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The slow viscous flow through a doubly-periodic array of cylinderssdue have an ana-
lytical solution. However, as a reduced model for.the flow within fiborou®ps media and
microfluidic arrays, this solution is important for many real-world systems. $yenatoti-
cally determine the flow around a generalrectangular doubly-periodig af infinite slen-
der cylinders, extending the existingiasymptotic solution for square arféngsflow in the

cell is represented by a collectioniof doubly-periodic, rapidly-coreetrgwo-dimensional
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singularity solutions, and the boundary condition on the surface of thedeylis solved
asymptotically in powers of the cylinder radius. The asymptotic solution prevadeeasily
computed closed-form estimate for the flow and forces as a function ohttesrand the
dimensions of the cell. The force is compared to results from lattice-Boltzmiamuhegions
of low-Reynolds-number flows in the same geometry, and the accuracyg nbtklip condi-
tion on the surface of the cylinder, predicted by the asymptotic theory, ésssd. Finally,
the behaviour of the flow, flux, force and effective permeability of tHeisdénvestigated
as a function of the geometric parameters. The structure of the asymptatieadslity is
consistent with previous single-geometry predictions but provides ad:fosm estimate
for how the aspect ratio of the cell changes the leading-order behaVioeise models could
be used to help understand the flows within porous systems composecsfdild systems

involving periodic arrays such as systems based on deterministic lateralodisgent.

. INTRODUCTION

Slow viscous flow over multiple bodies is a notoriously, coivgtied problem with various
applications [1]. For example, flowing colloids displaya@bstinuous shear thickening [2, 3], and
programmable self-assembling micromachines interattedth other through the flow to develop
distinct phases and shapes [4, 5]. Similarly, filter-fegdirganisms use the flow over a collection
of microscopic fibres to capture food{6—8], and periodi@gsrof posts in microfluidics can sort
particles in a process called deterministic lateral disghaent [9-12].

These systems can be trieky,to probe experimentally andanktbh model theoretically be-
cause slow viscous flows have long-ranged interactiong\én the relatively simplified geome-
tries of a singularly or doubly-periodic array of infinitelicyders have no exact solutions. Yet,
such model arraysthave-been studied since the late 1950antidjave played an important role
in understanding ordered or fibrous porous media [14]. kidpmorous media, like wool, hair, col-
lagen, and fibreglass, can exist at much lower packing tast{below 1%) than granular porous
media (60—-70%) due to the large aspect ratios of the bodies.

The lack of exact closed-form solutions means the dynamissnigularly or doubly-periodic
arrays of infinite cylinders are typically solved numerigdll5-22] or argued from geometries
with known solutions [23]. Through these methods, studeslexplored the behaviour around

cylinders in different periodic domains [16, 18, 23], irvé@y domains [20], the influence of slip
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[17], cylinder porosity [18], interacting fluid domains [242], and inertial effects [13, 15].

Periodic arrays have also been studied asymptoticallyn &ock provides a closed approxima-
tion to the solution that can be used when numerical appesastnuggle, provide insight into how
the geometry influences the behaviour and can be directlyealie new problems. Singularly-
periodic arrays have been studied by Tamada and Fujikawayt@n the periodic domain was
much greater than the cylinder radius, and Keller [24] inlth®ication limit. Barta and Weihs
[19] later used slender-body theory [25—-27] to improve tbeusacy and investigate the effects of
finite lengths and array size on these singularly-periogstesns.

Similarly, doubly-periodic arrays of cylinders were stediby Sangani and Acrivasi[28,129]
while considering cubic arrays of spheres. They determtheddrag and permeability.on each
post in square or regular hexagonal arrays as a functioreafttinder radius. Shortly thereafter,
Drummond and Tahir estimated the permeability of squarayarrtriangular-arrays, hexagonal
arrays and rectangular arrays with a cell aspect ratio of@utfh the‘matching of the flow out-
side an infinite cylinder and a collection of singulariti@]. The results of Sangani, Acrivos,
Drummond and Tahir suggest that the permeabikityfor anarray of cylinders typically has the

