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8 Fokker-Planck equation

The Fokker-Planck equation is a special type of master equation, which can be used as an

approximation to an actual Markov process or an elegant model for one. The trouble with

the general form of the master equation is that it is an integro-di↵erential relation and

finding the probability density explicitly can be a challenging, if not impossible, task. The

Fokker-Planck equation (FPE) can be derived as an approximation to the master equation

in the limit of small jumps – a notion which we will formalise later. The benefit is that the

FPE is a di↵erential equation more amenable to analytical solutions. It is also called the

‘Smoluchowski equation’, ‘generalised di↵usion equation’ and ‘second Kolmogorov equa-

tion’, depending on the context.

For a continuous random variable y and time t, the FPE has the form of a second-order

partial di↵erential equation, generally written as

@P (y, t)

@t
= �

@

@y
[A(y)P (y, t)] +

1

2

@2

@y2
[B(y)P (y, t)] . (8.1)

The coe�cients of the equation, A(y) and B(y) > 0 are real di↵erentiable functions. FPE

can be written in the form of a continuity equation for the probability density

@P

@t
= �

@J

@y
, (8.2)

with the probability flux J given by a linear ‘constitutive relationship’

J(y, t) = A(y)P �
1

2

@(B(y)P )

@y
. (8.3)

Note that there exists a stationary solution of Eq. (8.1), which corresponds to the

vanishing flux, and is given by

P s(y) =
const.

B(y)
exp


2

Z y

0

A(s)

B(s)
ds

�
, (8.4)

obviously only when P s is integrable and thus can be normalised.

We can use the stationary solution to construct a Markov process. We know that a

Markov process is fully specified by a pdf P1 and a transition probability P1|1. If now we

choose a transition probability P (y, t|y1, t1) for t � t1 that is a solution of (8.1) which

reduces to �(y � y1) at t = t1, and take for P1 the stationary solution P s, the resulting

Markov process is stationary.
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8.1 Derivation of the Fokker-Planck equation

To arrive at the Fokker-Planck equation, we consider the Master equation (7.6) with a

special form of the transition probability W . First, we rewrite W (y|y0) as a function of the

initial point y0 and jump size r = y � y0,

W (y|y0) ⌘ W (y0, r), (8.5)

so the master equation is recast as

@P (y, t)

@t
=

Z
W (y � r, r)P (y � r, t)dr � P (y, t)

Z
W (y,�r)dr. (8.6)

We now turn back to the assumption of small jumps. This means basically that there exists

a length scale � such that

W (y0, r) ⇡ 0 for |r| > �, (8.7)

W (y0 +�y, r) ⇡ W (y0, r) for |�y| < �. (8.8)

In other words, W is sharply peaked around zero as a function of the jump size r but at the

same time varies slowly with the first argument, the position in space. If we additionally

assume that the solution also varies slowly with y, we can perform a Taylor expansion of

the shift y � r in the first integral of Eq. (8.6) up to second order. We have

W (y � r, r)P (y � r, t) ⇡W (y, r)P (y, t) � r
@

@y
[W (y, r)P (y, t)] (8.9)

+
r2

2

@2

@y2
[W (y, r)P (y, t)] + h.o.t.

Note here that the dependence of W on the second argument is fully maintained – we

cannot expand in this argument because of the rapid variation of W with r. Inserting this

expansion into Eq. (8.6), we notice that the first and fourth terms cancel. The remaining

terms can be written using the jump moments,

a⌫(y) =

Z
r⌫W (y, r)dr (8.10)

already defined in Eq. (7.29). We finally arrive at

@P (y, t)

@t
= �

@

@y
[a1(y)P (y, t)] +

1

2

@2

@y2
[a2(y)P (y, t)] . (8.11)

We have thus derived Eq. (8.1) from an expansion of the master equation in the limit

of small jumps by an expansion of the underlying transition rates in terms of the jump

moments. Importantly, one can show that FPE preserves normalisation and positiveness

of the solution.
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Kramers-Moyal expansion of the master equation It would seem natural to think

of a more general form of the Taylor expansion (8.9) with an arbitrary number of terms

m, that would lead to

@P (y, t)

@t
=

mX

⌫=1

(�1)⌫

⌫!

