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Differential equations and conformal structures

Paweł Nurowski∗

Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, ul. Hoza 69, Warszawa, Poland

Received 5 November 2004; accepted 17 November 2004

Abstract

We provide five examples of conformal geometries which are naturally associated with ordinary
differential equations (ODEs). The first example describes a one-to-one correspondence between the
Wuenschmann class of third order ODEs considered modulo contact transformations of variables and
(local) three-dimensional conformal Lorentzian geometries. The second example shows that every
point equivalent class of third order ODEs satisfying the Wuenschmann and the Cartan conditions
define a three-dimensional Lorentzian–Einstein–Weyl geometry. The third example associates to each
point equivalence class of third order ODEs a six-dimensional conformal geometry of neutral sig-
nature. The fourth example exhibits the one-to-one correspondence between point equivalent classes
of second order ODEs and four-dimensional conformal Fefferman-like metrics of neutral signature.
The fifth example shows the correspondence between undetermined ODEs of the Monge type and
conformal geometries of signature (3, 2). The Cartan normal conformal connection for these geome-
tries is reducible to the Cartan connection with values in the Lie algebra of the noncompact form
of the exceptional groupG2. All the examples are deeply rooted in Elie Cartan’s works on exterior
differential systems.
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1. Introduction

One aspect of the null surface formulation of general relativity (NSF) of Fritelli et al.
[7] is to encode the conformal geometry of space–time in the geometry of a certain pair
of partial differential equations (PDEs) on the plane. Although this pair of differential
equations appears in NSF quite naturally, the question arises as to whether it is an accident
or it is a feature of a deeper link between differential equations and conformal structures. A
closer look at this question shows that the phenomenon observed in NSF is only a tip of an
iceberg, and that there is an abundance of examples in which the geometry of differential
equations can be related to the conformal geometry in various dimensions. The main aim
of this paper is to describe these examples and to point out that all of them have their roots
in Elie Cartan’s works on differential systems.

The oldest and the simplest of these examples is due to Karl Wuenschmann. It is contained
in his Ph.D. dissertation[23] defended at the University of Greifswald in 1905. His result is
quoted by Elie Cartan in a footnote of Ref.[3]. According to Cartan Wuenschmann observed
that certain classes of third order ordinary differential equations (ODEs) define, in a natural
way, a conformal Lorentzian metric on the three-dimensional spaces of their solutions.
Chern in[5] interpreted the result of Wuenschmann in terms of a Cartan normal conformal
connection[13] with values in the Lie algebraso(3,2). Recently, Newman and collaborators
[8] proved that every three-dimensional Lorentzian conformal geometry originates from a
third order ODE from the Wuenschmann class.

Although, due to Cartan, we have the precise coordinates of Wuenschmann thesis we were
unable to get it from the University of Greifswald. Thus, we do not know how Wuenschmann
obtained his result. In a joint paper[9] with Fritelli and Newman, we derived it by searching
for third ODEs for which it was possible to define a null separation between the solutions.
We believe, that this derivation is very close to the Wuenschmann one. In the present paper,
in Section 2, we give yet another derivation of Wuenschmann’s result. This presentation is
closely related to the description given in Cartan’s footnote. In particular, we specify under
which differential condition onF = F (x, y, y′, y′′) the third order ODE

y′′′ = F (x, y, y′, y′′) (1)

is in the Wuenschmann class (condition(8)) and, usingF and its derivatives, we give the
explicit formula for the conformal Lorentzian 3-metric. We also calculate the conformal
invariants of these metrics, such as Cotton tensor, and relate them to the contact invariants
of the corresponding ODEs from the Wuenschmann class. We end this section by providing
nontrivial examples of ODEs from the Wuenschmann class.

