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Abstract

Cartan’s list of three-dimensional Weyl structures with reduced holonomy
is revisited. We show that the only Einstein—Weyl structures on this list
correspond to the structures generated by the solutions of the dKP equation.

PACS number: 02.40.—k

1. Introduction

In [1], Cartan gave a complete list of three-dimensional Weyl geometries with reduced
holonomy. Cartan did not study the Einstein—Weyl equations for the geometries from his list.
On the other hand, in recent years, various authors [2—4, 7] have been studying the Einstein—
Weyl equations in three dimensions, mainly due to their relations with twistor theory and
integrable systems theory. In particular, Dunajski et al [2] characterized all three-dimensional
Einstein—Weyl spaces which admit a covariantly constant weighted vector field, as being
generated by solutions to the dispersionless Kadomtsev—Petviashvili (dKP) equation. Their
analysis is very much in the spirit of the reduced holonomy ideas, since the existence of
such a vector field reduces the holonomy of the considered Weyl geometry. However, it
is not clear from their analysis if all the three-dimensional Weyl geometries with reduced
holonomy may be obtained by means of an assumption of the existence of a covariantly
constant weighted vector field. Quick inspection of the Cartan list of [1] (look also at table 1
of the present paper) shows that such an assumption is very strong and that it excludes a large
class of Weyl geometries with reduced holonomy. A natural question, if the geometries from
this class may be FEinstein, is addressed in the present paper. Here, we first simplify and
rephrase in modern language Cartan’s classification of three-dimensional Weyl geometries
with reduced holonomy. This is done by inspecting all possible subalgebras of co(2, 1) and
c0(3). Then, by means of the integration of the first structure equations, we determine which of
them may appear as the Weyl holonomy algebras. The integration procedure enables us to give
canonical representatives of the metric and the Weyl potential for each algebra representing
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the reduced holonomy. We also specify the geometric object that reduces the holonomy. It is
either a covariantly constant vector field or a covariantly constant null direction. This second
possibility corresponds to the class of Weyl geometries present in the Cartan list, but not
considered by Dunajski et al. The last part of our paper imposes the Einstein condition on all
the geometries from the Cartan list. The result is included in propositions 3.1 and 3.2 which
strengthen the results of [2] to the following statement:

All three-dimensional Einstein—Weyl geometries with reduced holonomy are either flat or
are generated by the solutions of the dispersionless Kadomtsev—Petviashvili equation.

2. Weyl structures

A Weyl structure on a real n-dimensional manifold M consists of a conformal class of
metrics [g] of signature (p, ¢) and a torsion-free covariant derivative V, such that for each
representative g of [g] there exists a 1-form v satisfying

Vg=-2v®g¢g. (1)

When g changes as g — ¢°?g, then v changes as v — v —dg, so as to leave (1) invariant. The
class of pairs [g, v] considered modulo this gauge, uniquely defines the Weyl structure. If v is
closed, then the Weyl structure can be locally reduced to a metric structure by an appropriate
gauge; thus we assume dv # 0.

Let

CO(p.q) =R, x O(p.q) ={M € Matr,,,(R) | M"gM = rg, 1 € R}
denote the Lie group preserving the conformal class [g]. Then [g] defines the bundle
COo(p.q9) > P—>M,

a reduction of the bundle of linear frames on M. Any Weyl structure on M is alternatively
defined by a linear co(p, ¢g)-valued torsion-free connection on P. This enables us to apply all
the results of the theory of connections [5] to this case. In particular, the notion of holonomy
is well defined and one can study Weyl structures with reduced holonomy. By means of the
reduction theorem ([5], p 83), a Weyl structure has its holonomy reduced to some subgroup
H C CO(p, q), if and only if the Weyl connection is reducible to an h-valued connection on
the holonomy bundle H — P’ — M of P.

Let (¢;) be a frame on M, such that the dual coframe (8%) is orthonormal for some
representative g of [g], i.e.g = g;;0'0/ with all the coefficients g;; being constant. By
a Weyl connection 1-form I' we understand the pullback of the Weyl connection from
CO(p,q) > P - M to M, through the frame (e¢;) considered as a section of P. The
Weyl connection 1-forms Fj. are uniquely defined by the relations

d@i + FllAej = O’ (2)
Cij = gijv, where T = gjkf'ﬁ. )
A Weyl structure has its holonomy reduced to H if the matrix (Fi‘) takes values in the Lie

algebra by of H. Due to

co(p,q) =R®o(p,q)
I" decomposes into the R-valued part v and the o(p, g)-valued part T so that
F=v-id+T. @)
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Hence the subgroups H C O(p, q) C CO(p, q) do not appear as holonomy groups for Weyl
structures.

