0,1. 0,1. 0,1. 0]) # sizes of spheres used
2 n_beads = len(radii)
3 equilibrium_dist = 4. 0
4 spring_constant = 5.5
5

6 def pot_ene(x): # potential energy
7 locations = jnp.reshape(x,(n_beads,3))
8 distance_ab = jnp.sqrt(jnp.sum((locations[0] - locations[1])**2))
9 distance_bc = jnp.sqrt(jnp.sum((locations[1] - locations[2])**2))

10 distance_cd = jnp.sqrt(jnp.sum((locations[2] - locations[3])**2))
11 ene = 0.5*spring_constant*jnp.sum(
12 ([distance_ab,distance_bc,distance_ca] - equilibrium_dist)**2
13)
14 return ene

14

https://scipost.org
https://scipost.org/SciPostPhysCodeb.11

SciPost Phys. Codebases 11 (2023)

15

16 def drift(x):
17 locations = jnp.reshape(x,(n_beads,3))
18 mu = pygrpy.jax_grpy_tensors.muTT(locations,radii)
19 force = -jax.grad(pot_ene)(x)
20 return jnp.matmul(mu,force)
21

22 def noise(x):
23 locations = jnp.reshape(x,(n_beads,3))
24 mu = pygrpy.jax_grpy_tensors.muTT(locations,radii)
25 return jnp.sqrt(2)*jnp.linalg.cholesky(mu)
26

27 problem = pychastic.sde_problem.SDEProblem(
28 drift,
29 noise,
30 x 0= jnp.reshape(jnp.array([
31 [-2., 0., 0.],
32 [2., 0., 0.],
33 [6., 0., 0.],
34 [1 0., 0., 0.]
35]),(3*n_beads,)),
36 tmax = 1 0000. 0)

5 Conclusion

We developed a novel Python package pychastic dedicated to efficient numerical solutions
of SDEs. The package implements the classical truncated Taylor-Itō integrators up to strong
order O(d t3/2) providing a precise treatment of both weak (e.g. equilibrium distributions,
diffusion coefficients) and strong problems. We included a set of simple test cases that pro-
vide exact reference points for testing future stochastic integration algorithms. The analysis of
three-dimensional rotational Brownian motion benchmarks is particularly important because
it encompasses many of the difficult aspects of SDE approaches to Brownian dynamics: di-
vergence terms in the evolution equation, handling discontinuous trajectories (unavoidable in
the case of SO(3)), and spurious agreements when testing only the equilibrium distribution.
We hope that pychastic will ease future studies of Brownian dynamics problems, especially
problems that involve hydrodynamic interactions. The project is open source, and we hope to
encourage collaboration and its further development.

Acknowledgements

The authors thank Piotr Szymczak for his insightful feedback.

Funding information The work of ML, RW, and MB was supported by the National Science
Centre of Poland (FundRef DOI: http://dx.doi.org/10.13039/501100004281) grant Sonata
to ML no. 2018/31/D/ST3/02408.

15

https://scipost.org
https://scipost.org/SciPostPhysCodeb.11
http://dx.doi.org/10.13039/501100004281

SciPost Phys. Codebases 11 (2023)

A Appendix: Typos in integration schemes in Ref. [18]

In the book: Numerical solution of stochastic differential equations by Peter E. Kloeden and
Eckhard Platen in equation 5.8.11 we have found the following typos:

1. In the definition of Dp
j1, j2, j3: the fourth summand should read ⇣ j1,r⌘ j3,l+r instead of j1.

2. In the definition of bj: there is a 1/⇡ factor missing before sum.

3. In the definition of C p
j1, j2: second term should be +1/r⌘ j1,r⌘ j2,l instead of �l/r.

B Appendix: Rotational Brownian motion

In equation (17) we recall the equations of rotational Brownian motion, formulated in Ref.
[24]. Angular orientation is described by the vector a = (a1, a2, a3) = ��, where � is the
angle of rotation around a unit vector �, which corresponds to the axis of rotation. Because the
expressions in Ref. [24] contain typos, here we present the proper expressions for coordinate
transformation and rotation matrices ⌅ and ⌦:

⌅ =
Å

1
�2
� sin�

2�(1� cos�)

ã
0
@

a1a1 a1a2 a1a3
a2a1 a2a2 a2a3
a3a1 a3a2 a3a3

1
A+ 1

2

0
@
� sin�

1�cos� �a3 a2
a3

� sin�
1�cos� �a1

�a2 a1
� sin�

1�cos�

1
A , (20)

⌦ =
1
�2

0
@
�2 cos� �a3� sin� a2� sin�
a3� sin� �2 cos� �a1� sin�
�a2� sin� a1� sin� �2 cos�

1
A+ 1� cos�

�2

0
@

a1a1 a1a2 a1a3
a2a1 a2a2 a2a3
a3a1 a3a2 a3a3

1
A . (21)

The matrix ⌅ transforms the velocities from the Cartesian coordinate system to the one
described by a. The matrix ⌦ is a simple rotation matrix. These two matrices combined allow
transformation of the body-fixed mobility matrix µbody to the lab-fixed, a-described mobility
matrix, given as bµ = ⌅ ·⌦T ·µbody ·⌦ ·⌅T .

The term
Ä
@
@ q

log V
ä

from Eq. (17) can be associated with the metric force F
(m), which

guarantees the Boltzmann distribution in equilibrium and is given as
Å
@

@ q
log V
ã
= F

(m) = �kB T
Å

sin(�)
1� cos(�)

� 2
�

ã
� . (22)

Due to the numerical limitations, it is sometimes inevitable to perform the Taylor expansion
of the above quantities, as presented in Ref. [26]. However, we also found typos in this case.
Therefore, we provide the correctly expanded matrices ⌅ and ⌦ for �! 0,

⌅ =
1
12

0
@

a1a1 a1a2 a1a3
a2a1 a2a2 a2a3
a3a1 a3a2 a3a3

1
A+ 1

2

0
@

2 �a3 a2
a3 2 �a1
�a2 a1 2

1
A+O(�2) , (23)

⌦ =

0
@

1 �a3 a2
a3 1 �a1
�a2 a1 1

1
A+ 1

2

0
@

a1a1 a1a2 a1a3
a2a1 a2a2 a2a3
a3a1 a3a2 a3a3

1
A+O(�2) . (24)

The Taylor-expanded metric force around �! 0 becomes

F
(m) = kB T

�

6
�+O(�3) . (25)

16

https://scipost.org
https://scipost.org/SciPostPhysCodeb.11

SciPost Phys. Codebases 11 (2023)

References

[1] P.-G. De Gennes, Soft matter, Science 256, 495 (1992), doi:10.1126/science.256.
5056.495.

[2] S. Kim and S. J. Karrila, Microhydrodynamics: Principles and selected appli-
cations, Butterworth-Heinemann, Oxford, UK, ISBN 9780750691734 (1991),
doi:10.1016/C2013-0-04644-0.

[3] M. Praprotnik, L. D. Site and K. Kremer, Multiscale simulation of soft matter: From
scale bridging to adaptive resolution, Annu. Rev. Phys. Chem. 59, 545 (2008),
doi:10.1146/annurev.physchem.59.032607.093707 .

[4] U. D. Schiller, T. Krüger and O. Henrich, Mesoscopic modelling and simulation of soft mat-
ter, Soft Matter 14, 9 (2018), doi:10.1039/C7SM01711A.

[5] J. K. G. Dhont, An introduction to dynamics of colloids, Elsevier, Amsterdam, Netherlands,
ISBN 9780080535074 (1996).

[6] M. Karplus and G. A. Petsko, Molecular dynamics simulations in biology, Nature 347, 631
(1990), doi:10.1038/347631a0.

[7] N. van Kampen, Stochastic processes in physics and chemistry, Elsevier, Amsterdam,
Netherlands, ISBN 9780080475363 (2007), doi:10.1016/B978-0-444-52965-7.X5000-
4.