Our next examples of conformal structures associated with differential equations are
motivated by Cartan’s paper[3]. In this paper Cartan studies the geometry of an ODE(1)
given modulo the point transformation of variables. He shows that if, in addition to the
Wuenschmann condition(8), the ODE satisfies another point invariant condition(17), then
it defines a three-dimensional Lorentzian Weyl geometry, i.e. the geometry defined by a
conformal class of Lorentzian 3-metrics [g] and a 1-form [ν] given up to a gradient. This
Weyl geometry turns out to satisfy the Einstein–Weyl equations, which makes Cartan’s
observation important in the integrable systems theory (see e.g.[22]).
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In Section 3we formulate the equivalence problem for third order ODEs considered
modulo point transformations and present its solution (Theorem 3) due to Cartan[3]. We
interpret the result in terms of Cartan’s connectionω with values in the Lie algebra of a
groupCO(1,2) � R3—the semidirect product of theSO(1,2) group extended by the di-
latations, and the translation group inR3. In case of a generic third order ODE(1) this
Cartan connection is defined on a principalSO(1,2) fiber bundleP over a certainfour-
dimensional manifold but, if the equation satisfies the Wuenschmann condition(8) and the
Cartan condition(17), it may be interpreted as a Cartan connection on a principalCO(1,2)
fiber bundle over athree-dimensional space identified with the solution space of(1). It is
this special case which was studied by Cartan. InSection 3.1.1we describe his result in the
modern terminology. In particular, we explicitly write down the formulae for the metricgew
and the Weyl 1-formνew in terms of functionF = F (x, y, y′, y′′) defining the equation. We
also prove that the conditions(8) and (17)are equivalent to the Einstein–Weyl condition
for the Weyl geometry [gew, νew]. The result is summarized inTheorem 4. In two examples
(Examples 2 and 3) we provide two nontrivial point equivalent classes of third order ODEs
which satisfy conditions(8) and (17). The class of equations ofExample 2is a general-
ization of example(20) which was known to Tod[22]. Example 3shows how to generate
nontrivialF = F (x, y, y′, y′′) satisfying(8) and (17)from particular solutions of reductions
of the Einstein–Weyl geometries in three dimensions. Even very simple solutions, such as a
solutionu = √

2xof the dKP equation(23), give rise to very nontrivialFs (see formula(24)).
In Section 3.1.2we return to the generic case of an ODE(1) given modulo point trans-

formation and its Cartan connectionω on theSO(1,2) fiber bundleP. We show that in
this general caseP is equipped with a special vector field whose integral curves foliateP.
The six-dimensional space of leaves of this foliation is naturally equipped with a conformal
metric [˜̃g] of signature (3, 3). This six-dimensional conformal structure encodes all the point
invariant information about the point equivalent class of ODEs(1). In particular, the Cartan
(point) invariants ofTheorem 3and the curvature of Cartan’s connectionω can be equiva-
lently described in terms of a Cartan normal conformal connection associated with the con-
formal class of metrics [˜̃g]. This result, which was not mentioned by Cartan, is summarized
in Theorem 5; an explicit formula for this normal conformal connection is given by(25).

Section 4deals with a geometry of a second order ODE

y′′ = Q(x, y, y′) (2)

considered modulo point transformations of variables. It provides a next example of appear-
ances of conformal geometry in the theory of differential equations. This case was studied
by us in a joint paper with Sparling[16]. In this paper, exploiting an analogy between second
order ODEs and three-dimensional CR-structures, we were able to associate a conformal
4-metric of signature (2, 2) with each point equivalence class of ODEs(2). The construc-
tion of this metric, described in[16], was motivated by Fefferman’s construction[6] of
Lorentzian metrics on a circle bundle over nondegenerate three-dimensional CR-structures.
Cartan, who formulated and solved the equivalence problem for ODEs(2) given modulo
point transformations in his famous paper[2], overlooked existence of this metric. In Ref.
[16], we showed that the conformal class of Fefferman-like (2, 2) signature metrics associ-
ated with a point equivalence class of ODEs(2) encodes all the point invariant information
of such class. We summarize these results inTheorem 6.
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In Section 5which, in our opinion, is the highlight of the paper, we consider the geometry
of an undetermined equation