✓
@

@y

◆⌫

[a⌫(y)P (y, t)], (8.12)

and see the e↵ects of various types of truncations. The simplest choice is to retain just one

term, to arrive at
@P (y, t)

@t
= �

@

@y
[a1(y)P (y, t)]. (8.13)

This, however, is the deterministic Liouville equation. It cannot describe fluctuations,

which was our original motivation, thus we need to include further terms; including the

second-derivative term leads to FPE (8.11). However, a theorem due to Pawula [8] states

that for the solution to be interpretable as a PDF (positive, with a constant integral equal

to 1), the expansion must be either truncated after two terms (FPE) or contain an infinite

number of terms.

Boundary conditions Two types of boundaries that are of particular interest in the

context of FPE. The first is a reflecting boundary condition which contains the PDF to a

bounded domain ⌦. There must be no flux through the boundaries, so J(y, t)|@⌦ = 0. The

second is an absorbing boundary condition which reflects the fact that on the boundary

@⌦ the PDF vanishes, P (y, t)|@⌦ ⌘ 0. In this case, the norm of the solution of the FPE

decreases and the boundary acts as a probability sink.

8.2 Fokker-Planck description of a Markov process

We have derived the Fokker-Planck equation as a model (or an approximation) for a Markov

process Y (t) whose individual jumps are small. There are two appealing properties of the

resulting description. First, as advertised at the beginning of this Section, we arrived at

a di↵erential, rather than an integral-di↵erential, equation. The former is much easier to

handle, and therefore more practical. Second, perhaps more importantly, to construct a

FPE we do not need the knowledge of the exact form of the transition kernel W (y|y0) but

only its first and second moment. These two elements can be derived for a given process

with much less e↵ort and do not required detailed knowledge on the nature of underlying

the physical process.

To illustrate this, consider a process which we choose to describe via an observable y

which the physics of the process suggests to be approximately Markovian. We then choose

a time interval �t short enough for y not to change considerably but long enough for the

Markov assumption to be valid. We can compute the average change h�yiy and its average

square
⌦
(�y)2

↵
y
over this short time �t. The subscript means that these quantities are

conditional on the position y at the beginning of the time interval. Now consider the

conditional probability distribution P (y+�y, t0 +�t|y0, t0) that satisfies the FPE (8.11).

We can show directly by computing the moments of this distribution that for �t ! 0 we
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have

a1(y0) =
h�yi

�t
, a2(y0) =

⌦
(�y)2

↵

�t
,

h(�y)⌫i

�t
= 0 for ⌫ � 3. (8.14)

Thus, from the calculated averages we can compute the first and second jump moments

by dividing by �t and computing the short time limit. Note that we only need to know

the short-time behaviour of the system to compute the jump moments, and the long-time

behaviour can then be predicted from the FPE.

An alternative way of constructing a Fokker-Planck description relies on the phe-

nomenological approach. From the FPE (8.11) we can show directly that

@ hyi

@t
= ha1(y)i (8.15)

If one now neglects fluctuations completely, we have ha1(y)i = a1(hyi), and the preceding

equation simplifies to
@ hyi

@t
= a1(hyi), (8.16)

which we identify with the macroscopic equation from Sec. 7.2. Thus the function ay(y) can

be identified from the macroscopic equation. Next, the second jump moment can be found

from the stationary (equilibrium) solution of the FPE. In equilibrium, the probability flux

in Eq. (8.3) that corresponds to the stationary solution P s(y) must vanish, so

a1P
s
�

1

2

@

@y
(a2(y)P

s) = 0, (8.17)

from which we determine a2 based on the knowledge of a1 and the equilibrium distribution,

which we typically know from statistical mechanics. Importantly, the phenomenological

approach to determining a1 and a2, although used with great success by Einstein and others,

is not generally valid and can only be used when the macroscopic equation is linear. The

case of a nonlinear macroscopic equation and a consistent treatment requires a separate

discussion, which we will omit for now. Instead, we will focus on the former case in the

following.