[8] R. M. Mazo, Brownian motion, Oxford University Press, Oxford, UK, ISBN
9780199556441 (2008), doi:10.1093/acprof:oso/9780199556441.001.0001.

[9] A. Einstein, Über die von der molekularkinetischen Theorie der Wärme geforderte Bewe-
gung von in ruhenden Flüssigkeiten suspendierten Teilchen, Ann. Phys. 322, 549 (1905),
doi:10.1002/andp.19053220806.

[10] M. von Smoluchowski, Zur kinetischen theorie der Brownschen molekularbewegung und
der suspensionen, Ann. Phys. 326, 756 (1906), doi:10.1002/andp.19063261405.

[11] A. D. Fokker, Die mittlere energie rotierender elektrischer dipole im strahlungsfeld, Ann.
Phys. 348, 810 (1914), doi:10.1002/andp.19143480507.

[12] M. Planck, Sitzungsberichte der Königlich Preussischen akademie der wissenschaften zu
Berlin, Deutsche Akademie der Wissenschaften zu Berlin, Berlin, Germany (1917).

[13] A. Kolmogoroff, Über die analytischen methoden in der wahrscheinlichkeitsrechnung, Math.
Ann. 104, 415 (1931), doi:10.1007/BF01457949.

[14] K. Itô, On stochastic differential equations, American Mathematical Society, Providence,
Rhode Island, USA, ISBN 9780821812044 (1951).

[15] P. Langevin, Sur la théorie du mouvement brownien, C. R. Acad. Sci. 146, 530 (1908).

[16] B. C. Hall, Lie groups, Lie algebras, and representations: An elementary introduction,
Springer, Cham, Switzerland, ISBN 9783319134673 (2015), doi:10.1007/978-3-319-
13467-3.

[17] W. Whitt, Weak convergence of first passage time processes, J. Appl. Prob. 8, 417 (1971),
doi:10.2307/3211913.

17

https://scipost.org
https://scipost.org/SciPostPhysCodeb.11
https://doi.org/10.1126/science.256.5056.495
https://doi.org/10.1126/science.256.5056.495
https://doi.org/10.1016/C2013-0-04644-0
https://doi.org/10.1146/annurev.physchem.59.032607.093707%20
https://doi.org/10.1039/C7SM01711A
https://doi.org/10.1038/347631a0
https://doi.org/10.1016/B978-0-444-52965-7.X5000-4
https://doi.org/10.1016/B978-0-444-52965-7.X5000-4
https://doi.org/10.1093/acprof:oso/9780199556441.001.0001
https://doi.org/10.1002/andp.19053220806
https://doi.org/10.1002/andp.19063261405
https://doi.org/10.1002/andp.19143480507
https://doi.org/10.1007/BF01457949
https://doi.org/10.1007/978-3-319-13467-3
https://doi.org/10.1007/978-3-319-13467-3
https://doi.org/10.2307/3211913

SciPost Phys. Codebases 11 (2023)

[18] P. Kloeden and E. Platen, Numerical solution of stochastic differential equations, Springer,
Berlin, Heidelberg, ISBN 9783662126165 (1992), doi:10.1007/978-3-662-12616-5.

[19] C. R. Harris et al., NumPy, https://numpy.org/.

[20] C. R. Harris et al., Array programming with NumPy, Nature 585, 357 (2020),
doi:10.1038/s41586-020-2649-2.

[21] D. L. Ermak and J. A. McCammon, Brownian dynamics with hydrodynamic interactions,
J. Chem. Phys. 69, 1352 (1978), doi:10.1063/1.436761.

[22] H. Goldstein, Classical mechanics, Pearson Education, London, UK, ISBN 9788177582833
(2002).

[23] I. M. Ilie, W. J. Briels and W. K. den Otter, An elementary singularity-free rotational Brow-
nian dynamics algorithm for anisotropic particles, J. Chem. Phys. 142, 114103 (2015),
doi:10.1063/1.4914322.

