Stochastic Processes in Natural Sciences

 Christmas Problems 2023

Problem 1: From the Rayleigh description to the Brownian picture

The Rayleigh particle is the same particle as the Brownian particle, but studied on a finer time scale. In this problem, we will see how changing the time scale of observation to longer makes it more appropriate to use the Brownian description.

- For a Rayleigh particle, we argued that its velocity can be treated as a random variable and therefore the corresponding Fokker-Planck equation is:

$$
\begin{equation*}
\frac{\partial P(v, t)}{\partial t}=\gamma\left\{\frac{\partial}{\partial v}(v P)+\frac{k_{B} T}{M} \frac{\partial^{2} P}{\partial v^{2}}\right\} \tag{1}
\end{equation*}
$$

- We have shown the solution to the FP equation above to define the Ornstein-Uhlenbeck process - what is the distribution function of the transition probability?
- On a coarser time scale, when the times of interest are much larger than the velocity relaxation time scale γ^{-1}, the description by velocity becomes irrelevant. Instead, the position is treated as a random variable, and the FP equations takes the form

$$
\frac{\partial P(x, t)}{\partial t}=D \frac{\partial^{2} P}{\partial x^{2}}
$$

- We need to show that upon coarse-graining, we recover the Brownian description from the Rayleigh picture. To do so, consider the position of the particle

$$
\begin{equation*}
\Delta x(t)=\int_{t_{0}}^{t} \mathrm{~d} t^{\prime} v\left(t^{\prime}\right) \tag{2}
\end{equation*}
$$

with $x(t=0)=0$.

- First, show that $x(t)$ is Gaussian. The fact that x is Gaussian means that to characterise it we only need the mean and the autocorrelation function.
- Find $\langle x(t)\rangle$.
- Find the expression for the autocorrelation function $\left\langle\left\langle x\left(t_{2}\right) x\left(t_{1}\right)\right\rangle\right\rangle$ using the position defined as above. See that in general the process X for arbitrary times is not Markovian. Now show that on a coarse time scale, when $t_{1}, t_{2}-t_{1} \gg \gamma^{-1}$, the autocorrelation function becomes

$$
\left\langle\left\langle x\left(t_{2}\right) x\left(t_{1}\right)\right\rangle\right\rangle=\frac{2 k_{B} T}{M \gamma} \min \left(t_{1}, t_{2}\right) .
$$

Conclude that X is a zero-mean Gaussian process with the autocorrelation as above, therefore it is a Wiener process, and satisfies the FP equation

$$
\begin{equation*}
\frac{\partial P(x, t)}{\partial t}=D \frac{\partial^{2} P}{\partial x^{2}} \tag{3}
\end{equation*}
$$

Thus deduce the fluctuation-dissipation relationship

$$
D=\frac{k_{B} T}{M \gamma} .
$$

From this example we can see that the Wiener process may be treated as a long-time integral of the Ornstein-Uhlenbeck process.

Problem 2: Debye's rigid rotator

Consider a spherical particle of radius a with a picked out direction, say a net dipole moment \boldsymbol{m} which we can write as $\boldsymbol{m}=m \boldsymbol{u}$, with \boldsymbol{u} being a unit vector. Suppose now the particle is constrained to rotate only about a fixed axis, and that it is immersed in a fluid. Choosing the rotation plane spanned by the axes x and y, we cen describe the rotations by a single angle φ, as drawn above.

Collisions with the fluid will generate a fluctuating torque on the sphere. At the same time, if we try to rotate the sphere by an external, there will be a systematic drag resistance from the fluid, i.e. the torque $M_{r}=-\zeta_{r} \dot{\varphi}$. The corresponding Smoluchowski (Fokker-Planck) equation for the probability density $P(\varphi, t)$ of finding the vector \boldsymbol{u} to be at an angle φ at time t,

$$
\frac{\partial P(\varphi, t)}{\partial t}=D_{r} \frac{\partial^{2} P(\varphi, t)}{\partial \varphi^{2}}
$$

with the rotational diffusion coefficient $D_{r}=k_{B} T / \zeta_{r}$.

- Solve the Smoluchowski equation with the initial condition $P(\varphi, 0)=\delta\left(\varphi-\varphi_{0}\right)$. Find and interpret the approximate form solution for very long times $t \rightarrow \infty$. For short times this distribution becomes Gaussian around φ_{0} (no need to show this).
Hint: use the separation of variables and the representation of Dirac delta as a a Fourier series

$$
\delta\left(\varphi-\varphi_{0}\right)=\frac{1}{2 \pi}+\frac{1}{\pi} \sum_{m=1}^{\infty} \cos m\left(\varphi-\varphi_{0}\right) .
$$

- Now assume that there is an external torque due to an electric field \boldsymbol{E} in the x direction. This means that there will be an external potential energy $V(\phi)=-\boldsymbol{m} \cdot \boldsymbol{E}=-m E \cos \varphi$ and a corresponding torque $M=-\frac{\partial V}{\partial \varphi}$. Show that the Smoluchowski equation in this case becomes

$$
\frac{\partial P}{\partial t}=D_{r} \frac{\partial}{\partial \varphi}\left(\frac{\partial P}{\partial \varphi}+\xi P \sin \varphi\right),
$$

with the dimensionless field $\xi=m E / k_{B} T$.

- In 1913, Debye considered a model dipole in a weak and steadily oscillating field $\xi(t)=\xi_{0} e^{-i \omega t}$, with $\xi_{0} \ll 1$. In this weak field limit, we can solve the first order, linear response problem by expanding the distribution function in the small parameter ξ_{0},

$$
P=P_{0}+\xi_{0} P_{1}+\ldots,
$$

with the zero-field uniform distribution $P_{0}=(2 \pi)^{-1}$. Find the resulting equation for P_{1}. Check that

$$
P_{1}(\varphi, t)=\frac{\cos \varphi}{2 \pi(1-i \omega \tau)} e^{-i \omega t}
$$

is a particular solution of this equation, where a characteristic time scale $\tau=1 / D_{r}$ appears. In fact, this is the solution that satisfies periodicity conditions in φ (no need to show this). In further calculations, Debye used this relationship to find the polarisation of the medium $\mathcal{P} \propto\langle\cos \varphi\rangle$ and the frequency dependent index of refraction.