z′ = F (x, y, y′, y′′, z) (3)

for two real functionsy = y(x) andz = z(x) of one variable. The studies of equations of this
type can be traced back to Gaspard Monge, who knew that every solution to the equation
of the form

z′ = F (x, y, y′, z) (4)

was expressiblewithout integralsby means of an arbitrary function of one variable and its
derivatives. Hilbert[11], on an example of equation

z′ = (y′′)2 (5)

showed that, in general,Eq. (3)do not have this property. This result impressed Cartan, who
previously[4] consideredEq. (3)as equations for Cauchy characteristics of pairs of PDEs in
the involution defined on the plane. Cartan solved the equivalence problem for these PDEs
which, implicitly, solves an associated equivalence problem for ODEs(3). From Cartan’s
solution of this equivalence problem it follows that amongEq. (3)only those for which
Fy′′y′′ = 0 have general solutions which can be expressedwithout integrals.

From the geometric point of viewEq. (3)for whichFy′′y′′ �= 0 are much more interesting
then those withFy′′y′′ = 0. It follows from Cartan’s work[4] that nonequivalent classes
of Eq. (3)with Fy′′y′′ �= 0 are distinguished by means of a curvature of a certain Cartan
connection. Surprisingly, this connection has values in the Lie algebra of the noncompact
formG̃2 of theexceptionalgroupG2. The curvature of this connection is vanishing precisely
in the case of equations equivalent to the Hilbert example(5). This, in particular means that
the symmetry group of a very simple equation(5) is isomorphic toG̃2. This fact, noticed
with pride by Cartan in[4], was perhaps the first geometric realization of this group predicted
to exist by Cartan and Engel in 1894.

The main original part ofSection 5consists in an observation that this Cartan connection
can be understood as a reduction of a certain Cartan normalconformalconnection. This is
associated with a conformal metricG(3,2) of signature (3, 2) naturally defined by(3) on a
five-dimensional spaceJ parameterized by the five independent variables (x, y, y′, y′′, z). It
follows that all the invariant information about the ODE(3)satisfyingFy′′y′′ �= 0 is encoded
in the conformal properties of the metricG(3,2). We introduced this metric motivated by the
Fefferman construction described in[16]. Surprisingly, its existence, like the existence of
Fefferman-like metrics described inSection 4, was overlooked by Cartan.

Section 5has three subsections. The first one makes precise the notion of an equation
having a general solution without integrals. It also contains the proof of Monge’s result
on Eq. (4) quoted above. The proof uses Cartan’s method of equivalence[17] and aims
to motivate the definition of equivalence problem forEq. (3). This definition is given in
Section 5.2in terms of an equivalence of a system of three 1-forms(42)onJ. The beginning
of Section 5.3reformulates Cartan’s solution for the equivalence problem for pairs of
PDEs in involution on the plane adapting it to the equivalence problem for ODEs(3) with
Fy′′y′′ �= 0. This is summarized inTheorem 8. The interpretation of this result in terms
of Cartan’sg̃2-valued connectionωG̃2

is given by formula(52). The rest of this section
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is devoted to the introduction and the discussion of a five-dimensional conformal (3, 2)-
signature metric whose Cartan normal conformal connection is reducible toωG̃2

. This
metric is defined by formula(53)and is finally expressible entirely in terms of the function
F = F (x, y, y′, y′′, z) and its derivatives in formula(54). The main properties of this metric
are summarized inTheorem 9.

As an application of this section, inExample 6, we consider equations of the form

z′ = F (y′′).

