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The slow viscous flow through a doubly-periodic array of cylinders does not have an ana-

lytical solution. However, as a reduced model for the flow within fibrous porous media and

microfluidic arrays, this solution is important for many real-world systems. We asymptoti-

cally determine the flow around a general rectangular doubly-periodic array of infinite slen-

der cylinders, extending the existing asymptotic solution for square arrays. The flow in the

cell is represented by a collection of doubly-periodic, rapidly-convergent two-dimensional
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singularity solutions, and the boundary condition on the surface of the cylinder is solved

asymptotically in powers of the cylinder radius. The asymptotic solution provides an easily

computed closed-form estimate for the flow and forces as a function of the radius and the

dimensions of the cell. The force is compared to results from lattice-Boltzmann simulations

of low-Reynolds-number flows in the same geometry, and the accuracy of the no-slip condi-

tion on the surface of the cylinder, predicted by the asymptotic theory, is assessed. Finally,

the behaviour of the flow, flux, force and effective permeability of the cell is investigated

as a function of the geometric parameters. The structure of the asymptotic permeability is

consistent with previous single-geometry predictions but provides a closed-form estimate

for how the aspect ratio of the cell changes the leading-order behaviour. These models could

be used to help understand the flows within porous systems composed of fibres and systems

involving periodic arrays such as systems based on deterministic lateral displacement.

I. INTRODUCTION

Slow viscous flow over multiple bodies is a notoriously complicated problem with various

applications [1]. For example, flowing colloids display discontinuous shear thickening [2, 3], and

programmable self-assembling micromachines interact with each other through the flow to develop

distinct phases and shapes [4, 5]. Similarly, filter-feeding organisms use the flow over a collection

of microscopic fibres to capture food [6–8], and periodic arrays of posts in microfluidics can sort

particles in a process called deterministic lateral displacement [9–12].

These systems can be tricky to probe experimentally and are hard to model theoretically be-

cause slow viscous flows have long-ranged interactions [1].Even the relatively simplified geome-

tries of a singularly or doubly-periodic array of infinite cylinders have no exact solutions. Yet,

such model arrays have been studied since the late 1950s [13]and have played an important role

in understanding ordered or fibrous porous media [14]. Fibrous porous media, like wool, hair, col-

lagen, and fibreglass, can exist at much lower packing fractions (below 1%) than granular porous

media (60–70%) due to the large aspect ratios of the bodies.

The lack of exact closed-form solutions means the dynamics in singularly or doubly-periodic

arrays of infinite cylinders are typically solved numerically [15–22] or argued from geometries

with known solutions [23]. Through these methods, studies have explored the behaviour around

cylinders in different periodic domains [16, 18, 23], irregular domains [20], the influence of slip
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[17], cylinder porosity [18], interacting fluid domains [21, 22], and inertial effects [13, 15].

Periodic arrays have also been studied asymptotically. Such work provides a closed approxima-

tion to the solution that can be used when numerical approaches struggle, provide insight into how

the geometry influences the behaviour and can be directly applied to new problems. Singularly-

periodic arrays have been studied by Tamada and Fujikawa [13], when the periodic domain was

much greater than the cylinder radius, and Keller [24] in thelubrication limit. Barta and Weihs

[19] later used slender-body theory [25–27] to improve the accuracy and investigate the effects of

finite lengths and array size on these singularly-periodic systems.

Similarly, doubly-periodic arrays of cylinders were studied by Sangani and Acrivos [28, 29]

while considering cubic arrays of spheres. They determinedthe drag and permeability on each

post in square or regular hexagonal arrays as a function of the cylinder radius. Shortly thereafter,

Drummond and Tahir estimated the permeability of square arrays, triangular arrays, hexagonal

arrays and rectangular arrays with a cell aspect ratio of 2 through the matching of the flow out-

side an infinite cylinder and a collection of singularities [30]. The results of Sangani, Acrivos,

Drummond and Tahir suggest that the permeability,k′, for an array of cylinders typically has the

form
µk′

R′2 =
1

4φ
(

− log(φ)+α −βφ2+ γφ
)

(1)

whereR′ is the radius of the cylinder,µ is the dynamic viscosity,φ is the packing fraction (the vol-

ume occupied by the cylinder divided by the total volume of the cell), andα, β andγ are constants

that depend on the geometry of the cell [14, 28, 30]. In the above,α represents the leading-order

correction for the geometry, whileγ andβ are the second- and third-order corrections, respec-

tively. Drummond and Tahir’s models have been found to matchexperimental results [14]. Wang