Linear Fokker-Planck equation Since the FPE is always linear in P , we will reserve

the name linear Fokker-Planck equation for the FPE in which the first jump moment is

linear in y and the second jump moment is constant and equal to B > 0, so that

@P (y, t)

@t
= �

@

@y
[(A0 +A1y)P (y, t)] +

B

2

@2

@y2
[P (y, t)] . (8.18)

Then, with no approximation, we can write

d

dt
hy(t)i = ha1(y)i = a1(hy(t)i) = A0 +A1 hy(t)i . (8.19)

Note that in this case A0 can be eliminated by defining

P (y, t) = P̃ (y � A0t, t). (8.20)
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We can therefore consider only the case A0 = 0, which corresponds to the FPE

@P (y, t)

@t
= �


@

@y
+ �2 @2

@y2

�
P (y, t), (8.21)

where � = �A1 > 0 sets the time scale and ��2 = B/2.

We will now show a method of solving the linear FPE (8.21) that uses the method

of characteristic function. First, we define the characteristic function G(k, t) for a given

probability distribution P (y, t) via the Fourier transform

G(k) =

Z
eikyP (y)dy. (8.22)

The characteristic function has the properties that G(0) = 1 and |G(k)|  1. It is also

called the moment-generating function, because the coe�cients of its Taylor expansion in

k are the moments µm = hymi of the underlying distribution, so that

G(k) =
1X

m=0

(ik)m

m!
µm. (8.23)

Once G(k) is known, the PDF can be found by inverse transformation

P (y) =
1

2⇡

Z
G(k)e�ikydk. (8.24)

We will now solve Eq. 8.21 in an unbounded space with the initial condition P (y, t =

0) = �(y � y0). Taking the Fourier transform of Eq. (8.21), we arrive at a closed equation

for G,
@

@t
G(k, t) = ��k

@

@k
G(k, t) � ��2k2G(k, t). (8.25)

To solve it, we note that the general solution has the form

G(k, t) = e�
1
2�

2k2�(ke��t), (8.26)

with an unknown function � which can be determined from the transformed initial condi-

tion, G(k, 0) = eiky0 , so we finally arrive at

G(k, t) = exp

✓
iky0e

��t
�

1

2
�2k2(1 � e�2�t)

◆
. (8.27)

To determine the corresponding probability distribution, we should in principle apply an

inverse Fourier transformation to G(k, t). However, it is easier to examine the properties

of the Gaussian PDF (2.52) N (y, t)

N (y) =
1

p

2⇡s2
exp


�
(y � µ)2

2s2

�
, (8.28)

and note that the characteristic function reads then

GN (k, t) = exp

✓
ikµ �

1

2
�2k2

◆
. (8.29)
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By comparison of Eqs. (8.27) and (8.29), we see that in the linear FPE the solution is

Gaussian, and reads

P (y, t|y0, 0) =
1p

2⇡�2(1 � e�2�t)
exp


�

(y � y0e��t)2

2�2(1 � e�2�t)

�
. (8.30)

The conditional probability P1|1 ⌘ P (y, t|y0, 0), together with the Gaussian PDF

P1(y0) =
1

p
2⇡

exp

✓
�
y20
2

◆
, (8.31)

define a particularly important Markov process, called the Ornstein-Uhlenbeck pro-

cess. By Doob’s theorem, this is the only stationary and Gaussian Markov process. Its

autocorrelation function reads simply

(⌧) = e�⌧ . (8.32)

8.3 Brownian motion

Brownian motion bears a long and fascinating history of its discovery, early intepretations,

possible explanations, and lively discussions it has inspired in the scientific community.

These endeavours are summarised in a brilliant historical account by Brush [9].