form

“—wzi(—log(fp)+a—ﬁ<p2+ 79 (1)
R?2 4¢
whereR is the radius of the cylindep is the dynamic viscosityp is the packing fraction (the vol-
ume occupied by the cylinder divided by the totalvolume efdbkll), ando, 3 andy are constants
that depend on the geometry of the cell [14, 28, 30]. In thevejm represents the leading-order
correction for the geometry, whilg and 8-are the second- and third-order corrections, respec-
tively. Drummond and Tahir's- medels have been found to metgierimental results [14]. Wang
[16] later used the general selution to the flow in a periodix &and the solution for flow outside a
cylinder to investigate the flow in doubly-periodic arrayfiey numerically enforced the boundary
conditions to the flow-at-discrete locations on the edge ofittreain to determine the unknown
coefficients for each geometry they investigated. Condistegh Eq. (1), they showed the leading
logarithmic behaviour of the drag and the permeability foully-periodic arrays in the limit of
small radius; but they also observed non-inertial vortindsont of and behind the cylinder when
the radius increases. While these asymptotic results hareuseful for hypothesising the struc-
ture of the permeability and force at small post radii, thecsiic values for each geometry have
traditionally been computed independently. These contiputs often require the evaluation of

slowly converging infinite series because of the long-ramagare of the flow. This convergence
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issue makes it hard to identify the influence of the cell gaoynen the force and permeability
asymptotically and evaluate the flow around the post prediby the asymptotic solution.

This paper determines the asymptotic flow around and the fivoon a general rectangular
doubly-periodic array of cylinders, with dimensiofis< I, in the limit of small cylinder radius,
R. The solution is found by constructing a rapidly-convegygiomplex-variable two-dimensional
singularity representation for the flow and satisfying thestip boundary condition on the cylinder
surface up ta7(R*/¢'4 R*4/H'%). This accuracy is required to investigate the far-fieldggpamnt of
particles through the array (left for future work). The emp@n provides a closed-form estimate
for the flow and force in the cell in terms of the scaled radiighe cylinder and the aspect ratio
of the two sides of the domain and can be evaluated througpidlyaonvergent series;.thereby
allowing the fast calculation of force on the post and asytiptlow anywhere in the'cell. The
asymptotic force is compared to the force found from latBodtzmann simulations for the same
geometry at small Reynolds number, and the accuracy of treim@eéndition on the surface of
the cylinder, as predicted by the asymptotic model, is iigated, The asymptotic solution allows
us to create an analytical approximation for the mean vigla@crough the cell, the pressure drop
across the cell, and the permeability of the system as aiumofthe post radius and the aspect
ratio of the cell.

Section Il introduces the doubly-periodic-array geomeitny ¢éhe fluid problem considered.
Sec. Il provides some background into the complex variablations of Stokes flow and intro-
duces the doubly-periodic functions used. to represent flogutarities. These singularities are
then employed in Sec. IV to determineithe asymptotic flow adoine periodic cylinder system.
The accuracy of these results is investigated in Sec. V.lIizinke flows predicted are discussed

and the asymptotic permeability is determined in Sec. Vigtgeconcluding the paper in Sec. VII.

II. THE RECTANGULAR DOUBLY-PERIODIC ARRAY AND FLUID PROBLEM
STATEMENT

This paper considers the slow viscous flow over an infinitadde cylinderS of radiusR’ in
a' rectangular doubly-periodic domain with pericddsndt’, respectively (Fig. 1). The central
cylinder is assumed to be stationary and located at thenoridhe background flow will be taken
along thex'-axis and the dynamic viscosity of the fluidjis In this geometry, the gap between

two adjacent cylinders along thé-axis is given byAl = —2R'. We scale all lengths by,
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FIG. 1. A diagram of the doubly-periodic domain considered. The peiodg thex'-axis is¢’, and the
period along the/-axis ish'. Any point in the domain on-thescomplex plane is represented byx' +iy'.
The central cylinder has a radius Rfand is centred-at:QAh’ = i — 2R’ is the gap between two adjacent
cylinders along the/-axis. The flow is taken alongithé-axis without any loss of generality, because of
the linearity of Stokes flow. The surface of the central cylinder is desdrilyS(z) = R€® wheref is the

angle relative to the' axis.

velocities by the maximum_velocity in thedirection, uy,,, the force per unit length bpuy,, the
pressure byl /¢, and the permeability b§/?/u. Scaled variables are presented without a dash.
We note that, for the two-dimensional system, only the f@eeunit length is defined.