[16] later used the general solution to the flow in a periodic box and the solution for flow outside a

cylinder to investigate the flow in doubly-periodic arrays.They numerically enforced the boundary

conditions to the flow at discrete locations on the edge of thedomain to determine the unknown

coefficients for each geometry they investigated. Consistent with Eq. (1), they showed the leading

logarithmic behaviour of the drag and the permeability for doubly-periodic arrays in the limit of

small radius, but they also observed non-inertial vorticesin front of and behind the cylinder when

the radius increases. While these asymptotic results have been useful for hypothesising the struc-

ture of the permeability and force at small post radii, the specific values for each geometry have

traditionally been computed independently. These computations often require the evaluation of

slowly converging infinite series because of the long-rangenature of the flow. This convergence
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issue makes it hard to identify the influence of the cell geometry on the force and permeability

asymptotically and evaluate the flow around the post predicted by the asymptotic solution.

This paper determines the asymptotic flow around and the force from a general rectangular

doubly-periodic array of cylinders, with dimensionsℓ′×h′, in the limit of small cylinder radius,

R′. The solution is found by constructing a rapidly-converging complex-variable two-dimensional

singularity representation for the flow and satisfying the no-slip boundary condition on the cylinder

surface up toO(R′4/ℓ′4,R′4/H ′4). This accuracy is required to investigate the far-field transport of

particles through the array (left for future work). The expansion provides a closed-form estimate

for the flow and force in the cell in terms of the scaled radius of the cylinder and the aspect ratio

of the two sides of the domain and can be evaluated through a rapidly convergent series, thereby

allowing the fast calculation of force on the post and asymptotic flow anywhere in the cell. The

asymptotic force is compared to the force found from lattice-Boltzmann simulations for the same

geometry at small Reynolds number, and the accuracy of the no-slip condition on the surface of

the cylinder, as predicted by the asymptotic model, is investigated. The asymptotic solution allows

us to create an analytical approximation for the mean velocity through the cell, the pressure drop

across the cell, and the permeability of the system as a function of the post radius and the aspect

ratio of the cell.

Section II introduces the doubly-periodic array geometry and the fluid problem considered.

Sec. III provides some background into the complex variablesolutions of Stokes flow and intro-

duces the doubly-periodic functions used to represent flow singularities. These singularities are

then employed in Sec. IV to determine the asymptotic flow around the periodic cylinder system.

The accuracy of these results is investigated in Sec. V. Finally, the flows predicted are discussed

and the asymptotic permeability is determined in Sec. VI, before concluding the paper in Sec. VII.

II. THE RECTANGULAR DOUBLY-PERIODIC ARRAY AND FLUID PROBLEM

STATEMENT

This paper considers the slow viscous flow over an infinite slender cylinderS of radiusR′ in

a rectangular doubly-periodic domain with periodsℓ′ andh′, respectively (Fig. 1). The central

cylinder is assumed to be stationary and located at the origin. The background flow will be taken

along thex′-axis and the dynamic viscosity of the fluid isµ. In this geometry, the gap between

two adjacent cylinders along they′-axis is given by∆h′ = h′− 2R′. We scale all lengths byℓ′,
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FIG. 1. A diagram of the doubly-periodic domain considered. The periodalong thex′-axis isℓ′, and the

period along they′-axis ish′. Any point in the domain on the complex plane is represented byz′ = x′+ iy′.

The central cylinder has a radius ofR′ and is centred at 0.∆h′ = h′−2R′ is the gap between two adjacent

cylinders along they′-axis. The flow is taken along thex′-axis without any loss of generality, because of

the linearity of Stokes flow. The surface of the central cylinder is described byS(z) = R′eiθ whereθ is the

angle relative to thex′ axis.

velocities by the maximum velocity in thex-direction,u′m, the force per unit length byµu′m, the

pressure byµu′m/ℓ
′, and the permeability byℓ′2/µ. Scaled variables are presented without a dash.

We note that, for the two-dimensional system, only the forceper unit length is defined.