This generalizes(5). We show that in this case there is only one basic invariant of such
equations. The metricsG(3,2) associated with Example 6 turn out to be always conformal
to Einstein metrics. We characterize the Einstein scale for them by means of a simple ODE.
Finally, in case of a genericF, we show that the square of the Weyl tensor for metrics
G(3,2) can be interpreted in terms of a classical invariant of a certain polynomial of the
fourth order. This polynomial resembles very much the Weyl tensor polynomial known in
the Newman-Penrose formalism[15].

2. Third order ODEs considered modulo contact transformations

In 1905 Wuenschmann[23] observed that the spaces of solutions of a certain class of third
order ODEs are naturally equipped with conformal Lorentzian geometries. His observation
can be summarized as follows.

Consider a third order ordinary differential equation

y′′′ = F (x, y, y′, y′′) (6)

for a real functiony = y(x) of one variable. To simplify notation letp = y′ andq = y′′.
Now, consider the four-dimensional spaceJ2 parameterized by (x, y, p, q). This space, the
second jet space, is a natural arena to study the geometry ofEq. (6). In particular, the total
differential vector field

D = ∂x + p∂y + q∂p + F∂q

onJ2 yields the basic information about the solutions of(6). The integral curves ofD foliate
J2 with one-dimensional leaves. The leaf spaceS of this foliation is three-dimensional and
can be identified with the three-dimensional space of solutions of(6). Following Chern[5]
we equipJ2 with the following bilinear form1

g̃ = 2[dy − pdx][dq − 1
3Fq dp + K dy + ( 1

3qFq − F − pK) dx] − [dp − q dx]2,

(7)

where

K ≡ 1
6DFq − 1

9F
2
q − 1

2Fp.

1 Here and in the following we adapt the convention from general relativity in which a symmetrized tensor
product of two 1-formsα andβ is denoted byαβ = 1

2(α ⊗ β + β ⊗ α), e.g.α2 = α ⊗ α.
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Clearly, this form is degenerate. It has signature (+,−,−,0) and its degenerate direction
is tangent to the vector fieldD. It is natural to ask about the transformation properties of
g̃ under the Lie transport along the degenerate directionD. It follows that g̃ transforms
conformally under the Lie transport alongD if and only if the functionF = F (x, y, p, q)
defining the ODE satisfies the following nonlinear differential condition

A ≡ Fy + (D− 2
3Fq)K = 0. (8)

This condition,the Wuenschmann conditiondefinesthe Wuenschmann classof third or-
der ODEs. Each equation from this class has a naturally defined conformal Lorentzian
structure on the space of its solutions. In our description, ifF satisfies(8), this struc-
ture is obtained by projecting ˜g from J2 to the leaf spaceS of integral lines of
D. Since in such case ˜g transforms conformally alongD, it projects to the con-
formal (+,−,−) signature structure [g] on S. An interesting feature of the above
Wuenschmann construction is its invariance under the contact transformations of the
ODE (6). More precisely, ifEq. (6) undergoes a transformation of variables of the
form

x → x̄ = x̄(x, y, p), y → ȳ = ȳ(x, y, p), p → p̄ = p̄(x, y, p)

with

ȳx − p̄x̄x + p(ȳy − p̄x̄y) = ȳp − p̄x̄p = 0

then, if it is in the Wuenschmann class for the functionF = F (x, y, p, q), it is also in the
Wuenschmann class for the transformed functionF̄ = F̄ (x̄, ȳ, p̄, q̄). It follows from the
work of Chern[5] that the Wuenschmann condition is the lowest order contact invariant
condition one can build out ofF and its partial derivatives. Moreover, every other contact
invariant of an equation from the Wuenschmann class corresponds to a conformal invariant
of the Lorentzian conformal structure [g]. These conformal invariants are constructed by
means of the derivatives of the Cotton tensorCof [g]. AssumingA = 0 and using the explicit
form of the projection [g] of g̃ we calculate that the five independent components ofC are

C1 = Fqqqq, C2 = Kqqq, C3 = Lqq, C4 = Nq,

C5 = −3KqqL + 3KqLq − 3KLqq + 3Lqy + 3Np + FqNq,

where

L ≡ −1
3Fqy + 1

3FqqK − Kp − 1
3FqKq,

N ≡ 1
3FqqL − 2

3FqLq − 2Lp + KKqq − Kqy − 1
2K

2
q.