The flow withinithe-unit cell is assumed to satisfy the (dimenkess) incompressible Stokes

equations

—Op+D%u=0, (2)
O-u=0 3

wherep is the pressure, andlis the velocity. The no-slip condition demands that the e#jo
should be zero on the surface of the cylindg(S) = 0).
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As the geometry is two-dimensional, it is useful to solve tfee flow on the complex plane
(Fig. 1). Any point in the scaled domain on the complex plaae be described by = x+ iy,
wherex € [0,1) andy € [0,h). On the complex plane, the surface of the central cylinder is
described by

S=Re* (4)

whereh = h' /¢’ is the aspect ratio of the celR = R /¢’ is the scaled cylinder radius, arti
is the polar angle from the real axis defined at the centre efcthinder. The scaled gap«<be-
tween adjacent cylinders along theaxis isAh = Ah'/¢' = h—2R. In the scaled coordinates,
Re [0,min(1/2,h/2)) andR/h € [0,min(1/(2h),1/2)). The periodicity of the domain requires
u(x,y) = u(x+1,y) andu(x,y) = u(x,y+ h) everywhere.

We solve the flow problem described above asymptoticallyjhencomplex plane through the
representation by fundamental singularities. The poirgd@olution andits derivatives are placed
within the cylinder such that all the boundary conditiorsaet. To help elucidate this process, the
next section gives some background into solving two-dinuerad Stokes-flows using the complex
plane and the rapidly-convergent complex representatioiiné flow from a point force, and select

derivatives, in a generalised rectangular doubly-peciddimain:

. BACKGROUND IN COMPLEX.SOLUTIONS TO STOKES FLOW

The incompressible Stokes equations\Egs. (2) and (3)jregarland time-independent. So-
lutions to these equations only dependion the instantargemsetry of the system, can be con-
structed by the superposition of.several flows, and are aiswk to be unique with appropriate
boundary conditions. Even'so, exact solutions to the Ste§aations are only known in relatively
simple geometries. As'such; many flows are approximatedyusimerical or asymptotic meth-
ods. These approaches.often exploit the Green’s functiomico to the flow, called the Stokeslet.
The Stokeslet represents the flow from a point force in an untded fluid and can be used to con-
struct solutions'in two ways: the boundary integral methodl the representation by fundamental
singularities:~On the one hand, the boundary integral ntetises the properties of the Green'’s
fanction to convert the partial differential equationsoi@in integral equation over the boundaries
of the domain. These equations can then be inverted nurtigricadetermine the solution. On
the other hand, the representation by fundamental singetaplaces the Stokeslet and its deriva-

tives outside the flow domain such that the boundary conditare satisfied [31]. In principle,
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such a distribution must exist [1] and any suitable distitoumust form the solution due to the
uniqueness of the flow [31]. The latter approach is often eggal to find asymptotic solutions to
common flow problems, such as the hydrodynamics of fibresq2b—

In two dimensions, there is no solution to the Stokes equafior a point force in an unbounded
domain [1]. This so-called Stokes paradox is caused by teeifidwo dimensions growing as
log(r) with the distance from the point force. Solutions to Stokes flow in two dimemsip
therefore, only exist in bounded domains or force-free umoed domains. While this implies
that a point force solution exists for periodic domains, ftbes can often be difficult to compute
as it involves an infinite sum of logarithmic terms [32].