The flow within the unit cell is assumed to satisfy the (dimensionless) incompressible Stokes

equations

−∇p+∇2u = 0, (2)

∇ ·u = 0 (3)

wherep is the pressure, andu is the velocity. The no-slip condition demands that the velocity

should be zero on the surface of the cylinder (u(S) = 0).
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As the geometry is two-dimensional, it is useful to solve forthe flow on the complex plane

(Fig. 1). Any point in the scaled domain on the complex plane can be described byz= x+ iy,

wherex ∈ [0,1) and y ∈ [0,h). On the complex plane, the surface of the central cylinder is

described by

S= Reiθ (4)

whereh = h′/ℓ′ is the aspect ratio of the cell,R= R′/ℓ′ is the scaled cylinder radius, andθ

is the polar angle from the real axis defined at the centre of the cylinder. The scaled gap be-

tween adjacent cylinders along they-axis is ∆h = ∆h′/ℓ′ = h− 2R. In the scaled coordinates,

R∈ [0,min(1/2,h/2)) andR/h∈ [0,min(1/(2h),1/2)). The periodicity of the domain requires

u(x,y) = u(x+1,y) andu(x,y) = u(x,y+h) everywhere.

We solve the flow problem described above asymptotically on the complex plane through the

representation by fundamental singularities. The point force solution and its derivatives are placed

within the cylinder such that all the boundary conditions are met. To help elucidate this process, the

next section gives some background into solving two-dimensional Stokes flows using the complex

plane and the rapidly-convergent complex representation for the flow from a point force, and select

derivatives, in a generalised rectangular doubly-periodic domain.

III. BACKGROUND IN COMPLEX SOLUTIONS TO STOKES FLOW

The incompressible Stokes equations, Eqs. (2) and (3), are linear and time-independent. So-

lutions to these equations only depend on the instantaneousgeometry of the system, can be con-

structed by the superposition of several flows, and are also known to be unique with appropriate

boundary conditions. Even so, exact solutions to the Stokesequations are only known in relatively

simple geometries. As such, many flows are approximated using numerical or asymptotic meth-

ods. These approaches often exploit the Green’s function solution to the flow, called the Stokeslet.

The Stokeslet represents the flow from a point force in an unbounded fluid and can be used to con-

struct solutions in two ways: the boundary integral method and the representation by fundamental

singularities. On the one hand, the boundary integral method uses the properties of the Green’s

function to convert the partial differential equations into an integral equation over the boundaries

of the domain. These equations can then be inverted numerically to determine the solution. On

the other hand, the representation by fundamental singularities places the Stokeslet and its deriva-

tives outside the flow domain such that the boundary conditions are satisfied [31]. In principle,
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such a distribution must exist [1] and any suitable distribution must form the solution due to the

uniqueness of the flow [31]. The latter approach is often employed to find asymptotic solutions to

common flow problems, such as the hydrodynamics of fibres [25–27].

In two dimensions, there is no solution to the Stokes equations for a point force in an unbounded

domain [1]. This so-called Stokes paradox is caused by the flow in two dimensions growing as

log(r) with the distancer from the point force. Solutions to Stokes flow in two dimensions,

therefore, only exist in bounded domains or force-free unbounded domains. While this implies

that a point force solution exists for periodic domains, theflow can often be difficult to compute

as it involves an infinite sum of logarithmic terms [32].

In two dimensions, the flow can always be expressed in terms ofa stream function,ψ, which is

related to the flow velocity through

u=
∂ψ
∂y

, v=−∂ψ
∂x

(5)

whereu = (u,v). The definition of the stream function automatically satisfies the incompressible

flow condition, Eq. (3), and transforms the Stokes equation,Eq. (2), into

∇4ψ = 0. (6)

The stream function is, therefore, bi-harmonic. Similarlyto harmonic functions (which satisfy

the Laplace equation), two-dimensional bi-harmonic functions can be represented effectively on

the complex plane. The general solution to a bi-harmonic function can always be expressed as

ψ = ℑ[z̄ f(z)+g(z)] (7)

whereℑ[ f (z)] returns the imaginary part off (z) and the overbar denotes the complex conjugate.

f (z) andg(z) are analytic functions in the fluid region and are referred toas Goursat functions

[33]. Hence, the definition for the stream function means that the flow can always be expressed as

u(z)− iv(z) =− f (z)+ z̄
d f
dz

+
dg
dz

. (8)