We will elaborate on the history of Brownian motion later, and now focus on the

physical description of this mesoscopic phenomenon in which the key role is played by the

time scales of observation which are coarse as compared to the velocity relaxation times.

We will thus focus our description on the coarse time scale, where the position of

the Brownian particle r = (x, y, z) may be treated as a random variable. Since between

subsequent observations of the position, the velocity of the Brownian particle has relaxed

many times, we can assume the stochastic process r(t) to be Markovian. Then, a master

equation can be written, from which a suitable FPE can be derived. To cut this route

short, we will start with the FPE, for which we need to specify the first and second jump

moments. The particle makes random jumps, which may have any length, but long jumps

are highly improbable. The probability of jumping should also be isotropic and independent

of the starting point. From isotropy, the first jump moment will vanish, and we assume

the second jump moment to be constant

a1 = lim
�t!0

h�rir

�t
= 0, (8.33)

(a2)ij = lim
�t!0

h�ri�rjir
�t

= 2D�ij . (8.34)

The FPE for the transition probability becomes then

@P (r, t)

@t
= D

✓
@2

@x2
+

@2

@y2
+

@2

@z2

◆
P (y, t) = Dr

2P (r, t), (8.35)

which is simply a di↵usion equation for the PDF. If we assume the initial condition P1 ⌘

P (r, 0) = �(r � r0), we find

P (r, t) =

✓
1

4⇡Dt

◆3/2

e�
(�r)2

4Dt , (8.36)
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which, together with P1 defines the Wiener process. Note here that although we cannot

measure the velocity of the particle on this coarse timescale, we can measure the mean-

square displacement (MSD)

⌦
(�r)2

↵
=

⌦
(�x)2 + (�y)2 + (�z)2

↵
= 6Dt, (8.37)

which grows linearly in time. Thus, the mean distance covered by the Brownian particle

after time t grows as
p
t.

We will now follow Einstein’s approach to find a microscopic expression for the di↵usion

coe�cient. To do so, we will use the phenomenological approach presented before and apply

it to a case in which there is a non-trivial macroscopic equation for a Brownian particle

– consider Brownian motion in a gravitational field g = �gez. Then, the equilibrium

distribution is known from statistical mechanics to be

P eq(z) ⇠ e
� mgz

kBT . (8.38)

Now consider the displacement of the Brownian particle over a short time �t. The particle

will exhibit random Wiener process displacements (�x0,�y0,�z0) in all directions, inde-

pendent of the external field. On the timescales long compared to the velocity relaxation

time scale, the (Stokes) equation of motion of the particle reads 0 = mg � ⇣ hvzi, with

⇣ being the Stokes viscous friction coe�cient, which for a spherical particle of radius a

immersed in fluid of viscosity ⌘ reads ⇣ = 6⇡⌘a. Hence, we find the systematic velocity

hvzi = mg
⇣ , and we can finally write the short-time displacements of the particle in all

directions

�x = �x0, (8.39)

�y = �y0, (8.40)

�z = �z0 �
mg

⇣
�t. (8.41)

Thus we find the components of the first jump moment to be

a1x(r) = 0 = a1y(r), a1z(r) = �
mg

⇣
. (8.42)

This systematic drift does not a↵ect fluctuations, so the second jump moment is found as

before

(a2)ij = lim
�t!0

h�ri�rjir
�t

= 2D�ij , (8.43)

and having written these we have a complete description needed for the FPE, which now

takes the form

@P (r, t)

@t
=


mg

⇣

@

@z
+D

✓
@2

@x2
+

@2

@y2
+

@2

@z2

◆�
P (y, t) = Dr

2P (r, t), (8.44)

which can be rewritten using the flux as @tP = r · J , where

Jx = �D
@P

@x
, Jy = �D

@P

@y
, Jz = �


mg

⇣
+D

@

@z

�
P, (8.45)
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As before, to determine the second jump moment, we use the fact that for in equilibrium

the flux vanishes, Jeq = 0, so for P eq we must have


mg

⇣
+D

@

@z

�
P eq = 0. (8.46)

Thus we find the Stokes-Einstein formula,

D =
kBT

⇣
=

kBT

6⇡⌘a
, (8.47)

which relates the macroscopic transport property (di↵usion coe�cient) to the microscopic

parameter (radius of the particle). It is also an example of a fluctuation-dissipation

theorem, which says that fluctuations in the medium (di↵usion) are related to the dissi-

pation (viscosity) and they cannot be independent. The fluctuation-dissipation theorem is

a consequence of the second law of thermodynamics.

