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CONFORMAL STRUCTURES WITH EXPLICIT AMBIENTMETRICS AND CONFORMAL G2 HOLONOMYPAWE� NUROWSKIAbstrat. Given a generi 2-plane �eld on a 5-dimensional manifold we on-sider its (3; 2)-signature onformal metri [g℄ as de�ned in [7℄. Every onformallass [g℄ obtained in this way has very speial onformal holonomy: it mustbe ontained in the split-real-form of the exeptional group G2. In this notewe show that for speial 2-plane �elds on 5-manifolds the onformal lasses [g℄have the Fe�erman-Graham ambient metris whih, ontrary to the generalFe�erman-Graham metris given as a formal power series [2℄, an be writtenin an expliit form. We propose to study the relations between the onformalG2-holonomy of metris [g℄ and the possible pseudo-Riemannian G2-holonomyof the orresponding ambient metris.1. The (3; 2)-signature onformal metrisConsider an equation(1.1) z0 = F (x; y; y0; y00; z) with Fy00y00 6= 0;for two real funtions y = y(x), z = z(x) of one real variable x. To simplify notationintrodue new symbols p = y0 and q = y00. Equation (1.1) is totally enoded in thesystem of three 1-forms: !1 = dz � F (x; y; p; q; z)dx!2 = dy � pdx(1.2) !3 = dp� qdx;living on a 5-dimensional manifold J parametrized by (x; y; p; q; z). In partiular,every solution to (1.1) is a urve (t) = (x(t); y(t); p(t); q(t); z(t)) � J on whih allthe forms !1; !2; !3 identially vanish.We introdue an equivalene relation between equations (1.1) whih identi�es theequations having the same set of solutions. This leads to the following de�nition:De�nition 1.1. Two equations z0 = F (x; y; y0; y00; z) and �z0 = �F (�x; �y; �y0; �y00; �z),de�ned on spaes J and �J parametrized, respetively, by (x; y; p = y0; q = y00; z)and (�x; �y; �p = �y0; �q = �y00; �z), are said to be (loally) equivalent, i� there exists a(loal) di�eomorphism � : J ! �J transforming the orresponding forms!1 = dz � F (x; y; p; q; z)dx �!1 = d�z � �F (�x; �y; �p; �q; �z)d�x!2 = dy � pdx and �!2 = d�y � �pd�x!3 = dp� qdx �!3 = d�p� �qd�xDate: January 31, 2007.This work was supported in part by the Polish Ministerstwo Nauki i Informatyzaji grant nr:1 P03B 07529 and the US Institute for Mathematis and Its Appliations in Minneapolis.1
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2 PAWE� NUROWSKIvia:��(�!1) = �!1 + �!2 + !3��(�!2) = Æ!1 + �!2 + �!3,��(�!3) = �!1 + �!2 + �!3 with funtions �; �; ; Æ; �; �; �; � on J suh thatdet0�� � Æ � �� � �1A 6= 0:It follows that equation (1.1) onsidered modulo equivalene relation of De�nition1.1 uniquely de�nes a onformal lass of (3; 2)-signature metris [gF ℄ on the spaeJ . In oordinates (x; y; p; q; z) this lass may be desribed as follows. LetD = �x + p�y + q�p + F�zbe a total di�erential assoiated with equation (1.1) on J . Then a representativegF of the onformal lass [gF ℄ may be written asgF = [ DF 2qqF 2qq + 6DFqDFqqqF 2qq � 6DFqqqFpF 2qq �3DDFqqF 3qq + 9DFqpF 3qq � 9FppF 3qq +9DFqzFqF 3qq � 18FpzFqF 3qq + 3DFzF 4qq �6DFqF 2qqFqqp + 6FpF 2qqFqqp � 8DFqDFqqFqqFqqq +8DFqqFpFqqFqqq + 3DDFqF 2qqFqqq � 3DFpF 2qqFqqq �3DFzFqF 2qqFqqq + 4(DFq)2F 2qqq � 8DFqFpF 2qqq �3(DFq)2FqqFqqqq + 4F 2pF 2qqq + 6DFqFpFqqFqqqq �3F 2pFqqFqqqq � 6DFqFqF 2qqFqqz + 6FpFqF 2qqFqqz �3DFqF 3qqFqz + 12FpF 3qqFqz + 3F 2qqFqqqFy �6DFqqqFqF 2qqFz + 4DFqqF 3qqFz + 6FqF 2qqFqqpFz +8DFqqFqFqqFqqqFz � 4DFqF 2qqFqqqFz �(1.3) 9FqpF 3qqFz + FpF 2qqFqqqFz � 8DFqFqF 2qqqFz +8FpFqF 2qqqFz + 6DFqFqFqqFqqqqFz � 6FpFqFqqFqqqqFz +18F 3qqFqy + 6F 2q F 2qqFqqzFz + 3FqF 3qqFqzFz �2F 4qqF 2z + FqF 2qqFqqqF 2z + 4F 2q F 2qqqF 2z �3F 2q FqqFqqqqF 2z � 9F 2q F 3qqFzz ℄ (~!1)2 +[ 6DFqqqF 2qq � 6F 2qqFqqp � 8DFqqFqqFqqq +8DFqF 2qqq � 8FpF 2qqq � 6DFqFqqFqqqq +6FpFqqFqqqq � 6FqF 2qqFqqz + 6F 3qqFqz +2F 2qqFqqqFz � 8FqF 2qqqFz + 6FqFqqFqqqqFz ℄ ~!1~!2 +[ 10DFqqF 3qq � 10DFqF 2qqFqqq + 10FpF 2qqFqqq �10F 4qqFz + 10FqF 2qqFqqqFz ℄ ~!1~!3 +



