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Adaptive transport networks are known to contain loops when subject to hydrodynamic fluctuations.
However, fluctuations are no guarantee that a loop will form, as shown by loop-free networks driven by
oscillating flows. We provide a complete stability analysis of the dynamical behavior of any loop formed by
fluctuating flows. We find a threshold for loop stability that involves an interplay of geometric constraints
and hydrodynamic forcing mapped to constant and fluctuating components. Loops require fluctuation in
the relative size of the flux between nodes, not just a temporal variation in the flux at a given node. Hence,
there is both a minimum and a maximum amount of fluctuation relative to the constant-flux component
where loops are supported.
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Adaptive transport networks are systems where transport
conduits evolve in response to the flows through them.
These networks are fundamental components of many
complex systems, including blood vasculature [1], meta-
bolic flux distribution networks [2], and river [3] or karst
conduit systems [4]. Understanding the mechanisms behind
their formation and growth is crucial for finding a link
between the form, function, and efficiency of the networks.
Are spontaneously formed networks optimal, e.g., in terms
of minimal energy dissipation [5–8] or global resistance
[9,10]? If yes, then to what topologies do the optimal
structures correspond? The answers to these questions
remain elusive. Even more elusive is the link between
the final geometries of the networks and their growth
dynamics: it is not clear whether spontaneous growth of the
network leads to optimal structures [11], although pruning
of the less effective branches might help circumvent this
problem [8].
Network topologies range from highly ramified hierar-

chical trees towell-connected loopy structures [7,12,13], but
the reasons for such a variety are still debated. In has been
suggested that the topology is controlled by the form of the
cost function for local transportation of material, which is
minimized in optimal structures [7,12,14]. Alternately,
loops could arise from a trade-off between cost and
resilience to random damage incurred to the network
[15,16]: trees dominate in systems where cost minimization
is paramount, e.g., power grids feeding a small number of
homes or large blood vessels distributing blood to the
organs. In contrast, loops dominate when the cost of a
single connection is relatively low, yet a systemmust remain
resilient to the threat of damage [17], as observed in leaf
venations [18] or capillary plexus [19]. Overall, it is
conceivable that there are multiple mechanisms of loop

formation in the transport networks, differing in the resulting
geometrical patterns. Figure 1 shows three examples of
looping structures. The first is a scale-free, fractal loopy
networkofwater channels in theNigerRiver. The second is a
scale-dependent network of veinlets and arterioles in mouse
retina [20], with a treelike structure on larger scale and loopy
capillary plexus on smaller scale [13]. The third photo shows
a network of gastrovascular canals in an Aurelia aurita
jellyfish, with a characteristic, hierarchical structure with
loops [21].
The growth dynamics have received less scrutiny com-

pared to steady state of networks discussed above. It is not
easy to obtain loops as a result of growth driven by the
external field: most simple growth models, in which one
phase grows at the expense of another, produce loopless
structures. Examples include Laplacian growth phenomena
[25], such as diffusion-limited aggregation [26], dielectric
breakdown [27], electrodeposition [28], all resulting in
treelike fractal structures. Loops do emerge if the finite
mobility of the invading phase is accounted for, as shorter
branches of the growing structures become attracted to the
longer ones forming a nested loop structure [29], resem-
bling the gastrovascular canal patterns of jellyfish, shown in
Fig. 1 (right-hand image).
The emergence of loopy topologies has also been linked

to the growth of a network in the presence of fluctuations in
the flux [15,30,31], i.e., rapid changes in flow magnitude or
direction as the result of changing boundary conditions. If
the characteristic timescales of fluctuations are shorter than
the network adaptation times and their amplitudes are
relatively large, loops tend to appear in the system.
However, the emergent equilibria of many optimal net-
works are not entirely loopy: a significant fraction of the
possible links have a negligible conductivity, and many
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subnetworks are trees. Hence, while the controls on the
global “loopiness” of the network are beginning to be
understood, the constraints on what makes a particular
domain a loop remain enigmatic.
Recent efforts have explored the transition between

topologies containing few and many loops in network
geometries that minimize dissipation. Kaiser et al. [16]
considered a simple loop within a network, in which nodes
that play the roles of sources and sinks are driven by
independent fluctuations of the flux. They showed that
beyond a threshold of flux variance, a loop became optimal
relative to a tree. While helpful, this advance cannot
describe the enigma of many natural networks, e.g., the
channel networks in coastal salt marshes [32], which are
controlled by strong tidal fluctuations and yet remain
loopless. These networks are governed by tidal flows that
reverse on a diurnal or semidiurnal timescale, but where
sources and sinks are highly correlated at short length
scales [33,34], which remove loops as effectively as