In two dimensions, the flow can always be expressed in terrastttam functiony ,/which is
related to the flow velocity through

o ,_ 9

Ty VT ok

(5)

whereu = (u,Vv). The definition of the stream function automatically.satisthe incompressible

flow condition, Eq. (3), and transforms the Stokes equattop,(2), into
0% = 0. (6)

The stream function is, therefore, bi-harmonic.“Similadyharmonic functions (which satisfy
the Laplace equation), two-dimensional bi-harmenic fiomg can be represented effectively on

the complex plane. The general solution to a bi-harmonictfan can always be expressed as

Y =0[zf(2) +9(2)] (7)

wherel[f(z)] returns the imaginary part df(z) and the overbar denotes the complex conjugate.

f(z) andg(z) are analytic functions in the fluid region and are referredgdGoursat functions

[33]. Hence, the definition for the stream function meanstimaflow can always be expressed as

. —  df d
u(z)—iv(z) = —f(z)+z—+—g. (8)
Though-conformal maps do not preserve the boundary condifar Stokes flow (like they do for
the Laplace equation), this complex representation carsbfilin determining the solutions to
various problems [34-37]. However, no closed-form repreden is known for the flow around
a cylinder in a doubly-periodic domain and, thus, the flomuaan array of cylinders cannot

currently be solved using conformal maps.
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Without a suitable conformal map, it again becomes effectivsolve the Stokes equations
using the Stokeslet through either boundary integrals®representation by fundamental singu-
larities. The complex form of the two-dimensional Stokesie doubly-periodic domain was first
determined by Hasimoto [38]. Luca and Crowdy [35] later riggtsthis problem to determine
higher-order singularities and express it as a rapidly eanng series, thereby providing a faster
method to solve for these flows. They showed that the flow framcadimensional point force
per unit length of strength-8nF = —8m(F + iFy) located atzg = Xp + iy in a doubly-periodie

cell with dimensionx € [0, 1) andy € [0, h) [35] can be written as

U(2) - iv(2) = Gs(z—2o,F) = —FIn|P({,p) >+ O[F]In|{ >~ FIn[{ 2K (o), (9)

dinP  O[F
—Fin(p2)p? 2~ 21 inf¢ 27

where{ = exp27i(z— 29)], p = exp(—2mh), z= x+ iy is the location in space arfg (Fy) rep-
resent the componeftin x (y) direction. We refer the Reader to Ref. [35] for the expliciinfio
of the Goursat function$(z) andg(z) that are used to write Eq.(9)..Above({, p) is the Schot-

tky—Klein prime function associated with the annupus |{| <1 [35}-and is given by

[oe]

P({,p)=(1-1) k|‘| (1-p5Q)(A 50" h (10)
=1
= A(p)s({,p) (11)
where
A+
Alp) = 5——, (12)
pn(nfl)/2
n=1
SZ.p)= Y (-1t (13)

Eq. (11) is a rapidly convergent representation that isulsefcompute the flow [35]. Note that
our definition‘ofP is different to that in [35], wher& /(o is used as argument of the Schottky-
Klein funection.and all its derivatives are taken with regpec, while we define{ that depends

onzg-"From the Schottky—Klein prime functid({, p) we can define

dInP
K@ =g TF =%, (14)
dInP:pAerpsp

pdp A S

(15)
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where the subscript denotes the derivative with respettagiven variable. Higher-order singu-
larity solutions can be constructed from the Stokeslet Bintathe appropriate derivatives with
respect to the singularity location. For example, the fiesivditive with respect tay creates a
force dipole, the second derivative creates a force quateEugtc. Similarly, the flow from a
source dipole can also be constructed by taking the Laplaxfithe Stokeslet flow [31].

The symmetries of the rectangular doubly-periodic cellimtéat, for our model, only singular-
ities formed by an even number of derivatives of the Stokeglécontribute to the flow. Sec. IV
will show that only the Stokeslet, force quadrupole, soulipele, and source octupole are’needed

to solve the flow up t@(R*, (R/h)#). These additional singularities are given by

ok

Go(z—20,Q) = —QL(Z,p) —2QL—QIn[Z|*M({, p) —an<p2>p%, (16)
GD(Z_207D) :_DL(Z7p)7 (17)

with { = exp[2mi(z— 79)], whereGg(z— 2, Q) is the flow from a force quadrupole of the complex
strengthQ = Qx +iQy located atzy, Gp(z— 29, D) is the flow from a source dipole of the complex
strengthD = Dy +iDy located aty, Go(z— 2, O) is theflow.from a source octupole of the complex
strengthO = Ox +-iOy located atzp and