CONFORMAL STRUCTURES WITH EXPLICIT AMBIENT METRICS AND CONFORMAL G2 HOLONOMY330F 4qq ~!1~!4 + [ 30DFqF 3qq � 30FpF 3qq � 30FqF 3qqFz ℄ ~!1~!5 +[ 4F 2qqq � 3FqqFqqqq ℄ (~!2)2 � 10F 2qqFqqq ~!2~!3 + 30F 3qq ~!2~!5 � 20F 4qq (~!3)2where1 ~!1 = dy � pdx~!2 = dz � Fdx� Fq(dp� qdx)~!3 = dp� qdx(1.4) ~!4 = dq~!5 = dx:It follows from the onstrution desribed in Ref. [7℄ that when the equation (1.1)undergoes a di�eomorphism � of De�nition 1.1, the above metri gF transformsonformally.The onformal lass of metris [gF ℄ is very speial among all the (3; 2)-signatureonformal metris in dimension 5: the Cartan normal onformal onnetion for thislass, instead of having values in full so(4; 3) Lie algebra, has values in its ertain14-dimensional subalgebra. This subalgebra turns out to be isomorphi to the splitreal form of the exeptional Lie algebra g2 � so(4; 3). Thus, onformal metris[gF ℄ provide an abundane of examples of metris with an exeptional onformalholonomy. This holonomy is always a subgroup of the nonompat form of theexeptional Lie group G2. We strongly believe that randomly hosen funtion F ,suh that Fqq 6= 0, give rise to onformal metris [gF ℄ with onformal holonomyequal to G2.It is interesting to study the onformal lasses [gF ℄ from the point of view ofthe Fe�erman-Graham ambient metri onstrution [2℄. Sine for eah F de�ningequation (1.1) we have a onformal lass of metris [gF ℄ in dimension �ve, then sine�ve is odd, Fe�erman-Graham guarantees [2℄ that there is a unique formal powerseries of a Rii-�at metri of signature (4; 3) orresponding to [gF ℄. Moreover,sine given F the metri gF is expliitely determined by formula (1.3), we see thatstarting with real analyti F , the metri gF is real analyti. Thus, every analytiF of (1.1) leads to analyti gF and then, in turn, via Fe�erman-Graham, leadsto a unique real analyti ambient metri ~gF of signature (4; 3). Sine both theLevi-Civita onnetion for ~gF and the Cartan normal onformal onnetion for theorresponding 5-dimensional metri gF have values in (possibly subalgebras of) thesame Lie algebra so(4; 3), it is interesting to ask about the relations between them.We disuss these relations on examples.2. The strategy for onstruting expliit examples of ambientmetrisWe start with the Fe�erman-Graham result [2℄ adapted to the 5-dimensionalsituation of onformal metris [gF ℄.Let gF be a representative of the onformal lass [gF ℄ de�ned on J by (1.3).Consider a manifold J � R+ � R. Introdue oordinates (0 < t; u) on R+ � R in1Note that formula for gF di�ers from the one given in Ref. [7℄ by tilde signs over the allomegas. In Ref. [7℄, when opying the alulated metri gF , by mistake, we forgot to put thesetilde signs over the omegas. Hene, in Ref. [7℄, formula for gF is true, provided that one puts thetilde signs over the omegas and supplements it by the de�nitions (1.4) of the tilded omegas.