Though conformal maps do not preserve the boundary conditions for Stokes flow (like they do for

the Laplace equation), this complex representation can be useful in determining the solutions to

various problems [34–37]. However, no closed-form representation is known for the flow around

a cylinder in a doubly-periodic domain and, thus, the flow around an array of cylinders cannot

currently be solved using conformal maps.
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Without a suitable conformal map, it again becomes effective to solve the Stokes equations

using the Stokeslet through either boundary integrals or the representation by fundamental singu-

larities. The complex form of the two-dimensional Stokeslet in a doubly-periodic domain was first

determined by Hasimoto [38]. Luca and Crowdy [35] later revisited this problem to determine

higher-order singularities and express it as a rapidly converging series, thereby providing a faster

method to solve for these flows. They showed that the flow from atwo-dimensional point force

per unit length of strength−8πF = −8π(Fx+ iFy) located atz0 = x0+ iy0 in a doubly-periodic

cell with dimensionsx∈ [0,1) andy∈ [0,h) [35] can be written as

u(z)− iv(z) = GS(z−z0,F) =−F̄ ln |P(ζ ,ρ)|2+ℜ[F] ln |ζ |2−F ln |ζ |2K(ζ ,ρ) (9)

−F ln(ρ2)ρ
∂ lnP
∂ρ

− ℜ[F ]
2lnρ

(ln |ζ |2)2

whereζ = exp[2π i(z− z0)], ρ = exp(−2πh), z= x+ iy is the location in space andFx (Fy) rep-

resent the componentF in x (y) direction. We refer the Reader to Ref. [35] for the explicit form

of the Goursat functionsf (z) andg(z) that are used to write Eq. (9). Above,P(ζ ,ρ) is the Schot-

tky–Klein prime function associated with the annulusρ < |ζ |< 1 [35] and is given by

P(ζ ,ρ) = (1−ζ )
∞

∏
k=1

(1−ρkζ )(1−ρkζ−1) (10)

= A(ρ)s(ζ ,ρ) (11)

where

A(ρ) =

∞

∏
n=1

(1+ρn)2

∞

∑
n=1

ρn(n−1)/2
, (12)

s(ζ ,ρ) =
∞

∑
n=−∞

(−1)nρn(n−1)/2ζ n. (13)

Eq. (11) is a rapidly convergent representation that is useful to compute the flow [35]. Note that

our definition ofP is different to that in [35], whereζ/ζ0 is used as argument of the Schottky-

Klein function and all its derivatives are taken with respect to ζ , while we defineζ that depends

onz0. From the Schottky–Klein prime functionP(ζ ,ρ) we can define

K(ζ ,ρ) = ζ
∂ lnP
∂ζ

=
ζsζ

s
, (14)

ρ
∂ lnP
∂ρ

=
ρAρ

A
+

ρsρ

s
(15)
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where the subscript denotes the derivative with respect to the given variable. Higher-order singu-

larity solutions can be constructed from the Stokeslet by taking the appropriate derivatives with

respect to the singularity location. For example, the first derivative with respect toz0 creates a

force dipole, the second derivative creates a force quadrupole, etc. Similarly, the flow from a

source dipole can also be constructed by taking the Laplacian of the Stokeslet flow [31].

The symmetries of the rectangular doubly-periodic cell mean that, for our model, only singular-

ities formed by an even number of derivatives of the Stokeslet will contribute to the flow. Sec. IV

will show that only the Stokeslet, force quadrupole, sourcedipole, and source octupole are needed

to solve the flow up toO(R4,(R/h)4). These additional singularities are given by

GQ(z−z0,Q) =−QL(ζ ,ρ)−2QL−Qln |ζ |2M(ζ ,ρ)−Qln(ρ2)ρ
∂L
∂ρ

, (16)

GD(z−z0,D) =−DL(ζ ,ρ), (17)

GO(z−z0,O) = ON(ζ ,ρ) (18)

with ζ = exp[2π i(z−z0)], whereGQ(z−z0,Q) is the flow from a force quadrupole of the complex

strengthQ= Qx+ iQy located atz0, GD(z−z0,D) is the flow from a source dipole of the complex

strengthD=Dx+ iDy located atz0, GO(z−z0,O) is the flow from a source octupole of the complex

strengthO= Ox+ iOy located atz0 and

L(ζ ,ρ) = ζ
∂K
∂ζ

=
ζ [s(sζ +ζsζ ζ )−ζs2

ζ ]

s2 , (19)

M(ζ ,ρ) = ζ
∂L
∂ζ

=
ζ (s−ζsζ )[s(sζ +3ζsζ ζ )−2ζs2

ζ ]+ζ 3s2sζ ζ ζ

s3 , (20)