It is worth noting that the vanishing ofC1 implies the vanishing of all theCis, so that
the conformal structure [g] has vanishing Cotton tensor iffFqqqq = 0. In such a case
the corresponding Wuenschmann class ofEq. (6) is contact equivalent to the equation
y′′′ = 0.

Summing up we have the following theorem.
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Theorem 1 (Wuenschmann).Third order ODEs of the form

y′′′ = F (x, y, y′, y′′)

split onto two main contact nonequivalent classes, the Wuenschmann class and its com-
plement. There are contact nonequivalent equations within the Wuenschmann class. Each
representative of a contact equivalence class of equations satisfying Wuenschmann condi-
tion defines a conformal Lorentzian structure on the space of its solutions. The conformally
equipped solution spaces of contact equivalent equations are conformally related, so that
each equivalence class of equations for whichA = 0 has a natural three-dimensional con-
formal Lorentzian structure associated with it.

There is a converse to this theorem.

Theorem 2 (Frittelli, Kozameh, Newman).Every three-dimensional Lorentzian confor-
mal structure[g] defines a contact equivalence class of third order ODEs satisfying the
Wuenschmann condition.

Below, without the proof which can be found in[8], we sketch how to pass from [g] to
the associated class of ODEs.

Given a conformal family of Lorentzian metrics [g] on a three-dimensional manifoldM
we start with a particular representativeg of [g]. This, in local coordinates{xi}, i = 1,2,3,
can be written asg = gij dxi dxj. Since the metricg is Lorentzian it is meaningful to consider
the eikonal equation

gij
∂S

∂xi

∂S

∂xj
= 0

for the real-valued functionS = S(xi) onM. This equation, being homogeneous inS, has
the completesolutionS = S(xi; s) depending on a single parameters. Now, treatingxis,
i = 1,2,3 as constant parameters andsas an independent variable we eliminatex1, x2 and
x3 by triple differentiation of equationS = S(xi; s) with respect tos. As a result we get a
relation of the form

S′′′ = F (s, S, S′, S′′), (9)

which shows thatS = S(s) satisfies an ODE of the third order. It follows that this equa-
tion satisfies the Wuenschmann condition(8). It also follows that if we start with another
representative ¯g of [g] and find the corresponding complete solutionS̄ = S̄(x̄i; s̄) of the
corresponding eikonal equation we get a third order ODE forS̄ = S̄(s̄) which is related to
(9) by a contact transformation of variabless, SandS′.

Example 1. It can be easily checked that

F (x, y, p, q) = α
[q2 + (1 − p2)2]3/2

[1 − p2]3/2
− 3

pq2

1 − p2
− p(1 − p2)
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satisfies the Wuenschmann condition(8) for all values of the real parameterα. Moreover,
the third order ODEsy′′′ = F (x, y, y′, y′′) corresponding to different values ofα > 0 are
contact nonequivalent. It follows that the conformal Lorentzian structures [g] associated
with suchFs have four-dimensional group of conformal symmetries, which correspond to
four contact symmetries of the associated third order ODE[12].