4 PAWE� NUROWSKIJ � R+ � R. We have a natural projetion � : J � R+ � R ! J , whih enablesus to pullbak forms from J to J � R+ � R. Ommiting the pulbak sign in theexpressions like ��(gF ) we de�ne a formal power series(2.1) �gF = �2dtdu+ t2gF � ut�+ u2� + u3t�1 + 1Xk=4 ukt2�k�k:Here �; �; ; �k, k = 4; 5; 6; ::::, are pullbaks of symmetri bilinear forms �; �; ; �kfrom J to J�R+�R. Thus �gF is a formal bilinear form on J�R+�R. This formalbilinear form has signature (4; 3) in some neighbourhood of u = 0. The followingtheorem is due to Fe�erman and Graham [2℄.Theorem 2.1. Among all the bilinear forms �gF whih, via (2.1), are assoiatedwith metri gF of (1.3) there is preisely one, say ~gF , satisfying the Rii �atnessondition Ri(~gF ) = 0:Given gF , all the bilinear forms �; �; ; �k in ~gF are totally determined. Anotherissue is to alulate them expliitely. For example, it is quite di�ult to �nd the gen-eral formulas for the higher order forms �k. Nevertherless the expliit expressionsfor the forms �; �;  are known [4, 5℄. We write them below in the form obtainedby C R Graham. We de�ne the oe�ients �ij , �ij and ij by � = �ijdxidxj ,� = �ijdxidxj ,  = ijdxidxj , where (xi) = (x; y; p; q; z) are oordinates on J .Then Graham's expressions for �ij , �ij and ij are [4℄:�ij = 2Pij ;�ij = �Bij + P ki Pjk ;3ij = B kij;k � 2WkijlBkl + 4Pk(iB kj) � 4P kk Bij + 4PklC(ij)k;l �(2.2) 2CkilCljk + C kli Cjkl + 2Pkk;lC l(ij) � 2WkijlPkmPml;where Pij = 13 (Rij � 18RgFij);is the Shouten tensor for the metri gF = gFijdxidxj ,Wijkl = Rijkl � 2(Pi[kgFl℄j � Pj[kgFl℄i)is its Weyl tensor, Cijk = Pij;k � Pik;jis the Cotton tensor, and Bij = C kijk; � PklWkijlis the Bah tensor.Of ourse all the above quantities an be expliitely alulated one F , and inturn the metri gF , is hosen.In the rest of the paper we will hose partiular funtions F = F (x; y; p; q; z), andwe will alulate the orresponding forms �; �;  for them. We will give examplesof F 's for whih the bilinear form  is identially vanishing,(2.3)  � 0:Given suh F 's we will onsider�gF = �2dtdu+ t2gF � ut�+ u2�:



CONFORMAL STRUCTURES WITH EXPLICIT AMBIENT METRICS AND CONFORMAL G2 HOLONOMY5Note that �gF oinides with the ambient metri ~gF up to the terms quadrati inthe ambient oordinates t; u. If by hane the bilinear form �gF satis�es the Rii�atness ondition Ri(�gF ) � 0;then by the uniqueness of the ambient metri ~gF stated in Theorem 2.1, it willoiide with the ambient metri ~gF : �gF � ~gF :The uniqueness result of Theorem 2.1, together with the Rii �atness of �gF , ispowerfull enough to guarantee that not only the oe�ient  in the ambient metri~gF identially vanishes, but that all the oe�ients �k, k = 4; 5; 6; ::::; vanish too!Thus the strategy of �nding expliit ambient metris ~gF for gF is as follows:� �nd F = F (x; y; p; q; z) for whih the orresponding metri gF has identi-ally vanishing form  of (2.2);� alulate the approximate ambient metri �gF for suh F ;� hek if the Rii tensor Ri(�gF ) of �gF is identially vanishing;� if you have F with the above properties then the approximate metri �gF isthe ambient metri ~gF for gF .3. Conformally Einstein exampleAs the �rst example, following Ref. [7℄, we alulate gF and its approximateambient metri �gF for a very simple equation:z0 = F (y00); with Fy00y00 6= 0:It was shown in Ref. [7℄ that the onformal lass [gF ℄ may be represented by2�15(F 00)10=3gF =30(F 00)4 [ dqdy � pdqdx ℄ + [ 4F (3)2 � 3F 00F (4) ℄ dz2 +2 [�5(F 00)2F (3) � 4F 0F (3)2 + 3F 0F 00F (4) ℄ dpdz +2 [15(F 00)3 + 5q(F 00)2F (3) � 4FF (3)2 + 4qF 0F (3)2 + 3FF 00F (4) �3qF 0F 00F (4) ℄ dxdz +[�20(F 00)4 + 10F 0(F 00)2F (3) + 4(F 0)2F (3)2 � 3(F 0)2F 00F (4) ℄ dp2 +(3.1) 2 [�15F 0(F 00)3 + 20q(F 00)4 + 5F (F 00)2F (3) � 10qF 0(F 00)2F (3) +4FF 0F (3)2 � 4q(F 0)2F (3)2 � 3FF 0F 00F (4) + 3q(F 0)2F 00F (4) ℄ dpdx+[�30F (F 00)3 + 30qF 0(F 00)3 � 20q2(F 00)4 �10qF (F 00)2F (3) + 10q2F 0(F 00)2F (3) + 4F 2F (3)2 �8qFF 0F (3)2 + 4q2(F 0)2F (3)2 � 3F 2F 00F (4) +6qFF 0F 00F (4) � 3q2(F 0)2F 00F (4) ℄ dx2:As noted in Ref. [7℄ this metri is onformal to a Rii �at metri ĝF = e2�(q)gFwith a onformal sale � = �(q) satisfying seond order ODE:90F 002(�00 ��02)� 60F 00F (3)�0 + 3F 00F (4) � 4F (3)2 = 0:2The metri presented here di�ers from this of [7℄ by a onvenient onformal fator equal to�15(F 00)10=3.



6 PAWE� NUROWSKIThus, sine for eah F = F (q) the onformal lass [gF ℄ ontains a Rii �at metri,its onformal holonomy must be a proper subgroup of the nonompat form of G2.An interesting feature of this onformal lass is that it is very speial among all theonformal lasses assoiated with equation (1.1). Not only has gF very speial on-formal holonomy, making it very similar to the Lorentzian 4-dimensional Brinkmanmetris; moreover, sine its Weyl tensor has essentially only one nonvanishing om-ponent (see Ref. [7℄ for details) it is not weakly generi (see Ref. [3℄ for de�nition).This makes [gF ℄ analogous to the Lorentzian type N metris in 4-dimensions, suhas for example, Fe�erman metris.Having gF of (3.1) we used the symboli omputer alulation program Math-ematia to alulate its assoiated form  of (2.2). We heked that this formidentially vanishes. We further used Mathematia to alulate the orrespondingapproximate ambient metri �gF . On doing that we obsereved that, surprisingly,the bilinear form � is also identially vanishing. The expliit formula for the ap-proximate ambient metri is given below:(3.2) �gF = t2gF � 2 dtdu � 2tuF 004=3Pdq2;with P = 4F (3)2 � 3F 00F (4)90(F 00)10=3 ;and gF given by (3.1). The metri �gF is de�ned loally on J � R+ � R withoordiantes (x; y; p; q; z; t; u). It obviously has signature (4; 3). We also heked,again using Mathematia, that Ri(�gF ) � 0. Thus, we ful�led the strategy outlinedin Setion 2. This enables us to onlude that �gF of (3.2) oinides with the ambientmetri ~gF for gF . To give expressions for the Cartan normal onformal onnetionfor gF and the Levi-Civita onnetion for ~gF = �gF we �rst introdue a nonholonomioframe (�1; �2; �3; �4; �5) on J given by�1 = dy � pdx�2 = dz � Fdx� F 0(dp� qdx)�3 = � 2p3 (F 00)1=3(dp� qdx)30(F 00)10=3�4 = �3F 0F 00F (4) � 4F 0F (3)2 � 10(F 00)2F (3)��dp� qdx�+�4F (3)2 � 3F 00F (4)��dz � Fdx�+ 30(F 00)3dx�5 = �(F 00)2=3dq:In this oframe the metri gF is simply:gF = 2�1�5 � 2�2�4 + (�3)2:By means of the anonial projetion�(x; y; p; q; z; t; u) = (x; y; p; q; z)the oframe (�1; �2; �3; �4; �5) an be pulbaked to �ve linearly independent forms(�1; �2; �3; �4; �5) on J � R+ � R. They an be suplemented by�0 = dt and �6 = duto form a oframe (�0; �1; �2; �3; �4; �5; �6) on the ambient spae J � R+ � R.



