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Abstract
The equivalence problem for second-order ordinary differential equations
(ODEs) given modulo point transformations is solved in full analogy with the
equivalence problem of nondegenerate three-dimensional Cauchy–Riemann
structures. This approach enables an analogue of the Fefferman metrics to be
defined. The conformal class of these (split signature) metrics is well defined
by each point equivalence class of second-order ODEs. Its conformal curvature
is interpreted in terms of the basic point invariants of the corresponding class
of ODEs.

PACS numbers: 02.30.Fn, 02.30.Hq, 02.40.Dr, 04.20.Cv

1. Introduction

This paper aims to explain the relations between two classical geometries: the geometry
associated with second-order ordinary differential equations defined modulo point
transformations of variables and the geometry of the three-dimensional Cauchy–Riemann
(CR) structures.

The geometry associated with second-order ordinary differential equations, considered
modulo contact transformations, is trivial—all second-order ODEs are locally contact
equivalent to the equation y ′′ = 0. If one considers (more natural) point transformations,
all diffeomorphisms of the plane (x, y), then their action on the space of all second-order
ODEs has nontrivial orbits—there exist second-order ODEs that are not (even locally) point
equivalent. An example of such point inequivalent equations is given by y ′′ = 0 and y ′′ = y2.

In general, the equation

y ′′ = Q(x, y, y ′)

with the total differential

D = ∂x + y ′∂y + Q∂y ′
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can be characterized by a number of relative invariants (their vanishing or not is a point-
invariant property of the equation). The two of these invariants of lowest order are

w1 = D2Qy ′y ′ − 4DQyy ′ − DQy ′y ′Qy ′ + 4Qy ′Qyy ′ − 3Qy ′y ′Qy + 6Qyy

and

w2 = Qy ′y ′y ′y ′ .

These were known to Lie [18] and used by Tresse [43, 44] in his systematic study of an
equivalence problem for second-order ODEs given modulo point transformations. Cartan, in
his celebrated paper [4] on projective connections, used the class of second-order ODEs for
which the invariant w2 vanished as an example of a geometry that naturally gives rise to a
Cartan normal projective connection3.

The study of the geometry of CR structures was initiated by Poincaré [30], who looked
for a higher dimensional generalization of the well-known fact that two real analytic arcs
in C are locally biholomorphically equivalent. Using a heuristic argument, he showed that
generic two real three-dimensional hypersurfaces N1 and N2 embedded in C

2 are not, even
locally, biholomorphically equivalent. This led Segre [34] to study the equivalence problem
for real hypersurfaces of codimension 1 in C

2, given modulo the biholomorphisms, a problem
which was later solved in full generality by Cartan [5]. Generalization of the problem to C

n

with n > 2 led to the theory of CR structures which is a part of several complex variable
theory and lies on the borders between analysis, geometry and studies of PDEs. In this
theory a particular role is played by the conformal Fefferman metrics [7] which are Lorentzian
metrics naturally defined on a circle bundle over each CR manifold. These metrics were
defined by Fefferman in 1976 and, surprisingly, were unnoticed by Cartan in his pioneering
paper [5].

The appearance of Lorentzian metrics in the CR-structure theory is not an accident. In
the lowest dimension (n = 2) this is due to the well-known fact [32, 33, 37, 39] that three-
dimensional Cauchy–Riemann structures are in one-to-one correspondence with congruences
of null geodesics without shear in four-dimensional spacetimes. Many physically interesting
spacetimes, such as Minkowski, Schwarzschild, Kerr–Newman, Taub-NUT, Hauser, plane
gravitational waves and Robinson–Trautman, etc, admit congruences of such geodesics. The
understanding of spacetimes admitting congruences of shear-free and null geodesics from the
point of view of the corresponding CR geometry has been quite fruitful in the process of solving
Einstein vacuum equations [15–17, 20, 38]. In these papers the construction of the solutions
of the Einstein equations in terms of the CR functions of the corresponding CR geometry is
very much in the spirit of Penrose’s twistor theory [27, 28]. More importantly, from quite
another point of view, spacetimes admitting shear-free congruences of null geodesics are the
Lorentzian analogues of Hermitian geometries in four dimensions. Since Robinson played the
crucial role of introducing the shear-free property to general relativity, Trautman has called
such manifolds Robinson manifolds [24, 41, 42].

Although it is not immediately self-evident, the geometries associated with second-order
ODEs and the three-dimensional CR structures are closely related. This fact was known to
Segre who, in this context, was quoted in Cartan’s paper [5]. Strangely enough, Cartan in [5]
only mentioned that such relations existed but did not spend much time explaining what they
were. In addition he does not appear to have used these relations to simplify his approach to
the CR structures. In this paper we explain Segre’s observation in detail and reconstruct and
develop the results of the two Cartan papers [4, 5] from this point of view.

3 Cartan’s observation has recently been understood from the twistorial point of view in [10] and generalized in [19].
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Section 2 consists of two parts. The first part contains a review of the concept of a
three-dimensional CR structure. This is defined as a natural generalization of the notion of
classes of real three-dimensional hypersurfaces embedded, modulo biholomorphisms, in C

2.
Our definition is much more in the spirit of Cartan’s treatment of such hypersurfaces than in
the spirit of the modern theory of CR manifolds. This point of view will be adopted throughout
the paper. The first part of section 2 ends with the quotation of Cartan’s theorem (theorem 1)
solving the equivalence problem for three-dimensional CR structures. In the second part
of section 2 we give the modern description of this theorem in terms of Cartan’s SU(2, 1)
connection. We also show how Cartan might have used his theorem to associate with each
nondegenerate three-dimensional CR structure the Fefferman class of metrics. We analyse
the Fefferman metrics using Cartan’s normal conformal connection associated with them, and
give a new proof, based on the use of Baston–Mason conditions [1], of the fact [14] that
these metrics are conformal to Einstein metrics only if the curvature of their CR structure’s
SU(2, 1) connection vanishes. We conclude this section with a formula for the Bach tensor for
the Fefferman metrics, expressed in terms of the curvature of the corresponding CR structure’s
connection.

Section 3, the main section of the paper, explains the analogy between three-dimensional
CR structures and second-order ODEs defined modulo point transformations. The basic
ingredients of this analogy are given just before definition 3, which states what it means
for two second-order ODEs to be point equivalent to each other. Comparison between
definitions 2 and 3 makes the analogy self-evident. Using this analogy we are able to formulate
theorem 2 which solves the equivalence problem for second-order ODEs given modulo point
transformations. By the analogy this theorem is literally the same as theorem 1. The only
difference is that now the symbols appearing in the theorem have different interpretations.
This new interpretation implies that behind the equivalence problem for second-order ODEs
modulo point transformations is a certain Cartan SL(3, R) connection. This fact was, of
course, known to Cartan [4], but we are not sure if Cartan would present it in the spirit of our
paper even if he had a time machine at his disposal (Cartan’s ODE paper [4] dates from 1924,
whereas his CR paper [5] is from 1932). After theorem 2 we give a local representation of the
point invariants of a second-order ODE obtaining, in particular, Lie’s basic relative invariants
w1 and w2. We proceed, exploiting the analogy, to define an ODE analogue of Fefferman
metrics, which now have split signature. The conformal class of split signature metrics which
is naturally associated with each second-order ODE given modulo point transformations turns
out to encode all the point-invariant information about the underlying class of ODEs. In
particular, all the Cartan invariants of the point equivalent class of ODEs are derived from the
Weyl curvature of the corresponding Fefferman-like metric. These metrics are characterized
by proposition 1 and the remark following it, and, some time ago, were considered by one
of us (GAJS) within the general framework discussed in [35]. Unlike the CR structure case,
there are point equivalent classes of second-order ODEs which have nonvanishing curvature
of the Cartan SL(3, R) connection and for which the Fefferman-like metrics are conformal to
Einstein metrics. Such metrics may only correspond to the ODEs for which the Lie relative
invariants w1 and w2 satisfy w1w2 = 0 and all of them are presented in the appendix.

