Stochastic Processes in Natural Sciences
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Problem 1: From the Rayleigh description to the Brownian picture

The Rayleigh particle is the same particle as the Brownian particle, but studied on a finer time
scale. In this problem, we will see how changing the time scale of observation to longer makes it more
appropriate to use the Brownian description.

e For a Rayleigh particle, we argued that its velocity can be treated as a random variable and
therefore the corresponding Fokker-Planck equation is:
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e We have shown the solution to the FP equation above to define the Ornstein-Uhlenbeck process
— what is the distribution function of the transition probability?

e On a coarser time scale, when the times of interest are much larger than the velocity relaxation
time scale y~1, the description by velocity becomes irrelevant. Instead, the position is treated as
a random variable, and the FP equations takes the form
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e We need to show that upon coarse-graining, we recover the Brownian description from the
Rayleigh picture. To do so, consider the position of the particle

Ax(t) = t dt'v(t'), (2)
with z(t = 0) = 0.

e First, show that z(¢) is Gaussian. The fact that x is Gaussian means that to characterise it we
only need the mean and the autocorrelation function.

e Find (z()).

e Find the expression for the autocorrelation function ((z(t2)x(t1))) using the position defined as
above. See that in general the process X for arbitrary times is not Markovian. Now show that
on a coarse time scale, when t1,t3 — t; > ~~!, the autocorrelation function becomes
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Conclude that X is a zero-mean Gaussian process with the autocorrelation as above, therefore
it is a Wiener process, and satisfies the FP equation

OP(z,t) 0?pP
ot b ox?’ (3)
Thus deduce the fluctuation-dissipation relationship
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From this example we can see that the Wiener process may be treated as a long-time integral of the
Ornstein-Uhlenbeck process.

Problem 2: Debye’s rigid rotator

Consider a spherical particle of radius a with a picked out direction, say a net dipole moment m
which we can write as m = mu, with « being a unit vector. Suppose now the particle is constrained to
rotate only about a fixed axis, and that it is immersed in a fluid. Choosing the rotation plane spanned
by the axes « and y, we cen describe the rotations by a single angle ¢, as drawn above.

Collisions with the fluid will generate a fluctuating torque on the sphere. At the same time, if we
try to rotate the sphere by an external, there will be a systematic drag resistance from the fluid, i.e.
the torque M, = —(,¢. The corresponding Smoluchowski (Fokker-Planck) equation for the probability
density P(¢p,t) of finding the vector u to be at an angle ¢ at time ¢,
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with the rotational diffusion coefficient D, = kT /(.

e Solve the Smoluchowski equation with the initial condition P(¢,0) = d(¢ — ¢o). Find and
interpret the approximate form solution for very long times ¢t — oo. For short times this
distribution becomes Gaussian around ¢g (no need to show this).

Hint: use the separation of variables and the representation of Dirac delta as a a Fourier series
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e Now assume that there is an external torque due to an electric field E in the z direction. This

means that there will be an external potential energy V(¢) = —m - E = —mFEcosp and a
corresponding torque M = —g—‘;. Show that the Smoluchowski equation in this case becomes
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with the dimensionless field £ = mFE/kpT.

e In 1913, Debye considered a model dipole in a weak and steadily oscillating field &(t) = &ye !,
with £ < 1. In this weak field limit, we can solve the first order, linear response problem by
expanding the distribution function in the small parameter &g,

P=PFP+&P+...,

with the zero-field uniform distribution Py = (27)~!. Find the resulting equation for P;. Check

that
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is a particular solution of this equation, where a characteristic time scale 7 = 1/D, appears. In
fact, this is the solution that satisfies periodicity conditions in ¢ (no need to show this). In further
calculations, Debye used this relationship to find the polarisation of the medium P o (cos ¢) and
the frequency dependent index of refraction.
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