N(ζ ,ρ) = ζ
∂M
∂ζ

=
ζ
(

12ζ 2s
(

sζ +ζsζ ζ
)

s2
ζ −ζs2

(

3ζ 2s2
ζ ζ +7s2

ζ +2ζ
(

9sζ ζ +2ζsζ ζ ζ
)

sζ

))

s4

+
ζ
(

s3
(

ζ
(

ζ 2sζ ζ ζ ζ +6ζsζ ζ ζ +7sζ ζ
)

+sζ
)

−6ζ 3s4
ζ

)

s4 , (21)

ρ
∂L
∂ρ

=
ζ ρ
(

(

sζ ρ +ζsζ ζ ρ
)

s2−
(

2ζsζ sζ ρ +sρ
(

sζ +ζsζ ζ
))

s+2ζsρs2
ζ

)

s3 . (22)

We have left these functions in terms of the derivatives ofs because they will be useful for the

series expansion. A more compact representation for each function can be found in [35]. With

the required singularities identified, we can now asymptotically determine the flow using the rep-

resentation by fundamental singularities.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
at/advance-article/doi/10.1093/im

am
at/hxae003/7595624 by guest on 16 M

arch 2024



U
N

CO
RRE

CTE
D

 M
A
N

U
SC

RIP
T

10

IV. THE ASYMPTOTIC FLOW AROUND SLENDER CYLINDERS

The flow around a cylinder in a doubly-periodic array can be determined in the slender limit

(R≪ 1 andR≪ h) using the representation by fundamental singularities. In this method, singu-

larity solutions are placed within the cylinder and their strength is chosen such that the boundary

conditions are satisfied [31]. If such a solution can be found, it must be the solution, because

of the uniqueness of Stokes flow. This method is equivalent tothe expansion process used by

Sangani and Acrivos [28, 29]. We, however, extend the derivation to non-square geometries and

use the rapidly convergent complex singularity representation to provide a fast and accurate way

to determine the force and the flows within the array as a function of the aspect ratio of the cell.

Inspired by the seminal work of Chwang and Wu [31], we seek a singularity representation in

terms of a point force (Eq. (9)), source dipole (Eq. (17)), force quadrupole (Eq. (16)) and source

octupole (Eq. (18)) placed at the centre of the cylinder, 0. The complex-plane representation

allows the flow from these singularities to be written as

u(z)− iv(z) = Λ+GS(z,F)+GD(z,R
2D)+GQ(z,R

4Q)+GO(z,R
6O)+ . . . (23)

whereΛ is an unknown coefficient,−8πF is the force per unit length on the fluid from the cylinder

(strength of the Stokeslet),R2D is the strength of the source dipole,R4Q is the strength of the force

quadrupole, andR6O is the strength of the source octupole. TheR scaling in the strengths of the

singularity is chosen to simplify the analysis, and the dotsrepresent higher order singularities we

are not considering. The proposed flow satisfies the doubly-periodic boundary conditions of the

cell, so only the no-slip condition at the surface of the cylinder remains to be satisfied.

The periodic nature of the singularities only leaves the boundary condition at the surface of

the cylinder to be satisfied. The no-slip condition requires0 = u(Reiθ )− iv(Reiθ ), which needs

to be solved to determine the unknown strengths of each of thesingularities. Although a general

solution cannot be obtained exactly, it is possible to find a solution in the limit of small scaled
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radius (R≪ 1 andR≪ h). In the small-R limit, the singularities can be expressed as

GS(Reiθ ,F) =−F
(

G(0)
S +2R2G(1)

S

)

+Fe−2iθ
(

1+R2G(1)
S

)

+FR2e2iθ G(2)
S +O

(

R4,
R4

h4

)

, (24)

GD(Reiθ ,R2D) =−D
e−2iθ

4π2 −D
R2

12
B(ρ)+O

(

R4,
R4

h4

)

, (25)

GQ(Reiθ ,R4Q) =−Q
R2e2iθ

4π2 −Q
R2e−4iθ

2π2 +O

(

R4,
R4

h4

)

, (26)

GO(Reiθ ,R6O) =−O
3R2e−4iθ

8π4 +O

(

R4,
R4

h4

)

(27)

where

G(0)
S = 1+ ln

[

4π2R2A2(ρ)s2
ζ (1,ρ)

]

+2ρ lnρ

[

A′(ρ)
A(ρ)

+
sζ ρ(1,ρ)
sζ (1,ρ)

]

, (28)

G(1)
S =

π2

6

[

B(ρ)+
12
lnρ

]

, (29)

G(2)
S =

π2

6

[

3B(ρ)+
12
lnρ

+4ρ ln(ρ)
d

dρ

(

sζ ζ ζ (1,ρ)
sζ (1,ρ)

)]

, (30)

B(ρ) = 1−
sζ ζ ζ ζ (1,ρ)

sζ (1,ρ)
(31)

and we have used the propertiess(1,ρ) = 0, sζ ζ (1,ρ) = 0, sζ ζ ζ ζ (1,ρ)+4sζ ζ ζ (1,ρ) = 0. These

properties are proven by separating the summations overn into even and odd terms and noticing

that the summation of the even terms is the negative of the summation of the odd terms when

ζ = 1. The above series representation expresses the singularities in even powers ofR and eiθ ,

because of the reflection symmetry of the geometry.