Like all the Cartan invariants, the Lie invariants w1 and w2 are interpreted in terms of
the Fefferman-like metrics associated with the class of second-order ODEs that defines them.
It turns out that the Fefferman metrics associated with a point equivalence class of second-
order ODEs is always of the algebraic type N × N ′ in the Cartan–Petrov–Penrose [3, 26, 29]
classification of real-valued four-dimensional metrics. This means, in particular, that both
the self-dual and the anti-self-dual parts of their Weyl tensor have only one independent
component. It turns out that the self-dual part of this tensor is proportional to w1 and the
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anti-self-dual part is proportional to w2. Thus, the vanishing of one of Lie’s relative invariants
makes the associated Fefferman-like metric half-flat. This partially explains why, in such
cases, these metrics may be conformal to Einstein metrics. The rest of section 3 is devoted to
understanding the fact that it is easy to find all second-order ODEs for which w2 = 0, since
all of them are of the form

y ′′ = A0(x, y) + A1(x, y)y ′ + A2(x, y)(y ′)2 + A3(x, y)(y ′)3,

and it is quite difficult to find Q = Q(x, y, y ′) for which w1 = 0. From the Fefferman-like
metrics point of view the switch between w2 and w1 is the switch between the self-dual and
the anti-self-dual parts of their Weyl tensor. This suggests that invariants w1 and w2 should
be on an equal footing of complexity. To see that this is indeed the case requires another
notion of duality—the duality between the point equivalent classes of second-order ODEs.
This duality was mentioned by Cartan in [4]. We explain it in detail at the end of section 3.
In particular, in proposition 2, and in the example preceding it, we show how to construct
solutions Q = Q(x, y, y ′) of w1 = 0 knowing Q which satisfy w2 = 0. The understanding of
this duality in terms of the natural double fibration of the first jet bundle associated with the
ODE is also given.

Finally, in section 4 we give two applications of the theory presented in sections 2 and
3. The first consists of an algorithm for associating a point equivalence class of second-order
ODEs with a given three-dimensional CR structure. This may be of some use in general
relativity theory and may provide a new understanding of well-known congruences of shear-
free and null geodesics. The second application is, as far as we know, the first example of
a large class of split signature 4-metrics which satisfy the Bach equations, are genuinely of
algebraic type N × N ′ and are not conformal to Einstein metrics.

Note on the conventions and the notation. We emphasize that in this paper all our considerations
are purely local and concerned with nonsingular points of the introduced constructions. We
also mention that, following the old tradition in PDEs, we denote the partial derivatives with
respect to the variable associated with index i by the corresponding subscript, for example,
∂G/∂zi = Gi .

2. Three-dimensional CR structures

A three-dimensional CR structure is a structure which a three-dimensional hypersurface N
embedded in C

2 acquires from the ambient complex space. Following Cartan [5] this structure
can be described in the language of differential forms as follows.

Consider a three-dimensional hypersurface N in C
2 defined by means of a real function

G = G(z1, z2, z̄1, z̄2), such that G1 �= 0, via

N = {(z1, z2) ∈ C
2 | G(z1, z2, z̄1, z̄2) = 0}.

All information about the structure acquired by N from C
2 can be encoded in the two 1-forms

λ = i(G1 dz1 + G2 dz2) and µ = dz2. (1)

These forms have the following properties:

• λ is real, µ is complex
• λ ∧ µ ∧ µ̄ �= 0 on N.

Moreover, if N underlies the biholomorphism

z1 = z1(z
′
1, z

′
2), z2 = z2(z

′
1, z

′
2)
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the forms transform according to

λ → λ′ = aλ and µ → µ′ = bµ + cλ,

where a �= 0 (real) and b �= 0, c (complex) are appropriate functions on N. It is easy to see
that the vanishing of the 3-form λ ∧ dλ is an invariant property under the biholomorphisms of
C

2. Thus, the two hypersurfaces

N1 = {(z1, z2) ∈ C
2 : z1 − z̄1 = 0}

and

N2 = {(z1, z2) ∈ C
2 : |z1|2 + |z2|2 − 1 = 0}, (2)

with the corresponding forms λ1 = i dz1 and λ2 = i(z̄1 dz1 + z̄2 dz2) are not biholomorphically
equivalent.

The above considerations motivate the introduction of the following structure on
3-manifolds.

Definition 1. A CR structure [(λ, µ)] on a three-dimensional manifold N is an equivalence
class of pairs of 1-forms (λ, µ) such that

• λ is real, µ is complex,
• λ ∧ µ ∧ µ̄ �= 0 on N
• two pairs (λ, µ) and (λ′, µ′) are in the equivalence relation iff there exist functions a �= 0

(real), b �= 0, c (complex) on N such that

λ′ = aλ, µ′ = bµ + cλ, µ̄′ = b̄µ̄ + c̄λ.

A CR structure is called nondegenerate iff

dλ ∧ λ �= 0;
otherwise a CR structure is degenerate.

An obvious class of examples of CR structures is given by biholomorphically equivalent
classes of hypersurfaces in C

2. The problem of classifying biholomorphically nonequivalent
hypersurfaces in C

2 is therefore a part of the equivalence problem of CR structures.

Definition 2. Let (N, [(λ, µ)]) and (N ′, [(λ′, µ′)]) be two CR structures on two three-
dimensional manifolds N and N ′. We say that (N, [(λ, µ)]) and (N ′, [(λ′, µ′)]) are (locally)
equivalent iff, for any two representatives (λ, µ) ∈ [(λ, µ)] and (λ′, µ′) ∈ [(λ′, µ′)], there
exists a (local) diffeomorphism φ : N → N ′ and functions a �= 0 (real), b �= 0, c (complex)
on N such that

φ∗(λ′) = aλ, φ∗(µ′) = bµ + cλ, φ∗(µ̄′) = b̄µ̄ + c̄λ.

It is easy to see that all three-dimensional degenerate CR structures are locally equivalent to the
structure associated with a biholomorphic class of hypersurfaces equivalent to the hypersurface
N1 = C × R. The equivalence problem for nondegenerate three-dimensional CR structures
was solved by Cartan [5]. Given a nondegenerate CR-structure (N, [(λ, µ)]), he considered
the forms

θ1 = bµ + cλ, θ2 = b̄µ̄ + c̄λ, θ3 = aλ (3)

with some unspecified functions a �= 0 (real), b �= 0 and c (complex). He viewed the
forms as being well defined on an eight-dimensional space P0 parametrized by the points
of N and by the coordinates (a, b, b̄, c, c̄). Using his equivalence method (see e.g. [11, 25])
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he then constructed another eight-dimensional manifold P on which the coframe consisting
of the forms (θ1, θ2, θ3) and the five additional well-defined 1-forms (�2, �̄2,�3, �̄3,�4)

constituted the system of basic biholomorphic invariants of the CR structure. More precisely,
he proved the following theorem.

Theorem 1. Every nondegenerate CR structure (N, [(λ, µ)]) uniquely defines an eight-
dimensional manifold P, 1-forms θ1, θ2, θ3,�2, �̄2,�3, �̄3,�4 and functions R, R̄,S, S̄ on
P such that

• θ1, θ2, θ3 are as in (3), �̄2, �̄3 are respective complex conjugates of �2,�3 and �4 is
real,

• θ1 ∧ θ2 ∧ θ3 ∧ �2 ∧ �̄2 ∧ �3 ∧ �̄3 ∧ �4 �= 0 at each point of P.