[24] T. R. Evensen, S. N. Naess and A. Elgsaeter, Brownian dynamics simulations of rotational
diffusion using the Cartesian components of the rotation vector as generalized coordinates,
Macromol. Theory Simul. 17, 403 (2008), doi:10.1002/mats.200800031.

[25] B. Cichocki, M. L. Ekiel-Jeżewska and E. Wajnryb, Brownian motion of a particle with
arbitrary shape, J. Chem. Phys. 142, 214902 (2015), doi:10.1063/1.4921729.

[26] I. M. Ilie, W. K. den Otter and W. J. Briels, Rotational Brownian dynamics simulations of
clathrin cage formation, J. Chem. Phys. 141, 065101 (2014), doi:10.1063/1.4891306.

[27] R. M. Jendrejack, J. J. de Pablo and M. D. Graham, Stochastic simulations of DNA in flow:
Dynamics and the effects of hydrodynamic interactions, J. Chem. Phys. 116, 7752 (2002),
doi:10.1063/1.1466831.

[28] R. G. Larson, T. T. Perkins, D. E. Smith and S. Chu, Hydrodynamics of a DNA molecule in
a flow field, Phys. Rev. E 55, 1794 (1997), doi:10.1103/PhysRevE.55.1794.

[29] A. Cressman, Y. Togashi, A. S. Mikhailov and R. Kapral, Mesoscale modeling of molecular
machines: Cyclic dynamics and hydrodynamical fluctuations, Phys. Rev. E 77, 050901
(2008), doi:10.1103/PhysRevE.77.050901.

[30] C.-C. Hsieh, S. Jain and R. G. Larson, Brownian dynamics simulations with stiff finitely
extensible nonlinear elastic-Fraenkel springs as approximations to rods in bead-rod models,
J. Chem. Phys. 124, 044911 (2006), doi:10.1063/1.2161210.

[31] J. Huang and T. Schlick, Macroscopic modeling and simulations of supercoiled DNA with
bound proteins, J. Chem. Phys. 117, 8573 (2002), doi:10.1063/1.1511506.

[32] B. A. Berg, Markov chain Monte Carlo simulations and their statistical analysis, World
Scientific, Singapore, ISBN 9789812389350 (2004), doi:10.1142/5602.

[33] S. He and H. A. Scheraga, Macromolecular conformational dynamics in torsional angle
space, J. Chem. Phys. 108, 271 (1998), doi:10.1063/1.475378.

[34] S. H. Northrup, J. A. Luton, J. O. Boles and J. C. L. Reynolds, Brownian dynam-
ics simulation of protein association, J. Comput.-Aided Mol. Des. 1, 291 (1988),
doi:10.1007/BF01677278.

18

https://scipost.org
https://scipost.org/SciPostPhysCodeb.11
https://doi.org/10.1007/978-3-662-12616-5
https://numpy.org/
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1063/1.436761
https://doi.org/10.1063/1.4914322
https://doi.org/10.1002/mats.200800031
https://doi.org/10.1063/1.4921729
https://doi.org/10.1063/1.4891306
https://doi.org/10.1063/1.1466831
https://doi.org/10.1103/PhysRevE.55.1794
https://doi.org/10.1103/PhysRevE.77.050901
https://doi.org/10.1063/1.2161210
https://doi.org/10.1063/1.1511506
https://doi.org/10.1142/5602
https://doi.org/10.1063/1.475378
https://doi.org/10.1007/BF01677278

SciPost Phys. Codebases 11 (2023)

[35] T. Yamanouchi and A. Satoh, Improvement of trapping performance of magnetic
particles by magnetic multi-poles via Brownian dynamics simulations of magnetic
rod-like particles in a Hagen-Poiseuille flow, Mol. Phys. 120, e2067503 (2022),
doi:10.1080/00268976.2022.2067503.

[36] R. Waszkiewicz and M. Lisicki, Hydrodynamic effects in the capture of rod-like molecules
by a nanopore, J. Phys.: Condens. Matter 33, 104005 (2020), doi:10.1088/1361-
648x/abd11b.