=Zd—K {[s(s; +{s7¢) — (]

L(Z7p) al = 2 ) (19)
oL {(s—Ts;)[s(sp 4 38szz) — 23]+ {3S%s

M(Z,P):Zo..—lé: Ar SRR ok “ (20)
M 4 (12525(354—(55()5%—{52 (3(25%5 +7S§ +2¢ (95((4—258555)85))

Z(s2(2 (22 +6 +7s77) +57) — 623}
¢ (S*(2 (CPseqeq + 685000 +Tsg0) +5¢) — B z)) o
st

oL (P ((SZp +85¢0p) S~ (205¢5¢p + 8 (S +4¢¢)) S+ 255p§>

We have left these functions in terms of the derivatives bécause they will be useful for the
series expansion. A more compact representation for eaxdtidln can be found in [35]. With
the required singularities identified, we can now asympd#diyy determine the flow using the rep-

resentation by fundamental singularities.
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IV. THE ASYMPTOTIC FLOW AROUND SLENDER CYLINDERS

The flow around a cylinder in a doubly-periodic array can becheined in the slender limit
(R« 1 andR « h) using the representation by fundamental singularitieghis method, singu-
larity solutions are placed within the cylinder and thereagth is chosen such that the boundary
conditions are satisfied [31]. If such a solution can be founchust be the solution, because
of the uniqueness of Stokes flow. This method is equivalethéoexpansion process used by
Sangani and Acrivos [28, 29]. We, however, extend the degowdo non-square geometries'and
use the rapidly convergent complex singularity represemtdo provide a fast and accurate way

to determine the force and the flows within the array as a fondf the aspect ratio of the cell.

Inspired by the seminal work of Chwang and Wu [31], we seek gusamity representation in
terms of a point force (Eq. (9)), source dipole (Eq. (17))céoquadrupole (Eq. (16)) and source
octupole (Eqg. (18)) placed at the centre of the cylinder, Ge Icomplex-plane representation

allows the flow from these singularities to be written as

u(z) —iv(z) = A+ Gs(z F) + Gp(z R?D) 4 Go(z,R*Q) 4 Go (2, R°0) + ... (23)

whereA is an unknown coefficient-87F is the force per unit length on the fluid from the cylinder
(strength of the Stokesle?D'is the strength of the source dipoR¢Q is the strength of the force
quadrupole, an®R®Qsis the strength of the source octupole. TRscaling in the strengths of the
singularity is chesen,to simplify the analysis, and the defsesent higher order singularities we
are not considering. The proposed flow satisfies the doudlipgic boundary conditions of the

cell, so only the no-slip condition at the surface of therugdir remains to be satisfied.

The periodic nature of the singularities only leaves thengauy condition at the surface of
the cylinder to be satisfied. The no-slip condition requibes u(Re®) — iv(Re?), which needs
to be solved to determine the unknown strengths of each dfittgilarities. Although a general

solution cannot be obtained exactly, it is possible to finalatn in the limit of small scaled
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radius R < 1 andR < h). In the smallR limit, the singularities can be expressed as

Gs(Re®,F) = —F (GF +2RPGY ) + Fe 2 (14 REGY)

+FRGY 4 o (R“, %) : (24)

Gp(Re? R?D) = —Dj—:—D%B(pHﬁ <R4;]—R:) (25)

Go(Re®,RYQ) = —QRiezzie - QRzzen:ie ‘0 (R“, E-j) , (26)

Go(Re® RPO) = _Ost%n:‘iQ+ﬁ (R“,E—j) (27)

where

¥ =141 [4n2R2A2(p)s§(1, p)} +2plnp ’:'((g)) n S;P&v 5;] | (28)

o - T B6)+ . (29)

¢ -T [38<p> s apinp) o (%)} , (30)

B(p) = 1- Sf;;{f“pf) (31)

and we have used the propert&$,p) =0, s;z(1,0),=0,S7777(1,p) +45;77(1,p) = 0. These
properties are proven by separating the summationsrowgo even and odd terms and noticing
that the summation of the even terms is'the negative of theramiion of the odd terms when
{ = 1. The above series representation.expresses the sitigslan even powers dRand &9 |
because of the reflection symmetry of the geometry.