The forms satisfy the following equations:

dθ1 = �2 ∧ θ1 + �3 ∧ θ3

dθ2 = �̄2 ∧ θ2 + �̄3 ∧ θ3

dθ3 = iθ1 ∧ θ2 + (�2 + �̄2) ∧ θ3

d�2 = 2iθ1 ∧ �̄3 + iθ2 ∧ �3 + �4 ∧ θ3

d�̄2 = −2iθ2 ∧ �3 − iθ1 ∧ �̄3 + �4 ∧ θ3

d�3 = �4 ∧ θ1 + �3 ∧ �̄2 + Rθ2 ∧ θ3

d�̄3 = �4 ∧ θ2 + �̄3 ∧ �2 + R̄θ1 ∧ θ3

d�4 = i�3 ∧ �̄3 + �4 ∧ (�2 + �̄2) + S̄θ1 ∧ θ3 + Sθ2 ∧ θ3.

(4)

The functions R,S, and their respective complex conjugates R̄, S̄, satisfy

dR = −R(�2 + 3�̄2) − Sθ1 + R2θ
2 + R3θ

3

dR̄ = −R̄(�̄2 + 3�2) − S̄θ2 + R̄2θ
1 + R̄3θ

3
(5)

and

dS = −S(2�2 + 3�̄2) − iR�̄3 + S1θ
1 + S2θ

2 + S3θ
3

dS̄ = −S̄(2�̄2 + 3�2) + iR̄�3 + S̄2θ
1 + S1θ

2 + S̄3θ
3,

(6)

with appropriate functions R2,R3,S1,S2,S3 and their conjugates.
The function S1 satisfies

S1 = S̄1. (7)

The above theorem, stated in modern language, means the following. The manifold P is
a Cartan bundle H → P → N , with H being a five-dimensional parabolic subgroup of
SU(2, 1). This latter group preserves the (2, 1)-signature Hermitian form

h(X,X) = (X1, X2, X3)ĥ


X̄1

X̄2

X̄3


 , ĥ =


 0 0 2i

0 1 0
−2i 0 0


 .

The forms θ1, θ2, θ3,�2, �̄2,�3, �̄3,�4 of the theorem can be collected into a matrix of
1-forms

ω =




1
3 (2�2 + �̄2) i�̄3 − 1

2�4

θ1 1
3 (�̄2 − �2) − 1

2�3

2θ3 2iθ2 − 1
3 (2�̄2 + �2)
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satisfying

ωĥ + ĥω† = 0,

which is an su(2, 1)-valued Cartan connection [12] on P. It follows from equations (4) that
the curvature of this connections is

� = dω + ω ∧ ω =




0 iR̄θ1 ∧ θ3 − 1
2 S̄θ1 ∧ θ3 − 1

2Sθ2 ∧ θ3

0 0 − 1
2Rθ2 ∧ θ3

0 0 0


 .

It yields all the invariant information about the corresponding CR structure, very much in the
way the Riemann curvature yields all the information about the Riemannian structure.

Remark. Note that the assumption that R or S (and, therefore R̄ or S̄) is constant on P is
compatible with (5) iff R = S = 0 (and, therefore R̄ = S̄ = 0). In such a case the curvature
� of the Cartan connection ω vanishes, and it follows that there is only one, modulo local
equivalence, CR structure with this property. It coincides with the CR structure, which the
hypersurface N2 = S3 acquires from the ambient space C

2 via equations (1) and (2).

Using the matrix elements ωi
j of the Cartan connection ω, it is convenient to consider the

bilinear form

G = −iω3
jω

j
1.

This form, when written explicitly in terms of θ1, θ2, θ3,�2, �̄2,�3, �̄3,�4, is given by

G = 2θ1θ2 +
2

3i
θ3(�2 − �̄2).

Introducing the basis of vector fields X1, X2, X3, Y2, Ȳ2, Y3, Ȳ3, Y4, the respective dual of
θ1, θ2, θ3,�2, �̄2,�3, �̄3,�4, one sees that G is a form of signature (+ + + − 0000) with four
degenerate directions corresponding to four vector fields ZI = (Y2 + Ȳ2, Y3, Ȳ3, Y4). These
four directions span a four-dimensional distribution which is integrable due to equations (4).
Thus, the Cartan bundle P is foliated by four-dimensional leaves tangent to the degenerate
directions of G. Moreover, equations (4) guarantee that

LZI
G = AIG,

with certain functions AI on P, so that the bilinear form G is preserved up to a scale when
Lie transported along the leaves of the foliation. Therefore the four-dimensional space P/∼
of leaves of the foliation is naturally equipped with a conformal class of Lorentzian metrics
[gF ], the class to which the bilinear form G naturally descends. The Lorentzian metrics

gF = 2θ1θ2 +
2

3i
θ3(�2 − �̄2) (8)

on P/∼ coincide with the so-called Fefferman metrics [7] (see also [9]) which Fefferman
associated with any nondegenerate CR structure (N, [(λ, µ)]).

Introducing the volume form

η = 1
3θ1 ∧ θ2 ∧ θ3 ∧ (�2 − �̄2)

on P/∼, we observe that the Hodge dualization ∗ of the forms θ3 ∧ θ1 and θ3 ∧ θ2 reads

∗ (θ3 ∧ θ1) = −1

i
(θ3 ∧ θ1) and ∗ (θ3 ∧ θ2) = 1

i
(θ3 ∧ θ2).

Thus θ3 ∧ θ1 is self-dual and θ3 ∧ θ2 is anti-self-dual.
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A convenient way of analysing the Fefferman metrics is to look for the Cartan normal
conformal connection associated with them. Given a nondegenerate CR structure (N, [(λ, µ)],
we define an so(4, 2)-valued matrix of 1-forms ω̃ on P via

ω̃ =


1
2 (�2 + �̄2)

i
2 �̄3 − i

2�3 −�4
i

12 (�2 − �̄2) 0

θ1 − 1
3 (�2 − �̄2) 0 −�3

i
2θ1 − i

2�3

θ2 0 1
3 (�2 − �̄2) −�̄3 − i

2θ2 i
2 �̄3

θ3 i
2θ2 − i

2θ1 − 1
2 (�2 + �̄2) 0 i

12 (�2 − �̄2)

1
3i

(�2 − �̄2) �̄3 �3 0 1
2 (�2 + �̄2) −�4

0 θ2 θ1 1
3i

(�2 − �̄2) θ3 − 1
2 (�2 + �̄2)




.

(9)

This is a pullback of the Cartan normal conformal connection associated with the Fefferman
metric from the Cartan SO(4, 2) conformal bundle to P. With a slight abuse of the language
we call ω̃ the Cartan conformal connection. The pulback of the curvature of this connection

�̃ = dω̃ + ω̃ ∧ ω̃

is given by

�̃ = �̃+ + �̃−

=




0 − i
2R̄ 0 S̄ 0 0

0 0 0 0 0 0
0 0 0 R̄ 0 − i

2R̄
0 0 0 0 0 0
0 −R̄ 0 0 0 S̄
0 0 0 0 0 0




θ3 ∧ θ1 +




0 0 i
2R S 0 0

0 0 0 R 0 i
2R

0 0 0 0 0 0
0 0 0 0 0 0
0 0 −R 0 0 S
0 0 0 0 0 0




θ3 ∧ θ2.
(10)

Here �̃+ and �̃− denote the self-dual and the anti-self-dual parts of �̃, respectively.
The theory of the conformal connections [8, 12, 13, 21] then implies that the Weyl

curvature 2-form C of gF is given by4

C = C+ + C−

= R̄




0 0 0 0
0 0 1 0
0 0 0 0

−1 0 0 0


 θ3 ∧ θ1 + R




0 0 1 0
0 0 0 0
0 0 0 0
0 −1 0 0


 θ3 ∧ θ2,

(11)

i.e. denoting the matrix elements of �̃ by �̃A
B,A,B = 0, 1, . . . , 5, it is given by �̃A

B with
A,B = 1, 2, 3, 4. The very simple form of the Weyl curvature C shows that the Fefferman
metric gF of any nondegenerate CR structure (N, [(λ, µ)]) is of Petrov type N.