A tensor field of weight m on M is a tensor object T transforming as T — €T when
g — e*g. The weighted covariant derivative of a (k, [)-tensor field of weight m

VT =VT+mv®T

is a (k + 1, I)-tensor field of weight m. If VT = 0, then T is said to be covariantly constant.
A direction K spanned by a vector field K is said to be covariantly constant, when Vx K € K
for an arbitrary vector field X. A non-null direction C is covariantly constant iff there is a
covariantly constant vector field K € C of weight —1. The existence of a covariantly constant
null direction is a weaker property than the existence of a covariantly constant weighted vector
in this direction.

The curvature 2-form €2, the Ricci tensor Ric and the Ricci scalar R of a Weyl structure
are defined by

P . . X RPN, k Al
Q' = dr% + TpaT, Q= 1ql 050",
RiCl'j = kaj’ R = RiC,’jgij.

2 and Ric have weights 0 whereas R has weight —2. Einstein—Weyl (E-W) structures are, by
definition, those Weyl structures for which the symmetric trace-free part of the Ricci tensor
vanishes,

. 1
RlC(,'j) — ;R “8ij = 0.

A Weyl structure is flat, i.e. 2 = 0, iff it has a (local) representative (g = n, v = 0), where 7
is the flat metric.

3. Three-dimensional Weyl structures with reduced holonomy

In order to find all possible 3D Weyl structures with reduced holonomy, we integrate
equations (2) for each subalgebra of co(2, 1) or co(3). These subalgebras are classified in
[6] up to adjoint transformations. We use this classification in the following.

We begin with the more complicated Lorentzian case. Let us choose a coframe (6!, 62, 6°)
such that

g = (6%>—-20'0%

The algebra co(2, 1) now reads

p+a b 0
c p b
0 c p—a
The subalgebras with p # 0 are the following:
A ¢c=0,
B;: ¢=0,a=—(g+1p,q R,
C: ¢=0,b=0,
D;: ¢=0,b=0,a=(@+1)p,qg>—1,
E: a=0,c=-b,
F: ¢=0,a=0,b==p,
Gy: a=0,b=qp,c=—qp,q €R.

Obviously, A contains B, C, D, F, and E contains G.
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Let us integrate the system (2) for the subalgebra A. In this case the system reads
do'+ W +a)r0 + BAO2 =0, dO*+va0%+BA0° =0, dOP+ (v —a)n0P=0, (5
where o = 3(T| —T3), =T} =T3,y =T} =T3,v=T3% = §(I'] +T3). We have
a three-parameter family of transformations preserving this system; this is the Lie group G 4
, o 0 0
of the algebra A. The coframe transformation 6" — M}67 with G4 > M = exp (é 0 9{)

100
sends o — o —dt, B — e'B and v — v. Similarly M = exp (8 (t) 0) sends o — o, B — B,
t

00
v — v —df and M = exp (8 8 6) transforms § — B — ta — dt, leaving o and v invariant.

Exploiting this gauge freedom we easily achieve
BrO>r0° =0, (v+a)r0'6® =0, (v —a)r0®=0. (6)

Now d@3 = 0, which enables us to make 6> = dx. Moreover, d92,6% = 0 and d8' A6 = 0,
so that 82 = adz and 6' = dy + bdx. In addition, 0 # 0'26%70> = abdxdyxdz; hence
(x,y, z) is a coordinate system on M. In this coordinate system, using (5), (6), it is easy
to get v = —(loga),dy + cdx and g = a?dz* — 2dx dy — 2b dx?. This, when rescaled via
g — a’2g, vV—>v— i da, after an appropriate redefinition of a, b, c, reads

1 H
g=dzz+2H(x,y,z)dxdy+K(x,y,z)dx2, v:L(x,y,z)d)c—EEZ dz, 7

where H, K are sufficiently smooth arbitrary functions of the coordinates (x, y, z). In the
above gauge the remaining connection 1-forms «, 8 are

_ (LK B ) g Ly p= (g k) dr+Ld ®)
= YToH Y “2\H : &

Since the subgroup G4 of C O (2, 1) preserves a null direction, these Weyl structures have a
covariantly constant null direction. It is generated by the vector field 9,.

Let us pass to the structures with holonomy B,. Since B, is contained in A, we can use
(7)—(8) together with the condition of further reduction of holonomy. This is reduced from A
to B, iff « = —(g + 1)v, which restricts the possible H, K and L by

(g+2)H, =0 d L A, 1K,

=V, an = —— = ——

i : =0 " 2H

For g = —2 we have

¢ =d2+2H(x,y,z)dxdy + K (x, y, z) dx? v (Ko DB o By, 9)
T ’ 4H 2H 2H

For g # —2, H = H(x, y) and it may be gauged to H = 1 by means of the transformation
H — Y,(x,y), K — 2Y, +2K(x, y, z) followed by the change of coordinates y — Y. In
this gauge 2q L = —K . Thus, for g # 0, —2 we have

1
g:dz2+2dxdy+K(x,y,z)dx2, v:—z—Kydx,
q

and forg =0

g =d22+2dxdy+K(x,z)dx2, v=L(x,y,z) dx. (10)
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Table 1. Three-dimensional Weyl structures with reduced holonomy.