The series shows that, atleading ordeRiandR/h, the flow at the surface of the cylinder from
a point force contains a.¢constant component and a compormmanional toe 29, The leading-
order flow from & Source dipole is only proportionalegc®®. Hence, for the leading-order flow
at the surface to be constant with respecft@ point force and source dipole are required. The
strength of the Source dipole is chosen to removestif¥ dependence. The combination of point
force and source dipole is common in viscous flows [31] ancligted to the Stokes equations
being.bi-harmonic.

At the next order, the flow from a point force includes an addél term proportional t@'®
that must be accounted for by other singularities. Sinceetffeterm is related to the second

derivative of the Stokeslet with respectRpthe force quadruple, defined as the second derivative
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of the Stokeslet with respect to the singularity locatidmgudd have a similaé dependence. The
expanded flow from a force quadrupole, Eq. (26), has the ¢xge€® dependence but with an
additionale %€ term. Similarly to the way the source dipole corrected far ¢n12'® term in

the leading-order force, the 4 term can be removed by adding a source octupole. Hence, to
satisfy the non-slip boundary condition on the surface efaylinder to ordeR* andR*/h*, we
need a combination of point force, source dipole, force quaale and source octupole, as used
in Eq. (23). The strength of each singularity is thereforesam to eliminate ang dependence

resulting in four linear simultaneous equationsfeD, Q andO. The solutions of these equations

give us
A= 360 + R [nfB(p) n 6G(Sl>} Ao (R4’ E_:) ’ (32)
D — CpeF = 4772 (1+ R2c5g>) F+ﬁ(R4,§>, (33)
Q =CorF=4PGYF + ¢ (RZ, g) , (34)
O =CogQ= —?m o (RZ, E—j) (35)

whereCrp, Cpr, Cor, andCoq are the linearity coefficients that give the first subscmpterms
of the second and the values@fandO are expanded to a lower order because ofRlsealing
in the singularity strengths used in Eq. (23). The coefficielating the Stokelet strength and the
background velocityCr, is a scaled drag coefficient for the cylinder and behaveg @s(R) +c),
wherec is a constant, to leading order R The drag on slender rods often displays a similar
1/(In(R)+c) structure [31, 39, 40}.and is consistent with the limitingpagour in previous studies
of cylinders in periodic arrays,[16, 30].

Finally, the strength of\ isfound by setting the maximum velocity in the cell to 1. Canae
tion of mass dictates that the maximum velocity must liewaf between two posts, at= ih/2.

Therefore we require £ u(ih/2), giving

A L {1+ [Gs (2’1) +Gp (g,CDF) +Gog (g,CQF) +Go <27COQCQF>] CF/\}l
+0 (RA'%) %)

where we have used the fact that the singularity strengthseal. Eqgs. (32), (33), (34),(35) and

(36) uniquely determine all the unknown coefficients in thggosed flow representation, Eqg. (23),
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FIG. 2. Contour plots of (a) force per unit length8rF, and (b) the coefficiepA. Dashed grey lines are

lines of constant cell aspect rattu,

to 0(R*, R*/h*). Hence, they complete the asymptotic model. The asymptaiitel can be used
to predict the force per unit length from the cylinder.onte thuid, —87F (Fig. 2a), and the flow
around the cylinder, Eq. (23). We note that higher-ordentsmhs can be constructed similarly but

require higher-order singularities to satisfy- the,bougdaanditions.

V. VALIDATION TESTS OF THE ASYMPTOTIC MODEL
A. /Lattice Boltzmann simulations

The force per unit'length on the fluid (Fig. 2a) decreasesasdhled radius}, decreases and
the cell aspect ratidy, increases, as expected. As the cell aspect ratio decr@@ddemcreases),
the cylinders become closer together, increasing the laytiamic interactions between them and
the drag. Similarly, as the radius increases, the spaceskettine cylinders decreases and the drag
increases.