CONFORMAL STRUCTURES WITH EXPLICIT AMBIENT METRICS AND CONFORMAL G2 HOLONOMY7The Cartan normal onformal onnetion, when written on J in the oframe(�1; �2; �3; �4; �5) reads:
!G2 =

0BBBBBBBBBBBBBBBBBBBBB�
0 0 0 0 0 �P�5 0�1 0 Q�2 + 92p3P�3 1p3�4 � 12p3�3 0 �P�5�2 0 0 1p3�5 0 � 12p3�3 0�3 0 �2p3P�5 0 1p3�5 � 1p3�4 0�4 0 0 �2p3P�5 0 Q�2 + 92p3P�3 0�5 0 0 0 0 0 00 �5 ��4 �3 ��2 �1 0

1CCCCCCCCCCCCCCCCCCCCCA
:

Here: Q = 40F (3)3 � 45F 00F (3)F (4) + 9F 002F (5)90F 005 :Now we use oframe (�0; �1; �2; �3; �4; �5; �6) to write down the Levi-Civita onne-tion for ~gF . We have ~gF = gij�i�j ;with the indies range: i; j = 0; 1; 2; :::6, and the matrix gij given bygij = 0BBBBBBBB� 0 0 0 0 0 0 �10 0 0 0 0 t2 00 0 0 0 �t2 0 00 0 0 t2 0 0 00 0 �t2 0 0 0 00 t2 0 0 0 �2tuP 0�1 0 0 0 0 0 0
1CCCCCCCCA :The Levi-Civita onnetion for ~gF on J � R+ � R, when written in the oframe(�0; �1; �2; �3; �4; �5; �6) reads:

!LC =
0BBBBBBBBBBBBBBBBBBBBB�

0 0 0 0 0 �tP�5 01t �1 + ut2P�5 1t �0 Q�2 + 92p3P�3 1p3�4 � 12p3�3 ut2P�0 � u3tQ�5 � 1tP�6 � 1tP�51t �2 0 1t �0 1p3�5 0 � 12p3�3 01t �3 0 �2p3P�5 1t �0 1p3�5 � 1p3�4 01t �4 0 0 �2p3P�5 1t �0 Q�2 + 92p3P�3 01t �5 0 0 0 0 1t �0 00 t�5 �t�4 t�3 �t�2 t�1 � uP�5 0

1CCCCCCCCCCCCCCCCCCCCCA
:



8 PAWE� NUROWSKINote that on � = f(x; y; p; q; z; t; u) : u = 0; t = 1g we trivially have �0 � 0 � �6.Thus, restriting the formula for !LC to �, we see that !G2 � !LCj�. O� this set thetwo onnetions: !LC and the pullbaked-by-�-onnetion !G2 , di�er signi�antly.To see this it is enough to observe that ontrary to !LC , the onnetion ��(!G2)has torsion. Indeed writing the �rst Cartan struture equations for the ��(!G2) inthe oframe (�0; �1; �2; �3; �4; �5; �6) we �nd that the torsion is:d�i + ��(!G2)ij ^ �j = 0BBBBBBBB� 0��0 ^ �1 � P�5 ^ �6��0 ^ �2��0 ^ �3��0 ^ �4��0 ^ �50
1CCCCCCCCA :The vanishing of this torsion on the initial hypersurfae � on�rms our earlierstatemant that the two onnetions !G2 and !LC oinide there.It is interesting to note that the urvature d!LC + !LC ^ !LC does not dependon t, u and is anihilated by �t and �u. Thus it an be onsidered to be a 2-form on�. As suh it is preisely equal to the urvature d!G2 +!G2^!G2 of the onnetion!G2 :d!G2 + !G2 ^ !G2 = d!LC + !LC ^ !LC = 0BBBBBBBB�0 0 0 0 0 0 00 0 A5 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 A5 00 0 0 0 0 0 00 0 0 0 0 0 0