Remark. Note that the curvature of the Cartan normal conformal connection ω̃ of the
Fefferman metric gF yields essentially the same information as the curvature of the su(2, 1)-
valued connection ω. This is due to the fact [2] that ω is simply an su(2, 1) reduction of the
Cartan normal conformal connection associated with the Fefferman metric gF . In addition, this
indicates the well-known fact that the Fefferman conformal class of metrics [gF ] associated
with a given nondegenerate CR structure (N, [(λ, µ)]) yields all the invariant information
4 Here C has tensor indices Cµ

ν, µ, ν = 1, 2, 3, 4, which are associated with the null tetrad θ1, θ2, θ3, θ4 =
1
3i

(�2 − �̄2) of gF . In this tetrad gF = 2θ1θ2 + 2θ3θ4.
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about (N, [(λ, µ)]). In particular, the su(2, 1)-curvature properties of the CR structure are
totally encoded in the Weyl tensor 2-forms C of the corresponding Fefferman metrics. Note
that although C explicitly involves only R and R̄, the S and S̄ functions can be derived from
them by means of equations (5).

It is known [14] that the Fefferman metrics are conformal to the Einstein metrics only
in the case when the corresponding CR structure is flat (� = 0). To see this we recall the
Baston–Mason result [1] stating that there are two necessary conditions for a four-dimensional
metric g = gµνθ

µθν to be conformal to an Einstein metric. These, when expressed in terms
of the Cartan normal conformal connection ω̃, are5

(i) d ∗ �̃ + ω̃ ∧ ∗�̃ − ∗�̃ ∧ ω̃ = 0 and (ii)
[
�̃+

µν, �̃
−
ρσ

] = 0, (12)

where �̃± = 1
2 �̃±

µνθ
µ ∧ θν . Note that condition (i) is equivalent to the vanishing of the Bach

tensor of g.
Calculating

[
�̃−

32, �̃
+

31
]

for the Fefferman metrics (8) yields

[
�̃−

32, �̃
+

31
] = iRR̄




0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0




,

so that the above condition (ii) is satisfied iff R = 0. This means that the corresponding CR
structure is flat. It follows that if R = 0 the corresponding Fefferman metrics are conformal to
the Minkowski metric. In the nonflat (R �= 0) case the Fefferman metrics are not conformal to
Einstein metrics. Note also that despite this fact the principal null direction of the Fefferman
metrics (which in the notation of (8) is tangent to the vector field dual to the form θ3) is
geodesic and shear free. It has nonvanishing twist and generates a one-parameter conformal
symmetry of gF .

We conclude this section with the formula for D̃ ∗ �̃ = d ∗ �̃ + ω̃ ∧ ∗�̃ − ∗�̃ ∧ ω̃ which,
for the Fefferman metrics (8), reads

D̃ ∗ �̃ = −2

i
S1




0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0




θ1 ∧ θ2 ∧ θ3, (13)

where S1 is defined by (6). This formula implies that the Fefferman metrics (8) satisfy the
Bach equations iff

S1 = 0, (14)

or, what is the same,

dS ∧ θ2 ∧ θ3 ∧ (2�2 + 3�̄2) ∧ �̄3 = 0.

The only known example of a CR structure with a Fefferman metric satisfying this condition
is presented in [22].

5 It is worthwhile noting that for algebraically general metrics, the Baston–Mason conditions (i), (ii) are also sufficient
for the conformal Einstein property [1].
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3. Second-order ODEs modulo point transformations

A second-order ODE
d2y

dx2
= Q

(
x, y,

dy

dx

)
(15)

for a function R � x → y = y(x) ∈ R, can be alternatively written as a system of two
first-order ODEs

dy

dx
= p,

dp

dx
= Q(x, y, p)

for two functions R � x → y = y(x) ∈ R and R � x → p = p(x) ∈ R. This system defines
two (contact) 1-forms

ω1 = dy − p dx, ω2 = dp − Q dx, (16)

on a three-dimensional manifold J 1, the first jet space, parametrized by coordinates (x, y, p).
All information about the ODE (15) is encoded in these two forms. For example, any solution
to (15) is a curve γ (x) = (x, y(x), p(x)) ⊂ J 1 on which the forms (16) vanish.

The two contact 1-forms (ω1, ω2) can be supplemented by

ω3 = dx, (17)

so that the three 1-forms (ω1, ω2, ω3) constitute a basis of 1-forms on J 1. This basis will be
the basic object of study in the following.

Under the point transformation of variables

y → ỹ = ỹ(x, y), x → x̃ = x̃(x, y),

the function Q = Q(x, y, y ′) defining the differential equation (15) changes in a rather
complicated way. The corresponding change of the basis (ω1, ω2, ω3) is

ω1 → ω̃1 = a1ω
1, ω2 → ω̃2 = a2ω

2 + a3ω
1, ω3 → ω̃3 = a4ω

3 + a5ω
1, (18)

where a1, a2, a3, a4, a5 are real functions on J 1 such that a1a2a4 �= 0 on J 1.
It is now convenient to introduce the following (slightly unusual) notation. The reason

for this will eventually become apparent.
Let i �= 0 denote a real number. In addition, let the real 1-forms (λ, µ, µ̄) be defined by

λ = −iω1, µ = ω2, µ̄ = ω3. (19)

It follows from the definition of (ω1, ω2, ω3) that

λ ∧ µ ∧ µ̄ �= 0, (20)

dλ ∧ λ �= 0, (21)

and that the forms (λ, µ, µ̄) are given up to transformations

λ → aλ, µ → bµ + cλ, µ̄ → b̄µ̄ + c̄λ, (22)

with real functions a, b, b̄, c, c̄ such that abb̄ �= 0.
Conversely, given a three-dimensional manifold N equipped with three real 1-forms

(λ, µ, µ̄) satisfying (20) and (21) and defined up to transformations (22), we can associate
with them a point equivalent class of a second-order ODE as follows. Since dim N = 3, we
have

dλ ∧ λ ∧ µ̄ = 0 and dµ̄ ∧ λ ∧ µ̄ = 0.

Hence the Fröbenius theorem [25] applied to the forms λ, µ̄ implies that there exist coordinates
(x, y, z) on N such that λ = A dx + B dy and µ̄ = C dx + H dy, where A,B,C,H are
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appropriate functions on N. Thus, modulo the freedom (22), the forms λ, µ̄ can be transformed
to λ = dy − p dx, µ̄ = dx, where p is a certain function of coordinates (x, y, z) on N. But
0 �= dλ ∧ λ = dp ∧ dy ∧ dx, so (x, y, p) can be considered a new coordinate system
on N. In these coordinates the form µ can be written as µ = U dx + V dy + Z dp so, by
means of transformations, (22) can be reduced to µ = dp − Q dx with Q = Q(x, y, p)

being a certain real function on N. Thus, the original forms (λ, µ, µ̄) define a point equivalent
class of a second-order ODE y ′′ = Q(x, y, y ′). The above considerations prove the one-
to-one correspondence between second-order ODEs given modulo point transformations and
equivalence classes of the triples of real 1-forms (λ, µ, µ̄) on 3-manifolds satisfying (20)
and (21) and given up to (22). This enables us to reformulate an equivalence problem for
second-order ODEs modulo point transformations in much the same way as an equivalence
problem for nondegenerate three-dimensional CR structures.