The accuracy of the asymptotic force per unit lengt8mF (Eq. (32)), was quantified by
comparing to the force per unit length determined fromdatBoltzmann (LB) simulations for the

flow past a single stationary post in a rectangular domaih patriodic boundaries along both the
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x- andy-axis (Fig. 3) [41]. 200 LB nodes along tieaxis were used for all simulated cases, while
the number of nodes along tlyeaxis varied from 26 to 400. The flow was driven by a constant
body force along the-axis, mimicking a constant pressure gradient. The reisoliaried from
20 to 80 LB nodes across the post diameter, with the staoopdmdrical boundary resolved
using a second-order accurate boundary condition [42]. $&d the 9-velocity ‘compressible’ LB
equilibrium model in the limit of low Mach number$/@) and Reynolds number&§, with the
two-relaxation time collision operator [43]. The force te post is computed with the momentum
exchange algorithm [44, 45]. The resulting flow is practicaicompressible and in the Stokes
flow regime (since in all simulated cases, the LB Mach nunbek 1.9 x 10~° and the Reynolds
numberRe< 1.7 x 10~2, computed with the gap lengthh = h— 2R, and the maximum.velocity
magnitude), and each simulation has been run until the maximvelocity converges below
0.01% relative change per time step. We did not see that thdaioi results.ehange significantly
when bothMa andReare varied by an order of magnitude.

The asymptotic force per unit length found in the asymptotidlel,~87F (Eq. (32)), and the
LB simulation,F g, agree well for small scaled radR, andsarger.gaps between adjacent posts
along they-axis,Ah (Fig. 3a). The differences are harder to distinguish whettexd againsR/h
(Fig. 3b). The relative erroE, between the two resulis;-defined as

_ R~ (-8mF)
Fus

is shown in Fig. 3c,d. Similarly to direct plots of force, thelative error,E, increases with

E : (37)

increasing scaled radiuR, and decreases-with increasing cell aspect ratidhe results suggest
that whenR < 0.1 andR/h <.0.1'the asymptotic force displays a less than 5% error (Eq).(37)
These findings are consistent with the limits expected froenasymptotic expansion. We note
that for small gap sizefdh<-0.25, the relative error starts to decrease again. These gayall
sizes tend to correspond ®’h > 0.2 and a rapid increase I, indicating that it is well outside
the region of validity for the asymptotic model. The appaierprovement is, therefore, likely to

be a coincidence.

B. Error on the boundary conditions

The error on the asymptotic flow, Eq. (23), can be estimatsxalitih the average error on the

no-slip condition on the surface of the cylinder. The averagor on the no-slip condition is
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FIG. 3. (a,b) Comparison of the asymptotic force per unit leng®vt (lines), and the numericalresults
of lattice-Boltzmann simulations (dots). (c,d) Relative error between the astinforce and the simulated
force. The relative error is defined by Eq. (37). (a) and (c) ar&qalaagainst the“gap,between adjacent
posts along thg-axis, Ah. (b) and (c) are plotted against the scaled radius divided by the aspiecof
the cell,R/h. In all panelsR= 0.2 is purple,R= 0.1 is red,R = 0.085 is"greenR= 0.07 is yellow and
R=0.05is blue.

defined as

ulg = %_[/Ozn‘u(Reie)—iv(Reie) do (38)

and varies with the scaled radiug, and the celhaspect ratity, If the asymptotic solution was
exact,|ulg = 0, since Stokes flows are unique. Non-zéxfy, therefore, indicates a difference
between the unknown exact solution and the asymptotic giedi The size of the difference
must be proportional t¢u|g since Stokes flows are linear. Hence, smalp corresponds to a
small difference between the exact and the asymptotic fl@antour plots of the average error
on the no-slip conditiomare-shown in Fig. 4. The averager@mdhe no-slip condition increases
with increasing scaled-eylinder radiu®, and decreasing cell aspect ratio,On logarithmic axes
(Fig. 4b), thelincrease appears to occur at a constant tajgesting power-law dependence on
RandR/h. PIots of error against Igg(R/h) (Fig. 4c) and logy(R) (Fig. 4d) demonstrate that
this error decays approximately lil®¢ and(R/h)* as expected by the asymptotic expansion. We
note that the transition from a plateau to power law for linegesponding to largeR (R/h) in
Fig. 4c (Fig. 4d) is because, at relatively sni®h (R) values, the error is dominated by the leading
correction inR (R/h). A comparison of the relative error of the force per unigénE (Fig. 3c,d),