constant flows [35]. It is clear that aspects of the applied
flows beyond the magnitude of fluctuations are important,
but remain presently unexplained.
In this Letter, we attempt to elucidate the local factors

controlling the formation of loops in transport networks by
analyzing loop stability in the simplest possible model
system consisting of a single triangular loop, as shown in
Fig. 2(a). In the case of a river delta, one can imagine the
links as channels carrying water and nodes as locations
where the channels meet. Because of fluctuations in the
system driven by tides or river floods (or explicit water
management), flows from the rest of the network to the
nodes vary over time. We will treat the rest of the network
as a source of (time-dependent) volumetric flux into the
channels. Such a simplification is adequate when the size of
the loop is small in comparison to the network in general,
and changes to the conductivities of the links in the loop do
not affect the forcing flows.

(a) (b)

FIG. 2. (a) Sketch of a single triangular loop. Three vertices subject to fluctuating discharges Qi are connected by channels of
conductivity kij. Three angles βi characterize the geometry of the loop. (b) Inflow characterization in q, f plane corresponding to the
situation in panel (a). Node a is fed by a constant flow, whereas node b is fed by a fluctuating source. Node c is an outlet (with negative q
and f) with a flow that is a sum of that in a and b and hence representing a mixture of constant and fluctuating components. Angles αij
between the flow vectors control the stability of the system.

FIG. 1. Examples of reticulated networks with different geometries and topologies. Left: a land-water binary map of the Niger River
delta (copyright: OpenStreetMap contributors, data under ODbL [22]) reveals a scale-free loopy network [23]. Center: vasculature in a
mouse retina (copyright: Bernabeu et al., CC BY 3.0 [20]), a loopy but scale-dependent network. Right: gastrovascular canal system of a
jellyfish Aurelia aurita (copyright: OISTGU, CC BY 4.0 [24]) with only a few loops. Channels transporting fresh water and nutrients
evolve during the growth of the animal with an interplay between hydrodynamic and mechanical stimuli.
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The dynamics of a channel network are governed by
relationships for flows and adaptation. For flows, we
assume a linear relationship between pressure gradient
and discharge Q through a link, scaled by conductivity k
and link length l:

QðkÞ ¼ k
Δp
l
; ð1Þ

which holds for laminar flow in small vessels of cross-
sectional area A, such as leaf veins [15,36] and blood
capillaries [37,38] where the Hagen-Poiseuille law applies
and the conductivity k can be expressed as k ¼ A2=8πη,
where η is the dynamic viscosity of the fluid. This model is
also an adequate approximation of friction-dominated
shallow-water flows in coastal networks [39–41].
Next, we assume that the networks evolve sufficiently

slowly, adapting the diameters of their links (and hence also
conductivities) to the flows. Such adaptation is often
assumed to be a process of optimization, in which the
channel evolves to minimize power dissipation expressed
as Q2=k (or equivalently QΔp=l) [7,14–16,30,35,42]. This
approach motivates the functional relationship between the
rate of change of conductivity k and the average squared
discharge Q2 and the conductivity itself. Empirical obser-
vations of such networks at equilibrium show a nonlinear
relationship between k and the average Q2 (smoothing out
fast fluctuations, such as daily fluctuations in tidal cycles)
denoted by hQ2i. In a stationary state, we typically approxi-
mate this relationship by a power law k ¼ aτhQðkÞ2iγ. As a
result, one can propose a dynamical equation [31,35,43]:

d
dt

kðtÞ ¼ ahQðkÞ2iγ − 1

τ
kðtÞ; ð2Þ

which reproduces such a power law at equilibrium. Here, a
and γ control the shape of the power law, while τ controls
the timescale of relaxation to equilibrium. For coastal
rivers, empirical scaling suggests that γ ≈ 0.6 [35]. In this
study, taking a slightly lower value of γ ¼ 1=2 allows us to
find an analytical solution to a forthcoming linear stability
analysis. By a suitable choice of units for Q and t, we can
cast Eq. (2) in a dimensionless form in which a ¼ τ ¼ 1.
We will assume such a choice of units in subsequent
considerations.
Each node of our triangular network is also connected to

a flow source Qi, which mimics interactions with the
remaining links of a large network [cf. Fig. 2(a)]. Labeling
the vertices a, b, c and the links ab; bc; ca we can write the
conservation of mass in the system asQca −Qab ¼ Qa and
cyclically. Combining this with the pressure equation (1)
and solving for flows leads to