Covariantly constant Holonomy
Type Structure object algebra
A g=dz2+2H(x,y,z)dxdy + K(x, v, z) dx? Null direction of 9y a ®R
v=L(x,y,z)dx — ﬁszz
By g =dz% +2dxdy + K (x, z) dx? Null vector 9y a
v=L(x,y, z)dx
B_, g = dzz+2H(x,y,z)dxdy+K(x, ¥,2) dx? Null 1-form dx, a
V= ﬁ(l(y —2H,)dx — ﬁszz Null vector dy, of weight —2
By q#0,—2 g =dz? +2dxdy + K (x, y, z) dx? Null vector 9, of weight ¢ a; for g#£-1
V= 7iKydx R? for g=——1
C g=dz2+2H (x,y,z)dxdy Spatial direction of 9 R?
1
v=—5gHdz
D g =dz? +2H(y,z)dx dy Spatial direction of 9;, R
v=— ﬁ H.dz Null vector 9y
E g = K(x,y,2)(dx? +dy?) £ dz? (Timelike) direction of 8, R?
v=— ﬁ K.dz

All the structures with holonomy B, have a covariantly constant null vector field of weight g.
In the above coordinates it is given by d,. In particular, in (10) ¢ = 0, thus we have a
covariantly constant null vector field 9, there; in (9) ¢ = —2 and we have also a covariantly
constant null 1-form dx in this case.

We find structures with holonomy C and D for ¢ = 0 in an analogous way. We show that
if the holonomy is reduced to type D for g # 0 or F, then the corresponding Weyl structures
are necessarily flat. In the nontrivial cases of Weyl structures with holonomies of types C and
D with ¢ = 0 we have a covariantly constant spatial direction. The case D with ¢ = 0 admits
also a covariantly constant null vector. In a similar way, we get a family of Weyl structures
with holonomy of type E

2 2 2 K
g=K(x,y,z)(dx" +dy”) —dz*, v:—ﬁdz. (11
They admit a covariantly constant timelike direction generated by 9,. We close the discussion
of the Lorentzian case by mentioning that the structures with holonomy of type G do not exist.

The Euclidean case is much simpler due to the structure of co(3). It has only two proper
subalgebras up to adjoint automorphisms. They constitute the counterparts of types E and G
from the Lorentzian case. Structures of type G do not exist, and structures of type E have a
form similar to (11), differing from it merely by the sign standing by the dz? term.

All the structures with reduced holonomy, together with their geometric characterization,
are given intable 1. Types A—D have Lorentzian signature and type E may have both Lorentzian
and Euclidean signature. In this table a; denotes the unique two-dimensional non-commutative
Lie algebra.

3.1. Three-dimensional E-W structures with reduced holonomy

We calculate E-W equations in three dimensions

Ricj) — 3R - gij =0
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for the structures in table 1. It appears, as was observed in [2], that E-W structures of types
B, for g # —%, C, D and E are flat (2 = 0). Type B_,,; is more interesting. Here the E-W
equations reduce to the dispersionless Kadomtsev—Petviashvili (dKP) equation

(KK, —2K,)y = K...

The structures of type A were not considered in [2]. The E-W system for them consists
of four PDEs for the functions H, K, L. One of these equations is Hy,,H — H.H, = 0
with the general solution H = H,(x, z)H,(x,y). We absorb H,(x,y) by a redefinition
y = y(x,Y), Hyyy = 1 of the y-coordinate. Hence, without loss of generality, we take
H = H(x, 7). After the substitution H = exp(—F(x, 7)), K = G(x, y, 2) exp(—F (x, 2)),
two of the remaining three E-W equations read

Ly =G,y, L. =Gy, +3F..
They can be easily solved. Now, the Weyl structure reads
g =efdz? — 2dx dy + Gdx?, v=(G,+ f'(x))dx.

It appears that this structure admits a covariantly constant null vector field X = exp (%F -
% f (x))ay of weight —1/2; so the holonomy is of type B_;,,. Hence, if we impose the last
of the E-W equations, the structure will reduce to the one generated by the solutions of
the dKP equation. Thus, type A, although more general than B_;,,, provides no essential
generalization of the dKP equation. We may summarize this section with the following two
propositions.

Proposition 3.1. Every three-dimensional Euclidean Einstein—-Weyl geometry with reduced
holonomy is flat.

Proposition 3.2. Every three-dimensional Lorentzian Einstein-Weyl geometry with reduced
holonomy is flat or has a covariantly constant null vector field of weight — % In the latter case
E-W equations reduce to the dKP equation in some coordinate system.
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