and the average error on the no-slip condition suggestsen|u|g < 0.01, the error of the
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FIG. 4. (a) Average error of the no-slip condition on the surface otytiader predicted by the asymptotic
flow, Eq. (23), as a function of the scaled radiRsand the'scaledradius divided by the cell aspect ratio,
R/h. (b) Same as (a), but shown logarithmically.~Dashed grey lines in (a)@naré lines of constant
cell aspect ratioh. (c) Logarithm of the mean non-=slip error against the logarithR@f. Different lines
correspond to different values 8 (d) Logarithm of the mean non-slip error against the logarithrR.of

Different lines correspond to different valuesRyh.

force per unit length is less.than 6%. Similarly to the fotbe, 1% error appears to occur around
R~ 0.1 andR/h ~ 0.1.<For the'remainder of the paper, all phase diagrams wikicenR < 0.2

andR/h < 0.2 to facus on the region of validity of the asymptotic solatio

VI. THE BEHAVIOUR OF THE ASYMPTOTIC FLOW

The asymptotic model developed in Sec. IV predicts the gthesof the singularities (Egs. (32),
(33), (34), and (35)), the coefficient (Eq. (36)), and the ftawoughout the domain. The approx-
imate flow at any point in the domain is given by Eq. (23) whengtrengths of the singularities

and the background velocity are substituted into the egnatunlike previous models, this flow
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can be calculated quickly because of the rapidly convergearges used to represent the Stokeslet
and its derivatives. The streamlines of the asymptotic flosvpdotted in Fig. 5 for scaled radii
of R=10.05, 01, and 02 and cell aspect ratios &f= 2, 1, and (6. The scaled cylinder radius
of R= 0.2 lies beyond the validity limit of the model, establishedhe previous section, and is
expected to show an error greater than 5%, especially wieessiect ratio ie = 0.5 (R/h=0.4).
Near each cylinder, the flow decreases. The size of the regtbmeduced velocity increases with
scaled radiusR, and cell aspect ratid, due to the periodic interactions. The flows through cells
with large aspect ratios also display a large portion of thiel iravelling at almost the maximum-
velocity cell, while cells with smaller aspect ratios onach the maximum velocity in a'localised
region directly above the cylinder. The localisation of thaximum velocity is caused. by the
conservation of mass which requires a faster velocity ingdue to squeeze the same amount of
fluid through the cell. We note that the flow along thaxis never reverses.anywhere within the
flow domain. Therefore, the asymptotic solution does nadipteny closed vortices. Non-inertial
vortices are typically found in Stokes flow at the leading &rading edges of cylinders with large
radius [16]. The assumption that the cylinders are slerildex(l andR/h < 1) in the expansion
prevents the appearance of these vortices in the asymfitotic
The mean velocity in the periodic domain can be-«determineth fthe asymptotic flow by
integrating the flow ovey = [0, h) for anyx. The*flow incompressibility condition requires the
flux through any plane normal to thxeaxis te-be'the same. Hence the mean fluid velocity is given
by N
05 [ ueciy)ay (39)
whereu(z) is defined in Eq. (23).:These integrals can be evaluatedIgxaging the properties of
the Schottky—Klein prime function and its derivatives talfin
R4
{u) :/\+(GS>F+<GD>(R2D+R4Q)+ﬁ(R4,F) (40)

where

()% Inp, (PA(—yP,p)\ In(p?) & 14 pk-1/2
hGs) = — > +2nln( 7 )— = k;kln<m>, (41)

n(Gp) = X VPRI 1 (42

are the fluid fluxes from a unit Stokeslet and source dipolspeetively. The flux from the

source dipole is the same as the flux from a force quadrupdide wo flux is generated from
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