Definition 3. Two second-order ODEs, represented by the respective real 1-forms (λ, µ, µ̄)

and (λ′, µ′, µ̄′), on the respective 3-manifolds N and N ′, are locally point equivalent, iff there
exists a local diffeomorphism

φ : N → N ′

and real functions a �= 0, b �= 0, b̄ �= 0, c, c̄ on N such that

φ∗(λ′) = aλ, φ∗(µ′) = bµ + cλ, φ∗(µ̄) = b̄µ + c̄λ.

This definition, when compared with definition 2, indicates that we can treat the forms
(λ, µ, µ̄) representing second-order ODEs as the respective analogues of the forms (λ, µ, µ̄)

representing nondegenerate three-dimensional CR structures. It also indicates that the solution
for the equivalence problem for second-order ODEs modulo point transformations should be
given by a theorem analogous to theorem 1. Actually, with the above-introduced notation, in
which all three 1-forms (λ, µ, µ̄) are real, i �= 0 is a real number and the ‘bar’ symbol merely
denotes that a given variable (a function, or a form) is totally independent of its nonbarred
counterpart, we obtain the solution of the equivalence problem for ODEs by the following
reinterpretation of theorem 1. First, given a point equivalence class of second-order ODEs,
represented by forms (λ, µ, µ̄), we associate with it the forms

θ1 = bµ + cλ, θ2 = b̄µ̄ + c̄λ, θ3 = aλ. (23)

Then the analogue of theorem 1 is as follows.

Theorem 2. Every second-order ODE given modulo point transformations uniquely defines an
eight-dimensional manifold P, real 1-forms θ1, θ2, θ3,�2, �̄2,�3, �̄3,�4 and real functions
R, R̄,S, S̄ on P such that

• θ1, θ2, θ3 are as in (23)
• θ1 ∧ θ2 ∧ θ3 ∧ �2 ∧ �̄2 ∧ �3 ∧ �̄3 ∧ �4 �= 0 at each point of P.

The forms satisfy the following equations:

dθ1 = �2 ∧ θ1 + �3 ∧ θ3

dθ2 = �̄2 ∧ θ2 + �̄3 ∧ θ3

dθ3 = iθ1 ∧ θ2 + (�2 + �̄2) ∧ θ3

d�2 = 2iθ1 ∧ �̄3 + iθ2 ∧ �3 + �4 ∧ θ3

d�̄2 = −2iθ2 ∧ �3 − iθ1 ∧ �̄3 + �4 ∧ θ3

d�3 = �4 ∧ θ1 + �3 ∧ �̄2 + Rθ2 ∧ θ3

d�̄3 = �4 ∧ θ2 + �̄3 ∧ �2 + R̄θ1 ∧ θ3

d�4 = i�3 ∧ �̄3 + �4 ∧ (�2 + �̄2) + S̄θ1 ∧ θ3 + Sθ2 ∧ θ3.

(24)
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The functions R, R̄,S, S̄, satisfy in addition

dR = −R(�2 + 3�̄2) − Sθ1 + R2θ
2 + R3θ

3

dR̄ = −R̄(�̄2 + 3�2) − S̄θ2 + R̄2θ
1 + R̄3θ

3
(25)

and

dS = −S(2�2 + 3�̄2) − iR�̄3 + S1θ
1 + S2θ

2 + S3θ
3

dS̄ = −S̄(2�̄2 + 3�2) + iR̄�3 + S̄2θ
1 + S1θ

2 + S̄3θ
3,

with appropriate functions R2, R̄2,R3, R̄3,S1, S̄1,S2, S̄2,S3, S̄3.
The function S1 satisfies

S1 = S̄1. (26)

Given an equation y ′′ = Q(x, y, y ′) and the standard coordinate system (x, y, p) on N = J 1,
we introduce the vector field

D = ∂x + p∂y + Q∂p, Q = Q(x, y, p).

The coordinates (x, y, p) can be extended to a coordinate system (x, y, p, ρ, φ, γ, γ̄ , r) on P
in which the forms and functions of the above theorem can be written as follows:

λ = −i(dy − p dx), µ = dp − Q dx, µ̄ = dx

θ1 = ρ eiφ(µ + γ λ), θ2 = ρ e−iφ(µ̄ + γ̄ λ), θ3 = ρ2λ
(27)

�2 = i dφ +
dρ

ρ
+

1

4 iρ2
[6γ γ̄ i2 − 6γ̄ iQp − Qpp − 4 irρ]θ3 − 2 iγ̄

ρ
e−iφθ1

− eiφ

ρ
(iγ − Qp)θ2

�̄2 = −i dφ +
dρ

ρ
− 1

4 iρ2
[6γ γ̄ i2 − 2γ̄ iQp − Qpp + 4 irρ]θ3

+
iγ̄

ρ
e−iφθ1 +

eiφ

ρ
(2 iγ − Qp)θ2

�3 = eiφ

ρ

[
dγ − 1

6 i2ρ2
(DQpp + 6γ 2γ̄ i3 − 6γ γ̄ i2Qp − 3γ iQpp − 4Qpy − 6γ̄ iQy)θ

3

+
e−iφ

4 iρ
(2γ γ̄ i2 − 2γ̄ iQp − Qpp − 4 irρ)θ1 +

eiφ

iρ
(γ 2i2 − γ iQp − Qy)θ

2

]

�̄3 = e−iφ

ρ

[
dγ̄ +

1

6 i2ρ2
(6γ γ̄ 2i3 − 6γ̄ 2i2Qp − 3γ̄ iQpp − Qppp)θ3 − e−iφ

ρ
γ̄ 2iθ1

− eiφ

4 iρ
(2γ γ̄ i2 − 2γ̄ iQp − Qpp + 4 irρ)θ2

]

�4 = − i

2ρ2
γ̄ dγ +

1

2ρ2
(iγ − Qp) dγ̄ − dr

ρ
− r dρ

ρ2
+

1

48 i2ρ4

[
8DQppp − 3Q2

pp + 8QpQppp

− 12Qppy − 12γ iQppp + γ̄ (12 iDQpp − 24 iQpy) − 12γ γ̄ i2Qpp

+ γ̄ 2(24 i2DQp + 12 i2Q2
p − 48 i2Qy) − 48 i3γ γ̄ 2Qp + 36γ 2γ̄ 2i4

+ 48γ̄ rρ i2Qp + 48 i2ρ2r2
]
θ3

− eiφ

12 iρ3
[6γ γ̄ 2 i3 − 6γ̄ 2i2Qp + 3γ̄ iQpp − Qppp − 12γ̄ i2rρ]θ1
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− eiφ

12 iρ3
[DQpp − 4Qpy − 3 iγQpp + 6 iγ̄ (DQp − 2Qy) − 6 i2γ γ̄Qp

+ 6γ 2γ̄ i3 + 12γ i2rρ]θ2,

R = − e2 iφ

6 i2ρ4
w1, S = − eiφ

3 i2ρ5
[∂pw1 + iγ̄ w1],

(28)

R̄ = − e−2iφ

6 i2ρ4
w2, S̄ = − e−iφ

3 i2ρ5
[Dw2 + (2Qp − iγ )w2], (29)

where we have introduced functions

w1 = D2Qpp − 4DQpy − DQppQp + 4QpQpy − 3QppQy + 6Qyy

and

w2 = Qpppp,

which are the relative point invariants of the ODE.
Similarly as in the CR case, theorem 2 can be reinterpreted in terms of the language

of Cartan connections. It follows that the manifold P of theorem 2 is a Cartan bundle
H → P → J 1, with H being a five-dimensional parabolic subgroup of SL(3, R) group. The
forms θ1, θ2, θ3,�2, �̄2,�3, �̄3,�4 of the theorem can be collected into a matrix of 1-forms

ω =




1
3 (2�2 + �̄2) i�̄3 − 1

2�4

θ1 1
3 (�̄2 − �2) − 1

2�3

2θ3 2iθ2 − 1
3 (2�̄2 + �2),


 ,

which is now an sl(3, R)-valued Cartan connection on P (all the variables are real!). It follows
from equations (24) that the curvature of these connections is

� = dω + ω ∧ ω =




0 iR̄θ1 ∧ θ3 − 1
2 S̄θ1 ∧ θ3 − 1

2Sθ2 ∧ θ3

0 0 − 1
2Rθ2 ∧ θ3

0 0 0


 .