1CCCCCCCCA �2 ^ �5;where3A5 = �224F (3)4 + 336F 00F (3)2F (4) � 51F 002F (4)2 � 80F 002F (3)F (5) + 10F 003F (6)100F 0020=3 :4. Non-onformally Einstein exampleTo get quite di�erent example of [gF ℄ we onsider equation (1.1) in the form:z0 = y002 + a6y06 + a5y05 + a4y04 + a3y03 + a2y02 + a1y0 + a0 + bz;where ai; i = 0; 1; :::; 6; and b are real onstants. This equation has the de�ningfuntion F = q2 + a6p6 + a5p5 + a4p4 + a3p3 + a2p2 + a1p+ a0 + bzand, via (1.3), leads to a onformal lass [gF ℄ represented by a metri15(2)�2=3gF = [9a2 + 2b2 + 27a3p+ 54a4p2 + 90a5p3 + 135a6p4℄dy2 +[15a0 + 2(b2 � 3a2)p2 � 3a3p3 + 9a4p4 + 30a5p5 + 60a6p6 �20bpq + 5q2 + 15bz℄dx2 +(4.1) [15a1 + 4(3a2 � b2)p� 9a3p2 � 48a4p3 � 105a5p4 � 180a6p5 +3We use the letter A5 to denote the nonvanishing omponent of the urvature to be in aor-dane with [7℄ and Cartan's paper [1℄. Note however that in order to avoid ollision of notationsbetween the present and the next setions we use apital A5 instead of a5 of paper [7℄.



CONFORMAL STRUCTURES WITH EXPLICIT AMBIENT METRICS AND CONFORMAL G2 HOLONOMY920bq℄dxdy + 20dp2 �10(bp+ q)dpdx+ 10bdpdy � 30dqdy � 15dxdz + 30pdqdx:This metri is not onformal to an Einstein metri. The quikest way to hekthis is the alulation of the Cotton, Cijk , and the Weyl, Wijkl , tensors for gF .One these tensors are alulated, it is easy to observe that they do not admit avetor �eld Ki suh that Cijk +KlWlijk = 0. As a onsequene the metri is nota onformal C-spae metri. This proves our statement sine every onformallyEinstein metri is neessarily a onformal C-spae metri (see e.g. Ref. [3℄).Reall that gF of (4.1), as a member of the family of metris (1.3), de�nes aonformal lass [gF ℄ with onformal holonomy H redued to the nonompat groupG2 or to one of its subgroups. But sine the metri (4.1) is not onformal to anEinstein metri, we do not have an immediate reason to onlude that H 6= G2.We onjeture that H = G2 here and try to prove it in a subsequent paper [6℄.It is remarkable that the ambient metri ~gF for gF of (4.1) assumes a veryompat form:~gF = t2gF � 2 dtdu �2 tu [ 120 (�2a2 + 4b2 + 3a3p+ 6a4p2 � 20a5p3 � 120a6p4)dx2 �920 (a3 � 10a5p2 � 40a6p3)dxdy � 910 (a4 + 5a5p+ 15a6p2)dy2 ℄ +u2 [ 320(2)2=3 (a4 � 10a5p+ 60a6p2)dx2 + 94(2)2=3 (a5 � 12a6p)dxdy + 814(2)2=3 a6dy2 ℄:This is heked by applying our strategy desribed in Setion 2 to the metri (4.1).As in the previous example, using Mathematia, we alulated the bilinear form for (4.1). It turned out to be equal to zero,  � 0. Then we alulated �gF ,and heked that it is Rii �at. Thus we onluded that �gF oinides with theambient metri for ~gF . The above given formula for ~gF is therefore just �gF , whihwe alulated using (2.2).We �nd this example as a sort of mirale. Apriori there is no reason for gFto have the ambient metri trunated at the seond order in terms of the ambientparameters t and u. We are intrigued by this fat.Now, following the general proedure outlined in [7℄, we introdue a speialoframe for gF given by:�1 = dy � pdx�2 = dz � Fdx� 2q(dp� qdx)�3 = � 24=3p3 (dp� qdx)�4 = 2�1=3dx15(2)1=3�5 = (9a2 + 2b2 + 27a3p+ 54a4p2 + 90a5p3 + 135a6p4)(dy � pdx) +10b(dp� qdx)� 30dq +15(a1 + 2a2p+ 3a3p2 + 4a4p3 + 5a5p4 + 6a6p5 + 2bq)dx:In this oframe the metri gF is:gF = 2�1�5 � 2�2�4 + (�3)2:As in the previous setion, we use the anonial projetion�(x; y; p; q; z; t; u) = (x; y; p; q; z)