The series shows that, at leading order inRandR/h, the flow at the surface of the cylinder from

a point force contains a constant component and a component proportional toe−2iθ . The leading-

order flow from a source dipole is only proportional toe−2iθ . Hence, for the leading-order flow

at the surface to be constant with respect toθ , a point force and source dipole are required. The

strength of the source dipole is chosen to remove thee−2iθ dependence. The combination of point

force and source dipole is common in viscous flows [31] and is related to the Stokes equations

being bi-harmonic.

At the next order, the flow from a point force includes an additional term proportional toe2iθ

that must be accounted for by other singularities. Since thee2iθ term is related to the second

derivative of the Stokeslet with respect toR, the force quadruple, defined as the second derivative
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of the Stokeslet with respect to the singularity location, should have a similarθ dependence. The

expanded flow from a force quadrupole, Eq. (26), has the expectede2iθ dependence but with an

additionale−4iθ term. Similarly to the way the source dipole corrected for the e−2iθ term in

the leading-order force, thee−4iθ term can be removed by adding a source octupole. Hence, to

satisfy the non-slip boundary condition on the surface of the cylinder to orderR4 andR4/h4, we

need a combination of point force, source dipole, force quadrupole and source octupole, as used

in Eq. (23). The strength of each singularity is therefore chosen to eliminate anyθ dependence

resulting in four linear simultaneous equations forF , D, Q andO. The solutions of these equations

give us

F =CFΛΛ=
3

3G(0)
S +R2

[

π2B(ρ)+6G(1)
S

]Λ+O

(

R4,
R4

h4

)

, (32)

D =CDFF= 4π2
(

1+R2G(1)
S

)

F +O

(

R4,
R4

h4

)

, (33)

Q=CQFF= 4π2G(2)
S F +O

(

R2,
R2

h2

)

, (34)

O=COQQ=−4π2

3
Q+O

(

R2,
R2

h2

)

(35)

whereCFΛ, CDF , CQF, andCOQ are the linearity coefficients that give the first subscript in terms

of the second and the values ofQ andO are expanded to a lower order because of theR scaling

in the singularity strengths used in Eq. (23). The coefficient relating the Stokelet strength and the

background velocity,CFΛ, is a scaled drag coefficient for the cylinder and behaves as 1/(ln(R)+c),

wherec is a constant, to leading order inR. The drag on slender rods often displays a similar

1/(ln(R)+c) structure [31, 39, 40] and is consistent with the limiting behaviour in previous studies

of cylinders in periodic arrays [16, 30].

Finally, the strength ofΛ is found by setting the maximum velocity in the cell to 1. Conserva-

tion of mass dictates that the maximum velocity must lie halfway between two posts, atz= ih/2.

Therefore we require 1= u(ih/2), giving

Λ =

{

1+

[

GS

(

ih
2
,1

)

+GD

(

ih
2
,CDF

)

+GQ

(

ih
2
,CQF

)

+GO

(

ih
2
,COQCQF

)]

CFΛ

}−1

+O

(

R4,
R4

h4

)

(36)

where we have used the fact that the singularity strengths are real. Eqs. (32), (33), (34),(35) and

(36) uniquely determine all the unknown coefficients in the proposed flow representation, Eq. (23),
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FIG. 2. Contour plots of (a) force per unit length,−8πF , and (b) the coefficientΛ. Dashed grey lines are

lines of constant cell aspect ratio,h.

to O(R4,R4/h4). Hence, they complete the asymptotic model. The asymptoticmodel can be used

to predict the force per unit length from the cylinder onto the fluid,−8πF (Fig. 2a), and the flow

around the cylinder, Eq. (23). We note that higher-order solutions can be constructed similarly but

require higher-order singularities to satisfy the boundary conditions.