At the time it was derived, Eq. (8.47) was of paramount importance, because it allowed

the measurement of microscopic particle sizes from macroscopic experiments. In 1908,

Jean Perrin observed the positions of a Brownian particle in subsequent times to test the

theoretical predictions of the theory of Brownian motion, and found excellent agreement.

This has paved the way for the acceptance of “reality” of atoms amongst the scientific

community of the time.

8.4 The Rayleigh particle

The Rayleigh particle is the same particle as analysed before but studied on a finer time

scale. Now we will focus on time intervals �t that are short compared to the velocity

relaxation time of the particle in a gas medium, but still long compared to the time of an

individual collision of the particle with a gas molecule. For simplicity, we shall now focus

on the one-dimensional case, where the random variable is the velocity V of the particle.

Here, we focus on a gas rather than a liquid, because the time scales of velocity

relaxation in a liquid can be as long as the Brownian time scale ⌧B. If this is the case, one

cannot use the Stokes law for the velocity relaxation dynamics. In other words, the Stokes

equation for the particle, mv̇ = ⇣v is not valid, because the fluid is not in a steady state.

In a liquid we expect the velocity to evolve according to

m
dv

dt
= �

Z

�1
t⇣(t � t0)v(t0)dt0, (8.48)

where the friction kernel ⇣(t) characterises the memory e↵ect of the fluid. In a gas, we

assume this relationship to be instantaneous and thus to depend only on the instantaneous

value of the velocity. Having established that, for a gas we can write

dv

dt
= ��v, (8.49)

with the solution v ⇠ e��t. Thus we see that the time intervals of interest are now such

that �t ⌧ ��1. Eq. (8.49) is thus the (linear) macroscopic equation for the velocity, from
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which we readily deduce the first jump moment

a1(v) = lim
�t!0

h�viv
�t

= ��v. (8.50)

For the second jump moment, we expect it to be positive even for v = 0, so for small v we

assume that it is constant

a2(v) = ↵+ O(v2) ⇡ ↵. (8.51)

Thus, the resulting FPE is the Rayleigh equation

@P (v, t)

@t
= �

@

@y
[vP (v, t)] +

↵

2

@2P (v, t)

@v2
(8.52)

Before we solve the Rayleigh equation, note that we can find the value of ↵ as before from

the knowledge of the equilibrium distribution, which is given from statistical mechanics by

the Maxwell distribution (2.41). It is straightforward to check that

↵ =
2�kBT

m
. (8.53)

Finally, we can write the Rayleigh equation as

@P (v, t)

@t
= �


@

@y
[vP (v, t)] +

kBT

m

@2P (v, t)

@v2

�
. (8.54)

This linear FPE is identical to that analysed before, hence we conclude that the solution

is the transition probability of the Ornstein-Uhlenbeck process, Eq. (8.30).

It is also straightforward to compute the moments of the velocity distribution for a

particle with an initial velocity v0

hv(t)iv0 = v0e
��t, (8.55)

⌦
v2(t)

↵
v0

= v20e
�2�t +

kBT

m
(1 � e�2�t). (8.56)

The autocorrelation function for this stationary Gaussian function is then

(⌧) = hhv(t)v(t+ ⌧)ii = hhv(0)iieq e��t =
kBT

m
e��t. (8.57)

Note also that from the average squared velocity we can find the average kinetic energy of

the Rayleigh particle
m hvi2

2
=

kBT

2m
, (8.58)

which manifests the equipartition principle.
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