3. Third order ODEs considered modulo point transformations

Cartan[3] considered third order ODEs modulo point transformations of variables. These
transformations are more restrictive then the contact transformations. They merely mix the
independent and dependent variables

x → x̄ = x̄(x, y), y → ȳ = ȳ(x, y) (10)

of Eq. (6). Cartan in[3] found a full set of invariants which determine whether 2 third order
ODEs are transformable to each other by a point transformation of variables. He used his
equivalence method. This method starts with a system of four 1-forms

ω1 = dy − pdx, ω2 = dp − q dx, ω3 = dq − F (x, y, p, q) dx,

ω4 = dx, (11)

which an ODE of the form(6) defines on the second jet spaceJ2. Under transformations
(10)of the ODE(6) the forms(11) transform by

ω1 → ω̄1 = αω1, ω2 → ω̄2 = β(ω2 + γω1),

ω3 → ω̄3 = ε(ω3 + λω2 + µω1), ω4 → ω̄4 = ν(ω4 + σω1), (12)

whereα, β, γ, ε, λ, µ, ν, σ are functions onJ2 such thatαβεν �= 0. These functions are
determined by each particular choice of point transformation(10). Instead of working with
forms (ωi), i = 1,2,3,4, which are defined onJ2 only up to transformations(12), Cartan
considers a manifold parameterized by (x, y, p, q, α, β, γ, ε, λ, µ, ν, σ) and forms

θ1 = αω1, θ2 = β(ω2 + γω1), θ3 = ε(ω3 + λω2 + µω1),

θ4 = ν(ω4 + σω1),

which are well defined there. Using his equivalence method he constructs a seven-
dimensional manifoldP on which the four formsθ1, θ2, θ3, θ4 supplemented by three other
formsΩ1,Ω2 andΩ3 constitute a rigid coframe. This coframe encodes all the point invariant
information about the ODE(6). More precisely, Cartan proves the following theorem.

Theorem 3. A third order ODE(6) considered modulo point transformations of variables
(10)uniquely defines

• a seven-dimensional manifoldP,
• seven1-formsθ1, θ2, θ3, θ4,Ω1,Ω2,Ω3 onP such thatθ1 ∧ θ2 ∧ θ3 ∧ θ4 ∧ Ω1 ∧ Ω2 ∧

Ω3 �= 0 and
• functionsA,B,C,D,G,H,K,L,M,N onP,
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which satisfy the following differential conditions

dθ1 = Ω1 ∧ θ1 + θ4 ∧ θ2, dθ2 = Ω2 ∧ θ2 + Ω3 ∧ θ1 + θ4 ∧ θ3,

dθ3 = (2Ω2 − Ω1) ∧ θ3 + Ω3 ∧ θ2 + Aθ4θ1,

dθ4 = (Ω1 − Ω2) ∧ θ4 + Bθ2 ∧ θ1 + Cθ3 ∧ θ1,

dΩ1 = −Ω3 ∧ θ4 + (H + D)θ1 ∧ θ2 + (3K − 2B)θ1 ∧ θ3

+ (G + L)θ1 ∧ θ4 − Cθ2 ∧ θ3,

dΩ2 = Dθ1 ∧ θ2 + 2(K − B)θ1 ∧ θ3 + Gθ1 ∧ θ4 − 2Cθ2 ∧ θ3,

dΩ3 = (Ω2 − Ω1) ∧ Ω3 + Mθ1 ∧ θ2 + (D − H)θ1 ∧ θ3 + Nθ1 ∧ θ4

+ (2K − B)θ2 ∧ θ3 + Gθ2 ∧ θ4. (13)

Two third order ODEsy′′′ = F (x, y, y′, y′′) and ȳ′′′ = F̄ (x̄, ȳ, ȳ′, ȳ′′) are transformable
to each other by means of a point transformation(10) if and only if there exists a dif-
feomorphismφ : P→ P̄ of the corresponding manifoldsP and P̄ such thatφ∗(θ̄i) = θi,
i = 1,2,3,4, andφ∗(Ω̄µ) = Ωµ, µ = 1,2,3.