[37] L. Qiao and G. W. Slater, Capture and translocation of a rod-like molecule by a nanopore:
Orientation, charge distribution and hydrodynamics, Phys. Chem. Chem. Phys. 24, 6444
(2022), doi:10.1039/D2CP00313A.

[38] S. A. Rogers, M. Lisicki, B. Cichocki, J. K. G. Dhont and P. R. Lang, Rotational
diffusion of spherical colloids close to a wall, Phys. Rev. Lett. 109, 098305 (2012),
doi:10.1103/PhysRevLett.109.098305.

[39] P. J. Zuk, B. Cichocki and P. Szymczak, GRPY: An accurate bead method for calculation
of hydrodynamic properties of rigid biomacromolecules, Biophys. J. 115, 782 (2018),
doi:10.1016/j.bpj.2018.07.015.

[40] J. Rotne and S. Prager, Variational treatment of hydrodynamic interaction in polymers, J.
Chem. Phys. 50, 4831 (1969), doi:10.1063/1.1670977.

[41] H. Yamakawa, Transport properties of polymer chains in dilute solution: Hydrodynamic
interaction, J. Chem. Phys. 53, 436 (1970), doi:10.1063/1.1673799.

[42] P. J. Zuk, E. Wajnryb, K. A. Mizerski and P. Szymczak, Rotne-Prager-Yamakawa approxi-
mation for different-sized particles in application to macromolecular bead models, J. Fluid
Mech. 741, R5 (2014), doi:10.1017/jfm.2013.668.

[43] G. Nägele, Brownian dynamics simulations, Forschungszentrum Jülich, Jülich, Germany,
ISBN 9783893364305 (2006).

[44] B. Cichocki, R. B. Jones, R. Kutteh and E. Wajnryb, Friction and mobility for colloidal
spheres in Stokes flow near a boundary: The multipole method and applications, J. Chem.
Phys. 112, 2548 (2000), doi:10.1063/1.480894.

[45] M. L. Ekiel-Jeżewska and E. Wajnryb, Precise multipole method for calculating hydrody-
namic interactions between spherical particles in the stokes flow, Transworld Research Net-
work, Trivandrum, India, ISBN 9788178954004 (2009).

[46] B. Cichocki, M. Rubin, A. Niedzwiecka and P. Szymczak, Diffusion coefficients of elastic
macromolecules, J. Fluid Mech. 878, R3 (2019), doi:10.1017/jfm.2019.652.

[47] D. Frenkel and B. Smit, Understanding molecular simulation: From algorithms
to applications, Academic Press, Cambridge, UK, ISBN 9780122673511 (2002),
doi:10.1016/B978-0-12-267351-1.X5000-7.

19

https://scipost.org
https://scipost.org/SciPostPhysCodeb.11
https://doi.org/10.1080/00268976.2022.2067503
https://doi.org/10.1088/1361-648x/abd11b
https://doi.org/10.1088/1361-648x/abd11b
https://doi.org/10.1039/D2CP00313A
https://doi.org/10.1103/PhysRevLett.109.098305
https://doi.org/10.1016/j.bpj.2018.07.015
https://doi.org/10.1063/1.1670977
https://doi.org/10.1063/1.1673799
https://doi.org/10.1017/jfm.2013.668
https://doi.org/10.1063/1.480894
https://doi.org/10.1017/jfm.2019.652
https://doi.org/10.1016/B978-0-12-267351-1.X5000-7

	Introduction
	Three vantage points: Langevin, Fokker-Planck, and Itō
	Pychastic: description of the package
	Available numerical integration packages
	Implementation details

	Examples of usage
	First passage problems, polar random walk
	Rotational Brownian motion, step_post_processing function
	Bead models with hydrodynamic interactions, pygrpy package integration

	Conclusion
	Appendix: Typos in integration schemes in Ref. Kloeden2011
	Appendix: Rotational Brownian motion
	References