It yields all invariant information about the corresponding point equivalent class of second-
order ODEs. In particular, the ODEs corresponding to flat (R = 0, R̄ = 0,S = 0, S̄ = 0)

connections are given by the conditions

w1 = 0, w2 = 0.

They are all point equivalent to the flat equation y ′′ = 0. We remark that the vanishing of
R implies vanishing of S. Each of these two conditions is a point-invariant property of the
corresponding ODE. However, the other pair of point-invariant conditions R̄ = 0, S̄ = 0 is
totally independent. This is the significant difference between the behaviour of CR structures
and second-order ODEs. Indeed, in the classification of nondegenerate three-dimensional CR
structures, there are only two major branches: either R = 0 (in which case the CR structure is
locally equivalent to S3 ⊂ C

2) or R �= 0. In the ODE case R and R̄ are unrelated and we have
four main branches, corresponding to (i) R = 0, R̄ = 0, (ii) R = 0, R̄ �= 0 (ii′) R �= 0, R̄ = 0
and (iii) R �= 0, R̄ �= 0. It follows that branches (ii) and (ii′) are, in a sense, dual to each other.
To explain this duality, we need to introduce the Fefferman metric associated with an ODE.

The system (24) defining the invariant forms of theorem 2 has all the qualitative properties
of system (4) of theorem 1. Thus, introducing the basis X1, X2, X3, Y2, Ȳ2, Y3, Ȳ3, Y4 of vector
fields, the respective dual of forms θ1, θ2, θ3,�2, �̄2,�3, �̄3,�4, we see that the distribution
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spanned by the four vector fields ZI = (Y2 + Ȳ2, Y3, Ȳ3, Y4) is integrable. Moreover, the
bilinear form

G = 2θ1θ2 +
2

3i
θ3(�2 − �̄2),

which now has signature (+ + − − 0000), has all ZI as degenerate directions. This, when
compared with the fact that G is preserved up to a scale during the Lie transport along ZI ,
shows that the four-dimensional space P/∼ of leaves of the distribution spanned by ZI is
naturally equipped with the conformal class of split signature metrics [gF ], the class to which
the bilinear form G naturally descends. We call the metrics

gF = 2θ1θ2 +
2

3i
θ3(�2 − �̄2) (30)

on P/∼ the Fefferman metrics associated with a point equivalence class of a second-order
ODE y ′′ = Q(x, y, y).

The metrics gF , when written in coordinates (x, y, p, ρ, φ, γ, γ̄ , r) on P, read

gF = 2ρ2[(dp − Q dx) dx − (dy − p dx)
(

2
3 i dφ + 2

3Qp dx + 1
6Qpp(dy − p dx)

)]
. (31)

This enables us to (locally) identify the space parametrized by (x, y, p, φ) with P/ ∼ and the
space parametrized by (x, y, p, φ, ρ) with the space of all Fefferman metrics associated with
a given y ′′ = Q(x, y, y ′).

Proposition 1. The Fefferman conformal class of metrics [gF ] associated with a point
equivalent class of ODEs has the following properties.

• Each gF has signature (+ + − −).

• The Weyl tensor of each gF has both self-dual and anti-self-dual parts of Petrov type N.
The self-dual part C+ is proportional to R and the anti-self-dual part C− is proportional
to R̄.

• gF satisfies the Baston–Mason conditions (12) if and only if the corresponding point
equivalent class of equations satisfies either R = 0 or R̄ = 0.

The first two statements of the above proposition are obvious in view of formulae (9)
and (11). To prove the last statement, we calculate the Baston–Mason conditions (12) in
coordinates (x, y, p, φ). A short calculation and the identity

w1pp = (
D2 + 3QpD + 2DQp + 2Q2

p − Qy

)
w2 (32)

show that these conditions are equivalent to

(i ′) w1pp = 0 and (ii′) w1w2 = 0, (33)

where (i′) corresponds to the vanishing of the Yang–Mills current of the Cartan normal
conformal connection ω̃ associated with gF via (9) and (ii′) corresponds to the Baston–Mason
condition (ii) of (12). Comparison of (32) and (33) proves that the necessary and sufficient
condition for (12) is w1 = 0 or w2 = 0. This in particular means that such metrics must be
either self-dual or anti-self-dual.
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Remark. Note that one of the principal null directions of gF , generated by the vector field
k = ∂φ , is a conformal Killing vector field for gF . It generates a congruence of null shear-free
and twisting geodesics on P/∼. This statement, together with the above proposition 1, totally
characterizes the Fefferman metrics gF [35].

Since metrics gF are algebraically special (of type N × N ′ or its specializations), the Baston–
Mason conditions (12) are not sufficient to guarantee the conformal Einstein property for them.
All the Fefferman metrics which are conformal to Einstein metrics are given in the appendix.

It is very easy to determine all classes of second-order ODEs corresponding to the self-
dual Fefferman metrics. These are all equations for which w2 = 0, i.e. all the equations of
the form

y ′′ = A0(x, y) + A1(x, y)y ′ + A2(x, y)(y ′)2 + A3(x, y)(y ′)3,

for which the function Q is an arbitrary polynomial of the third order in the variable p.
Finding classes of equations corresponding to the anti-self-dual metrics is more difficult but,
surprisingly, possible, due to another notion of duality: the duality of second-order ODEs.

Given a second-order ODE of the form

d2y

dx2
= Q

(
x, y,

dy

dx

)
, (34)

consider its general solution y = y(x,X, Y ), where X, Y are constants of integration. In
the space R

2 × R
2 parametrized by (x, y,X, Y ), this solution can be considered a three-

dimensional hypersurface

N = {(x, y,X, Y ) ∈ R
2 × R

2 | G(x, y,X, Y ) = y − y(x,X, Y ) = 0}.
Assuming that G(x, y,X, Y ) = 0 can be solved with respect to Y, one gets a function
Y = Y (X, x, y). Treating x and y as constant parameters, we can eliminate them by double
differentiation of Y with respect to X. This means that Y = Y (X, x, y) can be considered a
solution to a second-order ODE

d2Y

dX2
= q

(
X, Y,

dY

dX

)
. (35)

In passing from (34) to (35) we have chosen X to be an independent variable and Y to be
the dependent one. But other choices are possible. In general, we could have chosen two
independent functions ξ = ξ(X, Y ) and ζ = ζ(X, Y ) and have treated ξ and ζ as independent
and dependent variables, respectively. Then, after double differentiation with respect to ξ ,
which eliminates the parameters (x, y), we would see that the function ζ also satisfied a
second-order ODE, which would be quite different from (35). It is, however, obvious that this
other second-order ODE would be in the same point equivalence class as (35). Thus, given
a point equivalence class of ODEs generated by (34), there is a uniquely defined equivalence
class of ODEs (35) associated with it. The class (35) is called a class of the dual equations
to the equations from the class (34). The following example shows the usefulness of this
concept.

Example. The relative invariants w1 and w2 calculated for the second-order ODE

y ′′ = a

y3
, (36)
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where a �= 0 is a real constant, read

w1 = 72a

y5
and w2 = 0.

Therefore the Fefferman metrics

gF = 2ρ2

[(
dp − a

y3
dx

)
dx − 2

3
i(dy − p dx) dφ

]
(37)

associated with the point equivalent class of ODEs generated by (36) are self-dual but not
conformally flat6.