10 PAWE� NUROWSKIto pullbak the oframe (�1; �2; �3; �4; �5) to �ve linearly independent forms (�1; �2; �3; �4; �5)on J � R+ � R, whih are further suplemented by�0 = dt and �6 = duto form a oframe (�0; �1; �2; �3; �4; �5; �6) on the ambient spae J � R+ � R.It turns out that if b = 0 the oframes on J and J � R+ � R de�ned in thisway are suitable to analyze the relations between the Cartan normal onformalonnetion !G2 for [gF ℄ and the Levi-Civita onnetion !LC for ~gF . If b 6= 0the onetion !G2 in the oframe (�1; �2; �3; �4; �5) and the onnetion !LC in theoframe (�0; �1; �2; �3; �4; �5; �6) do not oinide on t = 1, u = 0. We will notanalyze this ase here.Restriting to the b = 0ase we �nd the following:� the onnetions !G2 in the oframe (�1; �2; �3; �4; �5) and the onnetion!LC in the oframe (�0; �1; �2; �3; �4; �5; �6) oinide on t = 1, u = 0.� the torsion of ��(!G2) in the oframe (�0; �1; �2; �3; �4; �5; �6) is nonvanish-ing o� the set t = 1, u = 0� unlike the example of the previous setion the urvature d!LC+!LC ^!LCsigini�antly depends on t and u.� even on t = 1, u = 0, the urvature d!G2 + !G2 ^ !G2 and the restritionof d!LC + !LC ^ !LC do not oinide.5. AknowledgementsI am very grateful to T P Branson, M Eastwood and W Miller Jr, the organizersof the 2006 IMA Summer Program �Symmetries and Overdetermined Systems ofPartial Di�erential Equations�, for invitating me to Minneapolis to partipate inthis very fruitful event. The topi overed by this note is inspired by the talk of CR Graham whih I heard in Minneapolis during the program. In partiular, I amvery obliged to C R Graham for sending me the formulas (2.2), whih I used toprepare the examples inluded in this note.Referenes[1℄ Cartan E, �Les systemes de Pfa� a inq variables et les equations aux derivees partielles duseonde ordre� Ann. S. Norm. Sup. 27 109-192 (1910)[2℄ Fe�erman C, Graham C R, �Conformal invariants�, in Elie Cartan et mathematiquesd'aujourd'hui, Asterisque, hors serie (Soiete Mathematique de Frane, Paris) 95-116 (1985)[3℄ Gover A R, Nurowski P, "Obstrutions to onformally Einstein metris in n dimensions"Journ. Geom. Phys. 56 450-484 (2006)[4℄ Graham C R, private ommuniations, unpublished[5℄ de Haro S, Skenderis K, Solodukhin S N, �Holographi reonstrution of spaetime and renor-malization in the AdS/CFT orrespondene�, Comm. Math. Phys. 217 (2001), 594�622,hep-th/0002230[6℄ Leistner Th, Nurowski P, in preparation[7℄ Nurowski P, "Di�erential equations and onformal strutures" Journ. Geom. Phys. 55 19-49(2005)Instytut Fizyki Teoretyznej, Uniwersytet Warszawski, ul. Ho»a 69, Warszawa,PolandE-mail address: nurowski�fuw.edu.pl
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