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3 Simple examples of random processes

[? ]

4 Random walks

some introduction

4.1 Random walk in 1d

We consider a random walk over a 1d lattice. The time is discrete, the lattice is infinite.

We denote by M 2 Z the position of the random walker. With pM (N) we denote the

probability distribution of the position after N steps. We assume that, at each step, the

random walker can jump to the left or to the right with equal probabilities. Then

pM (N + 1) =
1

2
pM�1(N) +

1

2
pM+1(N), (4.1)

with some initial condition. We choose it to be pM (0) = �M,0. The solution is then

pM (N) =

(
1
2N

� N
(N+M)/2

�
, N,M both odd or even,

0, otherwise.
(4.2)

To compute this probability we should take the ratio of all the paths starting at 0 and

reaching M in N steps, to all the possible paths consisting of N steps. The latter number

is 2N . To compute the former number it is convenient to count number L of steps to the

left and number of steps to the right R. We have

R+ L = N, R � L = M, (4.3)

To count number of correct paths is now equivalent to a number of ways in which we can

choose R elements from a set of N elements. This number is
�N
R

�
. Writing R = (N +M)/2

we obtain the formula. If we start at M = 0, the random walk in N steps cannot reach

further than ±N . Therefore we should have pN (M) = 0 for |M | > N . This is automatically

taken care of by the binomial coe�cient for which
✓
n

k

◆
= 0, for k > n, k < 0. (4.4)
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Finally, we observe that the probability distribution has symmetry p�M (N) = pM (N).

We will now extract features of the probability distribution by computing its moments.

The moments of the distribution can be computed with the help of a generating function.

Namely

f(N, z) =
M=NX

M=�N

zMpM (N). (4.5)

Indeed

hMi =
NX

M=�N

MpM (N) =
@f(N, z)

@z
|z=1, (4.6)

hM2
i =

NX

M=�N

M2pM (N) =
@2f(N, z)

@z2
|z=1 + hMi. (4.7)

To compute the generating function we use the binomial theorem

f(N, z) =
1

2N

NX

M=�N

zM
✓

N

(N +M)/2

◆
=

z�N

2N

NX

R=0

z2R
✓
N

R

◆
(4.8)

=
z�N

2N
(1 + z2)N =

(z�1 + z)N

2N
. (4.9)

We then find

f(N, z) =
(z�1 + z)N

2N
. (4.10)

The first two moments are now readily computable with the result

hMi = 0, hM2
i = N. (4.11)

If the initial condition is pM (0) = �M,M0 then the solution is modified to pM�M0(N).

The equation is linear and therefore more complicated initial conditions can be easily

implemented too. For example, solution qM (N) to a problem with initial condition qM (0) =
1

2
�M,1 +

1

2
�M,10 is

qM (N) =
1

2
pM�1(N) +

1

2
pM�10(N). (4.12)

We consider now a random walk with a boundary. First we consider an ideally reflective

boundary at lattice sites M0 The presence of the boundary can be by a mirror image

method. Namely the probability distribution is

qM (N) =

(
pM (N) + p2M0�M (N), M < M0,

pM0(N), M = M0,
(4.13)

where pM (N) is the solution of the infinite lattice problem. The presence of the boundary

can be also taken into account by modifying the equations

qM (N + 1) =
1

2
qM�1(N) +

1

2
qM+1(N), M < M0, (4.14)

qM0(N + 1) = qM0�1(N). (4.15)
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We consider now an absorbing boundary at M0. We can find the solution again by the

mirror image method. It reads

qM (N) =

(
pM (N) � p2M0�M (N), M < M0,

0, M = M0.
(4.16)

The corresponding equations are

qM (N + 1) =
1

2
qM�1(N) +

1

2
qM+1(N), M < M0, (4.17)

qM0(N + 1) = 0. (4.18)

We note that in this case the total probability is not conserved.

4.2 Asymptotic probability distribution

What’s the distribution after many steps? To answer this question we can consider large

N limit of pN (M). Since variance hM2
i goes like N , the typical distance from the origin,

after N steps is N1/2. This implies that for most walks M/N ⌧ 1.

To compute pM (N) for large N we will use the Stirling approximation for the factorial

N ! ⇡

p

2⇡N

✓
N

e

◆N

, (4.19)

and use variable z = M/N . For the binomial coe�cient we then have

✓
N

(N +M)/2

◆
=

N !

[(N +M)/2]![(N � M)2]!
=

N !

[N/2(1 + z)]![N/2(1 � z)]!