V. VALIDATION TESTS OF THE ASYMPTOTIC MODEL

A. Lattice Boltzmann simulations

The force per unit length on the fluid (Fig. 2a) decreases as the scaled radius,R, decreases and

the cell aspect ratio,h, increases, as expected. As the cell aspect ratio decreases(R/h increases),

the cylinders become closer together, increasing the hydrodynamic interactions between them and

the drag. Similarly, as the radius increases, the space between the cylinders decreases and the drag

increases.

The accuracy of the asymptotic force per unit length,−8πF (Eq. (32)), was quantified by

comparing to the force per unit length determined from lattice-Boltzmann (LB) simulations for the

flow past a single stationary post in a rectangular domain with periodic boundaries along both the
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x- andy-axis (Fig. 3) [41]. 200 LB nodes along thex-axis were used for all simulated cases, while

the number of nodes along they-axis varied from 26 to 400. The flow was driven by a constant

body force along thex-axis, mimicking a constant pressure gradient. The resolution varied from

20 to 80 LB nodes across the post diameter, with the stationary cylindrical boundary resolved

using a second-order accurate boundary condition [42]. We used the 9-velocity ‘compressible’ LB

equilibrium model in the limit of low Mach numbers (Ma) and Reynolds numbers (Re), with the

two-relaxation time collision operator [43]. The force on the post is computed with the momentum

exchange algorithm [44, 45]. The resulting flow is practically incompressible and in the Stokes

flow regime (since in all simulated cases, the LB Mach numberMa< 1.9×10−5 and the Reynolds

numberRe< 1.7×10−2, computed with the gap length,∆h= h−2R, and the maximum velocity

magnitude), and each simulation has been run until the maximum velocity converges below≤
0.01% relative change per time step. We did not see that the simulation results change significantly

when bothMa andReare varied by an order of magnitude.

The asymptotic force per unit length found in the asymptoticmodel,−8πF (Eq. (32)), and the

LB simulation,FLB, agree well for small scaled radii,R, and larger gaps between adjacent posts

along they-axis,∆h (Fig. 3a). The differences are harder to distinguish when plotted againstR/h

(Fig. 3b). The relative error,E, between the two results, defined as

E =
FLB − (−8πF)

FLB
, (37)

is shown in Fig. 3c,d. Similarly to direct plots of force, therelative error,E, increases with

increasing scaled radius,R, and decreases with increasing cell aspect ratio,h. The results suggest

that whenR< 0.1 andR/h < 0.1 the asymptotic force displays a less than 5% error (Eq. (37)).

These findings are consistent with the limits expected from the asymptotic expansion. We note

that for small gap sizes,∆h < 0.25, the relative error starts to decrease again. These smallgap

sizes tend to correspond toR/h> 0.2 and a rapid increase inF , indicating that it is well outside

the region of validity for the asymptotic model. The apparent improvement is, therefore, likely to

be a coincidence.

B. Error on the boundary conditions

The error on the asymptotic flow, Eq. (23), can be estimated through the average error on the

no-slip condition on the surface of the cylinder. The average error on the no-slip condition is
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FIG. 3. (a,b) Comparison of the asymptotic force per unit length,−8πF (lines), and the numerical results

of lattice-Boltzmann simulations (dots). (c,d) Relative error between the asymptotic force and the simulated

force. The relative error is defined by Eq. (37). (a) and (c) are plotted against the gap between adjacent

posts along they-axis, ∆h. (b) and (c) are plotted against the scaled radius divided by the aspectratio of

the cell,R/h. In all panels,R= 0.2 is purple,R= 0.1 is red,R= 0.085 is green,R= 0.07 is yellow and

R= 0.05 is blue.

defined as

|u|θ =
1

2π

∫ 2π

0

∣

∣

∣
u(Reiθ )− iv(Reiθ )

∣

∣

∣
dθ (38)

and varies with the scaled radius,R, and the cell aspect ratio,h. If the asymptotic solution was

exact,|u|θ = 0, since Stokes flows are unique. Non-zero|u|θ , therefore, indicates a difference

between the unknown exact solution and the asymptotic prediction. The size of the difference

must be proportional to|u|θ since Stokes flows are linear. Hence, small|u|θ corresponds to a

small difference between the exact and the asymptotic flows.Contour plots of the average error

on the no-slip condition are shown in Fig. 4. The average error on the no-slip condition increases

with increasing scaled cylinder radius,R, and decreasing cell aspect ratio,h. On logarithmic axes

(Fig. 4b), the increase appears to occur at a constant rate, suggesting power-law dependence on