Qab ¼
CabðQbCca −QaCbcÞ

σ2

σ2 ¼ CabCbc þ CbcCca þ CcaCab; ð3Þ

and cyclically. In the above, C ¼ k=l is the ratio of
conductivity and length defined for each of the links.
Let us now imagine that the influxes to our network

fluctuate. Combining Eqs. (3) and (2), we can express the
evolution of conductivity of each channel using averaged
products of the forcing fluxes. More concretely, we define a
dynamical system in the ðCab; Cbc; CcaÞ space [or equiv-
alently, the ðkab; kbc; kcaÞ space] given by

d
dt
kab ¼

Cab

σ2
hðQbCca −QaCbcÞ2i1=2 − kab ð4Þ

and cyclically. In principle, one can find an explicit solution
for the fixed points of the above dynamical system, but the
expression is lengthy and not particularly informative. A
more insightful procedure is to assume that initially one of
the links (e.g., ab) had zero conductivity. The immediate
conclusion from Eq. (3) is that then Cab will remain zero at
all times. We can solve for flows in the two remaining links
and compute their stationary conductivities to be

Cab ¼ 0; Cbc ¼
ffiffiffiffiffiffiffiffiffiffi

hQ2
bi

q

; Cca ¼
ffiffiffiffiffiffiffiffiffiffi

hQ2
ai

q

: ð5Þ

The stability of the fixed point defined by Eq. (5) can then
be established by linear stability analysis, where a stable
solution means that a small positive Cab will shrink back to
zero (maintaining a tree) while an unstable solution will
grow and support a loop.
Taking into account that dCab=dt ¼ 0 for Cab ¼ 0 we

find that the eigenvalue of the Jacobian matrix correspond-
ing to the eigenvector with the nonzero component ab is
equal to ð∂=∂CabÞ½ðd=dtÞCab�. Evaluating the derivatives,
we find that solution (5) is stable if and only if

hQaQbi
ffiffiffiffiffiffiffiffiffiffi

hQ2
ai

p
ffiffiffiffiffiffiffiffiffiffi

hQ2
bi

q >
l2bc þ l2ac − l2ab

2lbclac
: ð6Þ

We see that the stability of a tree-type configuration is
determined by two terms: one capturing the flux fluctua-
tions and another capturing the loop geometry [left- and
right-hand sides of Eq. (6)]. Both sides are dimensionless,
which highlights the special scaling properties of the γ ¼
1=2 case. Scaling all flows (or lengths) by the same factor
does not change the dynamics of the system itself; in that
sense, the case γ ¼ 1=2 is scale-free, and the values of a
and τ have no influence on the typical behavior of the
system.
Our model is fully determined by hQiQji which can be

computed for any reasonable set of forcings. The general
theory admits an elegant visual interpretation in a slightly
less general, but highly relevant, case where driving fluxes
are fully correlated. In such cases we can describe each
forcing with just the mean qi ¼ hQiðtÞi and mean squared
variation f2i , such that hQiðtÞQjðtÞi ¼ fifj þ qiqj. Such a
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correlated behavior is not uncommon in many transport
networks—for example, tidal forces change flows in all the
networkswith an approximately daily pattern,most of the leaf
stomata open following the day-night cycle, city traffic often
follows a bidaily pattern, etc. The simplest concrete example
of such forcing could be QiðtÞ ¼ qi þ fi

ffiffiffi

2
p

sinðωtÞ.
When qi quantifies the constant component and fi the

variable component of the influx i into the system, the left-
hand side of (6) corresponds to an angle between ðqa; faÞ
and ðqb; fbÞ vectors in the ðq; fÞ plane as shown in Fig. 3.
With the vector angle formula and the law of cosines
[Eq. (6)], the stability criterion for link ab, is reduced to

αab < βc; ð7Þ

where βc is the angle between the sides ac and bc of the
physical network and αab is the corresponding angle
between the flow vectors; see Fig. 2. Equations (6) and
(7) determine the stability of one link in the network, but
terms can easily be rotated to check the stability of each
possible treelike configuration. If none of the inequalities
are satisfied, then all possible trees are unstable and the
system necessarily has a loop at equilibrium.
Qualitatively, Eq. (7) shows that loops should not form

whenever the points Qa, Qb, and Qc in the ðq; fÞ plane are
close to being collinear because this ensures that one αij is
small. This happens, for example, when the system is fully
controlled by the constant influx. For coastal river net-
works, this corresponds to the case where tides are minimal,
and flows are steady.
Somewhat more surprisingly, theQaQbQc triangle in the

ðq; fÞ plane is degenerate also if the system is entirely
driven by fluctuations. In the example of river networks,
this would correspond to the coastal marsh fed solely by
tidal flows. Such systems are indeed loop-free [35]. This is

an example of an unexpected symmetry of our model.
Since the constraint in Eq. (7) depends only on the angle
between the discharge vectors [i.e., Fig. 3(b)], the situations
without fluctuations and without constant components are
related by a rotation in the ðq; fÞ plane that preserves the
tree stability.
This result adds nuance to those of Kaiser et al. [16],

who showed that when a flux applied at all but one nodes
was represented by Gaussian independent identically dis-
tributed random variables (with the final node satisfying
flux conservation), all levels of variance beyond a threshold
produced stable loops. However, we show that even large
variances will not support a loop if they are highly
correlated, as the three discharge vectors will become
approximately collinear in the ðq; fÞ plane. Such collinear
vectors will satisfy Eq. (7), meaning that a tree is stable.
We calculated trajectories with the dynamics given by