The general solution y = y(x,X, Y ) of (36) depends on two arbitrary constants of
integration (X, Y ) and satisfies

y2 = Y (x − X)2 +
a

Y
. (38)

This generates a hypersurface

N =
{
(x, y,X, Y ) ∈ R

2 × R
2 | y2 = a

Y
+ Y (x − X)2

}

in R
2 × R

2. Now, we will treat equation (38) as an equation for a function Y = Y (X, x, y) of
an independent variable X and parametrized by x and y. Differentiating (38) with respect to X
and keeping x and y constants, we get

0 = Y ′(x − X)2 − 2Y (x − X) − a
Y ′

Y 2
.

Solving for x and differentiating once more with respect to X, we find that Y = Y (X) satisfies
the second-order ODE

Y ′′ = −−Y 4Y ′ 2 + aY ′ 4 − 2Y 2Y ′ 2
√

Y 4 + aY ′ 2

Y 5 + Y 3
√

Y 4 + aY ′ 2
.

This is an equation which generates the point equivalence class of equations dual to (36). This
equation has w2 �= 0 for each a �= 0. A direct (but lengthy!) calculation shows that

q = q(X, Y, P ) = −−Y 4P 2 + aP 4 − 2Y 2P 2
√

Y 4 + aP 2

Y 5 + Y 3
√

Y 4 + aP 2

has w1 = 0. This is a general fact known already to Cartan [4]. More formally, we have the
following proposition.

Proposition 2. The point equivalence class of dual ODEs to a point equivalence class of
second-order ODEs for which w2 = 0 and w1 �= 0 has w2 �= 0 and w1 = 0.

We have already noted (in the above example) that this proposition enables one to find
nontrivial solutions to a quite complicated differential equation w1 = 0. Note also that
applying the proposition one can obtain quite nontrivial anti-self-dual metrics from rather dull
ones (calculate the Fefferman metrics for q of the example, and compare it with (37)). Finally,
note that it follows from the proposition that in the classification scheme of the second-order
ODEs modulo point transformations, the classification of the w1 = 0 and w2 �= 0 case can be
obtained from the classification of the simpler w2 = 0 and w1 �= 0 case.

6 These are actually the Sparling–Tod metrics well known in twistor theory [36].



Three-dimensional Cauchy–Riemann structures and second-order ordinary differential equations 5011

In [4] proposition 2 is only briefly mentioned7. It could be proved by the following line
of argument.

The switch between the dual equations y ′′ = Q(x, y, y ′) and Y ′′ = q(X, Y, Y ′) essentially
means the switch between the contact forms ω2 = dp − Q dx and ω3 = dx. To see this
consider the general solution y = y(x,X, Y ) of the original equation. Now, pass from the
canonical coordinates (x, y, p) on the first jet bundle J 1 to the new coordinates (s,X, Y )

defined via

x = s, y = y(s,X, Y ) and p = ys(s,X, Y ).

In these new coordinates the contact forms

ω1 = dy − p dx, ω2 = dp − Q dx, ω3 = dx

associated with the original equation are given by

ω1 = yX dX + yY dY, ω2 = ysX dX + ysY dY, ω3 = ds.

Thus in the point equivalence class of the forms ω1 and ω2, there are forms

ω1 = dY +
yX

yY

dX and ω2 = dX.

Moreover, the condition 0 �= dω1 ∧ ω1 = d
(

yX

yY

) ∧ dX ∧ dY implies that the three functions

X, Y and P = −yX

yY

constitute a coordinate system on J 1. Therefore, s must be a function of these three variables:
s = s(X, Y, P ). This means that in the equivalence class of the form

ω3 = ds = sX dX + sY dY + sP dP,

there is ω3 which can be written as

ω3 = dP − q(X, Y, P ) dX, where q = − sX + sY P

sP

.

Summarizing, we are able to introduce a coordinate system (X, Y, P ) on the first jet bundle J 1

in which the point equivalence class of the contact forms associated with the original equation
y ′′ = Q(x, y, y ′) can be written as

ω1 = dY − P dX, ω2 = dX, ω3 = dP − q(X, Y, P ) dX.

But this enables us to interpret the (X, Y, P ) coordinates as canonical coordinates for the first
jet bundle associated with the contact forms

ω1 = dY − P dX, ω3 = dP − q(X, Y, P ) dX, ω2 = dX

of the differential equation Y ′′ = q(X, Y, Y ′). Because of the original definitions of X and
Y, this is clearly the dual equation to y ′′ = Q(x, y, y ′). Note that this interpretation requires
the switch between the forms ω2 and ω3. Note also that this switch is compatible with
transformations (18) which treat ω2 and ω3 on an equal footing mixing each of them with ω1

only.

7 For an inexperienced reader, it is rather difficult to find a trace of the proposition in the text of [4]. We are very
grateful to Crampin [6] for clarifying this point to us. We also take this opportunity to present his understanding of
the last paragraph of Cartan’s paper [4]. Due to equations (27), (28) and (29), which represent the transformation
properties of the forms (ω1, ω2, ω3) and the relative invariants w1 and w2, if both w1 and w2 are nonvanishing, the
following forms are (modulo sign) well defined on J 1:

I1 = (w1w2)
1/4ω1, I2 = (w1w2)

1/2ω1 ∧ ω2 ∧ ω3

I3 = w
1/8
1 w

5/8
2 ω1 ∧ ω2, I4 = w

5/8
1 w

1/8
2 ω1 ∧ ω3.
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Once the switch between y ′′ = Q(x, y, y ′) and Y ′′ = q(X, Y, Y ′) is understood from
the point of view of the switch between ω2 and ω3, it is easy to see that the passage from a
differential equation to its dual changes the role of the invariants w1 and w2. Indeed, looking at
the curvature � of the Cartan connection ω associated with the equation y ′′ = Q(x, y, y ′), we
see that the invariant w1 is associated with the ω3 ∧ ω1 term and the invariant w2 is associated
with the ω2 ∧ ω1 term. Thus, the switch between ω2 and ω3 caused by the switch between the
equation and its dual amounts to the switch of w1 and w2.

From the geometric point of view, the switch between the mutually dual second-
order ODEs can be understood as a transformation that interchanges two naturally defined
congruences of lines on the jet bundle J 1. This bundle is naturally fibred over J 0—the plane
parametrized by (x, y). The fibres of J 1 → J 0 are one dimensional and, in the natural
coordinates (x, y, p) on J 1, can be specified by fixing x and y. They generate the first
congruence of lines on J 1. The other congruence is defined by the point equivalence class
of the equation y ′′ = Q(x, y, y ′) in the following way. The equation y ′′ = Q(x, y, y ′)
equips J 1 with the total differential vector field Xµ̄ = D. Any other equation from the
point equivalence class of y ′′ = Q(x, y, y ′) defines the total differential that differs from D
by a scaling functional factor. Thus the lines tangent to all of these total differentials are
well defined on J 1 and generate the second natural congruence of lines. Each of the above
congruences on J 1 defines a natural direction of vector fields tangent to them but, in the
canonical coordinates (x, y, p) on J 1, only the lines of the first congruence can be defined as
lines tangent to a particularly simple vector field Xµ = ∂p. The passage from the equation
to its dual changes the picture: it switches between Xµ and Xµ̄, so that the jet bundle J 1 is
now interpreted as a bundle with one-dimensional fibres tangent to Xµ̄ = ∂P . The space of
such fibres may then be identified with the plane parametrized by (X, Y ) and the congruence
tangent to Xµ by the congruence tangent to the total differential of the dual equation.