R andR/h. Plots of error against log10(R/h) (Fig. 4c) and log10(R) (Fig. 4d) demonstrate that

this error decays approximately likeR4 and(R/h)4 as expected by the asymptotic expansion. We

note that the transition from a plateau to power law for linescorresponding to largerR (R/h) in

Fig. 4c (Fig. 4d) is because, at relatively smallR/h (R) values, the error is dominated by the leading

correction inR (R/h). A comparison of the relative error of the force per unit length,E (Fig. 3c,d),

and the average error on the no-slip condition suggests that, when|u|θ < 0.01, the error of the
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FIG. 4. (a) Average error of the no-slip condition on the surface of thecylinder predicted by the asymptotic

flow, Eq. (23), as a function of the scaled radius,R, and the scaled radius divided by the cell aspect ratio,

R/h. (b) Same as (a), but shown logarithmically. Dashed grey lines in (a) and (b) are lines of constant

cell aspect ratio,h. (c) Logarithm of the mean non-slip error against the logarithm ofR/h. Different lines

correspond to different values ofR. (d) Logarithm of the mean non-slip error against the logarithm ofR.

Different lines correspond to different values ofR/h.

force per unit length is less than 6%. Similarly to the force,the 1% error appears to occur around

R∼ 0.1 andR/h∼ 0.1. For the remainder of the paper, all phase diagrams will considerR< 0.2

andR/h< 0.2 to focus on the region of validity of the asymptotic solution.

VI. THE BEHAVIOUR OF THE ASYMPTOTIC FLOW

The asymptotic model developed in Sec. IV predicts the strengths of the singularities (Eqs. (32),

(33), (34), and (35)), the coefficient (Eq. (36)), and the flowthroughout the domain. The approx-

imate flow at any point in the domain is given by Eq. (23) when the strengths of the singularities

and the background velocity are substituted into the equation. Unlike previous models, this flow
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can be calculated quickly because of the rapidly convergingseries used to represent the Stokeslet

and its derivatives. The streamlines of the asymptotic flow are plotted in Fig. 5 for scaled radii

of R= 0.05, 0.1, and 0.2 and cell aspect ratios ofh = 2, 1, and 0.5. The scaled cylinder radius

of R= 0.2 lies beyond the validity limit of the model, established inthe previous section, and is

expected to show an error greater than 5%, especially when the aspect ratio ish= 0.5 (R/h= 0.4).

Near each cylinder, the flow decreases. The size of the regionwith reduced velocity increases with

scaled radius,R, and cell aspect ratio,h, due to the periodic interactions. The flows through cells

with large aspect ratios also display a large portion of the fluid travelling at almost the maximum-

velocity cell, while cells with smaller aspect ratios only reach the maximum velocity in a localised

region directly above the cylinder. The localisation of themaximum velocity is caused by the

conservation of mass which requires a faster velocity in thegap to squeeze the same amount of

fluid through the cell. We note that the flow along thex-axis never reverses anywhere within the

flow domain. Therefore, the asymptotic solution does not predict any closed vortices. Non-inertial

vortices are typically found in Stokes flow at the leading andtrailing edges of cylinders with large

radius [16]. The assumption that the cylinders are slender (R≪ 1 andR/h≪ 1) in the expansion

prevents the appearance of these vortices in the asymptoticflow.

The mean velocity in the periodic domain can be determined from the asymptotic flow by

integrating the flow overy = [0,h) for any x. The flow incompressibility condition requires the

flux through any plane normal to thex-axis to be the same. Hence the mean fluid velocity is given

by

〈u〉= 1
h

∫ h

0
u(x+ iy)dy (39)

whereu(z) is defined in Eq. (23). These integrals can be evaluated exactly using the properties of

the Schottky–Klein prime function and its derivatives to find

〈u〉= Λ+ 〈GS〉F + 〈GD〉(R2D+R4Q)+O

(

R4,
R4

h4

)

(40)

where

h〈GS〉=
[ln(ρ)]2

12π
+

lnρ
2π

ln

(

P2(−√ρ,ρ)
√ρ

)

− ln(ρ2)

π

∞

∑
k=1

k ln

(

1+ρk−1/2

1+ρk+1/2

)

, (41)

h〈GD〉=
2K(−√ρ ,ρ)−1

2π
(42)

are the fluid fluxes from a unit Stokeslet and source dipole, respectively. The flux from the

source dipole is the same as the flux from a force quadrupole, while no flux is generated from
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