⇡
2 ⇥ 2N
p
2⇡N

(1 � z2)�1/2(1 + z)�N/2(1+z)(1 � z)�N/2(1�z) (4.20)

We now use that z = M/N ⌧ 1. This allows to simplify
p
1 � z2 ⇡ 1 and

(1 ± z)�N/2(1±z) = exp ((�N(1 ± z)) log(1 ± z))

⇡ exp

✓
�N(1 ± z)(±z �

z2

2
+ O(z3))

◆

= exp

✓
�N

✓
(±z +

z2

2

◆◆
, (4.21)

which gives

(1 + z)�N/2(1+z)(1 � z)�N/2(1�z)
⇡ exp

✓
�
Nz2

2

◆
. (4.22)

Replacing now z with M/N we find the following expression for the asymptotic expansion

of the binomial coe�cient
✓

N

(N +M)/2

◆
⇡

2 ⇥ 2N
p
2⇡N

exp

✓
�
M2

2N

◆
. (4.23)
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For the probability distribution we then get

pM (N) =
2

p
2⇡N

exp

✓
�
M2

2N

◆
. (4.24)

We find the Gaussian distribution of a mean 0 and with variance N . The factor 2 in the

numerator of the prefactor takes into account that for given N only every second value of

M is possible.

4.3 Random walk in 3d

We consider now a random walk in a 3d space. We will assume that space is continuous

however we will keep time discrete. The characteristic unit of time we denote ⌧ . We

introduce function g(a) which is a probability distribution for a jump by a vector a. For

the 1d walk of the previous section we had g(a) = (�(a � x̂) + �(a + x̂)/2. Now, g(a)

takes non-zero values for jumps of di↵erent lengths and di↵erent directions. We will later

put some assumption on its form but for now we keep it generic. Given this setup, we can

write probability distribution p(r, t+ ⌧) that the particle is at position r at time t+ ⌧ as

a result of the particle jumping from its position r � a at time t by a. Namely

p(r, t+ ⌧) =

Z
p(r � a, t)g(a)d3a. (4.25)

We will now assume that a length of a single jump |a| is small compared with a typical

distance at which we observe the dynamics. This motivates to expand p(r � a) around a.

We find

p(r � a, t) = p(r, t) �

3X

i=1

@p(r, t)

@xi
ai +

1

2

3X

i,j=1

@2p(r, t)

@xi@xj
aiaj + O(|a|

3). (4.26)

If we now assume that g(a) is isotropic, namely g(a) = g(|a|), then the second term of the

expansion does not contribute to the integral and we find

p(r, t+ ⌧) � p(r, t) =
1

2

3X

i,j=1

@2p(r, t)

@xi@xj

Z
aiajg(|a|)d3a. (4.27)

Because of the isotropy of g(a) only diagonal i = j part of this expression survives the

integration. Furthermore, let us introduce the following notation

h�2
i =

Z �
a2x + a2y + a2z

�
g(|a|)d3a = 3

Z
a2xg(|a|)d3a, (4.28)

for the second moment of the jump probability distribution. In the second step we used

again the isotropy assumption. With this, the equation becomes

p(r, t+ ⌧) � p(r, t) =
h�2

i

6

3X

i=1

@2p(r, t)

@x2i
. (4.29)
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We can assume that we observe the system at time scales much larger than ⌧ . This entitles

the expansion of the right hand side of the equation. The final result can be written as

@p

@t
= Dr

2⇢, D =
h�2

i

6⌧
, (4.30)

which is the di↵usion equation in 3d. Note how the di↵usion constant relates to microscopic

parameters of the system, namely the characteristic time and the variance of the transition

amplitude.

We can solve this equation using the Fourier transform. We define

p(k) =

Z
e�ik·xp(x)d3x, (4.31)

and the di↵usion equation becomes

@p(k)

@t
= �Dk2p(k). (4.32)

For the initial condition p(x, 0) = �(x) which translates into p(k, 0) = 1 in the momentum

space, the solution is

p(k, t) = e�Dk2t. (4.33)

Finally, we want to transfer back to the real space. Using the inverse Fourier transform we

have

p(x, t) =

Z
d3k

(2⇡)3
eix·xp(k, t) =

Z
d3k

(2⇡)3
eix·x�Dk2t. (4.34)

To compute the remaining integral we first ”complete the square” by writing

p(x, t) = e�Dtk20

Z
d3k

(2⇡)3
e�Dt(k�ik0)2 , k0 =

x

2Dt
. (4.35)

The integral can be shown to be independent of k0 (as long as it’s real). Therefore we can

set k0 = 0 and the integral becomes then an ordinary Gaussian integral in 3d. Using that
Z

dk

2⇡
e�Dtk2 =

1
p
4⇡Dt

, (4.36)

and substiuting for k0 we find

⇢(x, t) =

✓
1

4⇡Dt

◆3/2

e�
x2

4Dt . (4.37)
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