4. Realification of a three-dimensional CR structure

The analogy between three-dimensional CR structures and second-order ODEs described in
the previous two sections can be used to associate a point equivalent class of second-order
ODEs with a three-dimensional CR structure. This may introduce a new insight into general
relativity, where the three-dimensional CR structures correspond [37, 39, 40] to congruences
of shear-free and null geodesics in spacetimes8. In particular, the shear-free congruence of
null geodesics associated with the celebrated Kerr spacetime can be interpreted in terms of a
certain class of point equivalent second-order ODEs. In this section we provide a framework
for this kind of consideration concentrating on three-dimensional CR structures that admit
two-dimensional groups of local symmetries9.

A three-dimensional CR structure with two symmetries can be locally described by real
coordinates (u, x, y) in which a representative of the forms from the class [(λ, µ)]) is given
by

λ = du + f (y) dx, µ = dx + i dy, µ̄ = dx − i dy. (39)

Here the function f = f (y) is real and i2 = −1.
To pass from the above CR structures to the corresponding point equivalence class of

second-order ODEs we require that the symbol i is a nonvanishing real constant so that the

8 Such spacetimes, the Lorentzian four-dimensional manifolds admitting a null congruence of shear-free geodesics,
are called Robinson manifolds [24, 41, 42] and are known to be the analogues of Hermitian manifolds of four-
dimensional Riemannian geometry.
9 Note that the Kerr congruence is in this class of examples [20].
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forms (39) become real and we can interpret them as the forms that via (22) define a point
equivalence class of second-order ODEs. To find a particular representative of on ODE in this
class, we introduce new coordinates (ū, x̄, ȳ), which are related to (u, x, y) by

u = ū, y = ȳ, x = x̄ + iȳ.

Since i is now real and nonvanishing, this is a real transformation of the coordinates. It brings
(λ, µ, µ̄) to the form

λ = d

(
ū + i

∫
f (ȳ) dȳ

)
+ f (ȳ) dx̄, µ = dx̄ + 2i dȳ, µ̄ = dx̄.

After another coordinate transformation

X = x̄, Y = ū + i

∫
f (ȳ) dȳ, P = −f (ȳ)

and an application of the chain rule, one sees that in the class (22) of 1-forms (λ, µ, µ̄) there
are forms

λ = dY − P dX, µ = dP − 1

2i
f ′(y)|y=f −1(−P) dX, µ̄ = dX.

This means that the point equivalence classes of second-order ODEs associated with the CR
structures generated by f = f (y) are represented by the equations of the form

Y ′′ = 1

2i
f ′(y)|y=f −1(−Y ′).

Consider, in particular, the family of CR structures which have three-dimensional symmetries
of Bianchi type V Ik [23]. They are parametrized by the Bianchi type parameter k < 0 and
are represented by the function f = yn, where n = n(k) is an appropriate [23] function of k.
Then the point equivalent class of ODEs associated with each n is given by

Y ′′ = n

2i
(−Y ′)1− 1

n . (40)

The application of the above results to the new understanding of the congruences of shear-
free and null geodesics in spacetime and, in particular, to the Kerr congruence10 may be of
some use in general relativity theory. Here we focus on properties of Fefferman metrics
associated with equations (40). It is known [22] that the Fefferman metrics associated with the
three-dimensional CR structures admitting three symmetries of Bianchi type corresponding to
n = −3 satisfy the Bach equations. They are the only known Lorentzian metrics of twisting
type N which satisfy the Bach equations and which are not conformal to Einstein metrics.
Similarly, the Fefferman metrics for the equations point equivalent to equation (40) with
n = −3 provide an example of split signature metrics of type N × N ′ which satisfy the Bach
equations and which are never conformal to Einstein metrics. Explicitly, these metrics are
conformal to

gF = 2
(
iP

2
3 dP + 3

2P 2 dX
)

dX − 2(dY − P dX)
(

2
3 i2P

2
3 d� − 1

9 dY − 11
9 P dX

)
.

These metrics can be generalized by considering second-order ODEs point equivalent to

y ′′ = h(y ′),

where h = h(p) is a sufficiently smooth real function. Then the Fefferman metrics associated
with such equations are given by

gF = 2ρ2
[
(dp − h dx) dx − (dy − p dx)

(
2
3 i dφ + 2

3h′ dx + 1
6 h′′(dy − p dx)

)]
. (41)

The invariants w1 and w2 for these metrics are

w1 = h2h′′′′, w2 = h′′′′,

10 This congruence may be represented by f = 1
cosh2(y)

[20].
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so the metrics are not conformal to Einstein metrics iff

h′′′′ �= 0.

This, together with (33), shows that every solution to the equation

h2h′′′′ = ap + b,

where a and b are real constants such that at least one of them does not vanish defines, via (41),
a split signature conformal class of metrics that satisfies the Bach equations, is of type N ×N ′

and is not conformal to Einstein metrics. By an appropriate complexification of these metrics,
one may get the generalization of the Lorentzian Bach non-Einstein metrics (45) of [22].
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Appendix

In this appendix we find all Fefferman metrics (31) which are conformally equivalent to the
Einstein metrics. First, we write them in the form

gF = 2θ1θ2 + θ3θ4

with

θ1 = ρ(dp − Q dx)

θ2 = ρ dx

θ3 = −ρ2(dy − p dx)

θ4 = 2
3 i dφ + 2

3Qp dx + 1
6Qpp(dy − p dx),

(42)

where ρ = ρ(x, y, p, φ) is a function on J 1. We search for all ρ and Q = Q(x, y, p) for
which the Einstein equations

Ric(gF ) = �gF (43)

are satisfied. Assuming that gF obey equations (43) we use the implied Weyl tensor identity
∇µCµ

νρσ = 0. Its {113} and {223} components imply the equations

(3ρφ − iρ)w2 = 0 and (3ρφ + iρ)w1 = 0. (44)

Thus, the metrics gF may be conformal to Einstein metrics only in the following three cases:

(•) w1 = w2 = 0
(••) w2 = 0, w1 �= 0 and ρ = A(x, y, p)exp

(− iφ
3

)
(• • •) w2 �= 0, w1 = 0 and ρ = A(x, y, p)exp

( iφ
3

)
.
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Case (•) corresponds to ODEs with flat Cartan connection. These have conformally flat
Fefferman metrics.

In the (••) case, the general solution for the Einstein equations (43) is given by (42),
where either

ρ = exp
(− 2

3a
)

p + 2b
exp

(
− iφ

3

)
(45)

and

Q = p3c + p2(6bc − 2ay) + p(12b2c − 3by − 6bay − ax)

+ 8b3c − 2bby − 4b2ay − 2bx − 2bax, (46)

or

ρ = exp
(− 2

3a
)

exp
(− iφ

3

)
(47)

and

Q = p2ay + 2pax + b, (48)

with a = a(x, y), b = b(x, y), c = c(x, y) being arbitrary functions of variables x, y. All
these solutions are Ricci flat. They exhaust the list of Fefferman metrics which have w2 = 0
and are conformal to non-flat Einstein metrics. Since Q in these solutions depends only on at
most three arbitrary functions of two variables and generic Q for which w2 = 0 depends on
four functions of two variables, then not all ODEs with w2 = 0 have Fefferman metrics which
are conformal to Einstein metrics.

The Einstein equations in the (• • •) case reduce to

ρ = a exp

(
iφ

3

)
, (49)

where the function a = a(x, y) satisfies a single differential equation

36(Da)2 + 6a(−3D2a + QpDa) + a2
(
6DQp − 18Qy − 4Q2

p

) = 0. (50)

It follows, as it should, that one of the integrability conditions for this equation is w1 = 0. It
is not clear what other conditions should be imposed on Q to guarantee the solvability of (50).
If, for example, Q satisfies

6DQp − 18Qy − 4Q2
p = 0,

a simple solution is given by a = const.
Finally, we remark that all the metrics gF which, via (42), correspond to solutions (49),

(50) are Ricci flat. This, when compared with the results of case (••), proves that conformally
nonflat Fefferman–Einstein metrics have vanishing cosmological constant.
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