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Problem 1: From the Rayleigh description to the Brownian picture

The Rayleigh particle is the same particle as the Brownian particle, but studied on a finer time
scale. In this problem, we will see how changing the time scale of observation to longer makes it more
appropriate to use the Brownian description.

• For a Rayleigh particle, we argued that its velocity can be treated as a random variable and
therefore the corresponding Fokker-Planck equation is:
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• We have shown the solution to the FP equation above to define the Ornstein-Uhlenbeck process
– what is the distribution function of the transition probability?

• On a coarser time scale, when the times of interest are much larger than the velocity relaxation
time scale γ−1, the description by velocity becomes irrelevant. Instead, the position is treated as
a random variable, and the FP equations takes the form
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• We need to show that upon coarse-graining, we recover the Brownian description from the
Rayleigh picture. To do so, consider the position of the particle

∆x(t) =
∫ t
t0

dt′v(t′), (2)

with x(t = 0) = 0.

• First, show that x(t) is Gaussian. The fact that x is Gaussian means that to characterise it we
only need the mean and the autocorrelation function.

• Find 〈x(t)〉.

• Find the expression for the autocorrelation function 〈〈x(t2)x(t1)〉〉 using the position defined as
above. See that in general the process X for arbitrary times is not Markovian. Now show that
on a coarse time scale, when t1, t2 − t1 � γ−1, the autocorrelation function becomes

〈〈x(t2)x(t1)〉〉 =
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min(t1, t2).

Conclude that X is a zero-mean Gaussian process with the autocorrelation as above, therefore
it is a Wiener process, and satisfies the FP equation
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Thus deduce the fluctuation-dissipation relationship
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.



From this example we can see that the Wiener process may be treated as a long-time integral of the
Ornstein-Uhlenbeck process.

Problem 2: Debye’s rigid rotator

Consider a spherical particle of radius a with a picked out direction, say a net dipole moment m
which we can write asm = mu, with u being a unit vector. Suppose now the particle is constrained to
rotate only about a fixed axis, and that it is immersed in a fluid. Choosing the rotation plane spanned
by the axes x and y, we cen describe the rotations by a single angle ϕ, as drawn above.

Collisions with the fluid will generate a fluctuating torque on the sphere. At the same time, if we
try to rotate the sphere by an external, there will be a systematic drag resistance from the fluid, i.e.
the torque Mr = −ζrϕ̇. The corresponding Smoluchowski (Fokker-Planck) equation for the probability
density P (ϕ, t) of finding the vector u to be at an angle ϕ at time t,
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with the rotational diffusion coefficient Dr = kBT/ζr.

• Solve the Smoluchowski equation with the initial condition P (ϕ, 0) = δ(ϕ − ϕ0). Find and
interpret the approximate form solution for very long times t → ∞. For short times this
distribution becomes Gaussian around ϕ0 (no need to show this).
Hint: use the separation of variables and the representation of Dirac delta as a a Fourier series
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• Now assume that there is an external torque due to an electric field E in the x direction. This
means that there will be an external potential energy V (φ) = −m · E = −mE cosϕ and a
corresponding torque M = −∂V∂ϕ . Show that the Smoluchowski equation in this case becomes
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with the dimensionless field ξ = mE/kBT.

• In 1913, Debye considered a model dipole in a weak and steadily oscillating field ξ(t) = ξ0e
−iωt,

with ξ0 � 1. In this weak field limit, we can solve the first order, linear response problem by
expanding the distribution function in the small parameter ξ0,

P = P0 + ξ0P1 + . . . ,

with the zero-field uniform distribution P0 = (2π)−1. Find the resulting equation for P1. Check
that

P1(ϕ, t) =
cosϕ

2π(1− iωτ)
e−iωt,

is a particular solution of this equation, where a characteristic time scale τ = 1/Dr appears. In
fact, this is the solution that satisfies periodicity conditions in ϕ (no need to show this). In further
calculations, Debye used this relationship to find the polarisation of the medium P ∝ 〈cosϕ〉 and
the frequency dependent index of refraction.