Eq. (4) for an equilateral triangle with uniform initial
conductivities (kij ¼ 1) of all sides [Fig. 3(b)]. The
equilibrium configuration is represented by δ: the ratio
of the smallest and the largest conductivity in the final
network. The gray region in Fig. 3(b) shows δ as a function
of the minimum angle between the flow vectors, αmin. For
αmin < 60° we find that all the final stable configurations
are treelike, i.e., δ ¼ 0 [marked by a horizontal line in
Fig. 3(b)]. This is precisely the angle range in which
treelike solutions should be stable, according to Eq. (7). In
contrast, for αmin > 60° all the stable configurations form a
loop, with δ > 0. This shows that loops and trees never
coexist as stationary solutions, which demonstrates that the
linear stability analysis fully determines the stability of the
system. The dark blue dot corresponds to the flows
depicted in Fig. 2(b). In this case, all angles are larger
than 60°, consequently all treelike configurations are
unstable and the final configuration is loopy.

(a) (b) (c)

FIG. 3. (a) Evolution of the link conductivities of the triangular network subject to forcing corresponding to Fig. 2(b). Initially, we start
from a unit equilateral triangle with uniform conductivities (kij ¼ 1) In the long-time limit the conductivities stabilize at kab ¼ 0.089,
kbc ¼ 0.304, kca ¼ 0.652, which corresponds to δ ¼ kab=kca ¼ 0.136. (b) The final values of δ in simulations ran for different values of
the flows feeding a unit equilateral triangle with initially uniform conductivities. Gray area represents all possible stationary
configurations. Dark blue dot corresponds to the inflows depicted in Fig. 2(b). Boundary of the allowed region is occupied by forcings in

which two out of three Qa
�!

; Qb
�!

; Qc
�!

vectors have equal magnitude. (c) Stability exponents ð∂=∂CiÞ½ðd=dtÞCi� for a range of values of
fa, with other forcings kept constant (qa ¼ 0.70, qb ¼ 0.07, fb ¼ 0.35), give rise to loops only for the intermediate values of fluctuation
amplitude fa.
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Analysis of stability exponents confirms that loops
disappear when the variability is either excessively high
or excessively low. For the analysis presented in Fig. 3(c),
we fix Qa as well as the constant component of Qb while
varying the fluctuating component fb, demonstrating that
the loops appear only for the intermediate values of the
fluctuation amplitude.
We note that although the value of αmin determines

whether the system will form a loop, it does not determine
the exact equilibrium configuration of the loop, because

more than one set of Q⃗i exist for a constant αmin.
In summary, we have found an exact condition to

maintain any particular loop. Our work is complementary
to advances in understanding optimal supply networks
[15,16] and network dynamics [31] that focus on global
properties of the networks rather than individual loops.
Thus, our results are robust to the change of the number

of nodes and individual loop shape. In particular, since βi
angles determine the stability boundary we show that even
an affine transformation of a network would change its
stability properties and thus the choice of equilateral grid
by the previous studies on fluctuation-induced loop for-
mation [15,16,31] might significantly influence their
results.
The loop stability condition (7) has a particularly simple

interpretation when all the driving fluxes are fully corre-
lated, as the stability then depends on the interplay of their
constant and fluctuating components, with trees dominat-
ing both in small and large fluctuation regimes and loops
prevailing in between these two extremes. For more
complicated cases, when the fluxes to the nodes are not
fully correlated, the stability condition (7) still holds, but
we can no longer interpret the left-hand side of Eq. (7) as an
angle in the ðq; fÞ plane. Because loop-supporting fluctua-
tions need to be “just right,” we name them “Goldilocks
fluctuations”.
Adaptive transport networks can be far more complex

than the single loop studied here, both with morphologies
that may contain many loops at different scales [44,45], and
with complex forcing patterns [46]. Even so, these net-
works often adapt toward an equilibrium where conduc-
tivities remain relatively constant [47,48]. Under the
condition that the network is at equilibrium, the presented
result should hold, namely that the flows applied at the
boundaries of any loop in the system should destabilize
trees based on Eq. (6). Hence, even if a network’s
complexity is such that flow within it cannot be confidently
modeled, the network’s structure can provide constraints on
the scale of fluctuations at the elementary scale.
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