3.1. Cartan connections associated with third order ODEs considered modulo point
transformations

Among the equivalence classes of third order ODEs described byTheorem 3
there is a particularly simple class corresponding to the vanishing of all the func-
tions A,B,C,D,G,H,K,L,M,N. In case of such ODEs the corresponding forms
(θ1, θ2, θ3, θ4,Ω1,Ω2,Ω3) can be considered a basis of left invariant forms on a Lie group
which naturally identifies with the spaceP. The structure constants of this group are de-
termined byEq. (13)with all the functionsA,B,C,D,G,H,K,L,M,N vanishing. This
group turns out to be locally isomorphic toCO(1,2) � R3, the semidirect product of the
SO(1,2) group extended by the dilatations, and the translation group inR3. In this sense,
Theorem 3 can be interpreted in terms of aCO(1,2) � R3 Cartan connection defined over
the spaceJ2. Explicitly, the 1-form

ω =




Ω2 0 0 0 0

θ1 Ω2 − Ω1 −θ4 0 0

θ2 −Ω3 0 −θ4 0

θ3 0 −Ω3 Ω1 − Ω2 0

0 θ3 −θ2 θ1 −Ω2



, (14)

which has values in the Lie algebra ofCO(1,2) � R3, defines a Cartan connection onP.
To see this it is enough to observe that the system(13) guarantees that the annihilator of
forms (θ1, θ2, θ3, θ4) is integrable, so thatP is fibered over the four-dimensional space of
leaves tangent to this annihilator. This space of leaves naturally identifies withJ2. Using
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Eq. (13)and calculating

R = dω + ω ∧ ω

to be

R =




F 0 0 0 0

0 R1
1 R1

2 0 0

0 R2
1 0 R1

2 0

Θ3 0 R2
1 −R1

1 0

0 Θ3 0 0 −F




with

F = Dθ1 ∧ θ2+2(K − B)θ1 ∧ θ3−2Cθ2 ∧ θ3+Gθ1 ∧ θ4, Θ3 = −Aθ1 ∧ θ4,

R1
1 = −Hθ1 ∧ θ2 − Kθ1 ∧ θ3 − Cθ2 ∧ θ3 − Lθ1 ∧ θ4,

R2
1 = −Mθ1 ∧ θ2 + (H − D)θ1 ∧ θ3 + (B − 2K)θ2 ∧ θ3 − Nθ1 ∧ θ4 − Gθ2 ∧ θ4,

R1
2 = Bθ1 ∧ θ2 + Cθ1 ∧ θ3,

we find thatSO(1,2) → P→ J2 equipped withω is a Cartan bundle with aCO(1,2) � R3

connection overJ2.
In the next subsection we discuss under which conditionsTheorem 3can be interpreted

in terms of a Cartan connection over a certainthree-dimensionalspace, the space with which
all the solution spaces of point equivalent equations(6) may be identified.

3.1.1. A subclass defining Lorentzian–Einstein–Weyl geometries on the solution space
First, the system(13) guarantees that, not onlyP is foliated by the three-dimensional

leaves discussed so far, but it is also foliated byfour-dimensionalleaves. These are tangent
to the integrable distribution on which the forms (θ1, θ2, θ3) vanish. Thusπ : P→M can
be considered a fiber bundle over the three-dimensional spaceM of leaves of this foliation.
A four-dimensional groupCO(1,2) acts naturally on the fibersπ−1(M) of P equipping
it with a structure of aCO(1,2) fiber bundle overM. Now, the formω defined by(14)
can be interpreted as aCO(1,2) � R3 Cartan connection onCO(1,2) → P→M iff in
the curvatureR there are only horizontalθ1 ∧ θ2, θ1 ∧ θ3 andθ2 ∧ θ3 terms. This is only
possible if

(a) A ≡ 0 (15)

and

(b) G ≡ 0.

These are also sufficient conditions since, if they are satisfied, the functionsN andL also
vanish. Vanishing of each ofA andG is a point invariant property of the ODE(6). One can
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also consider these conditions independently of each other. The vanishing ofA is precisely
the Wuenschmann condition(8) which, being contact invariant, is also a point invariant.
If Eq. (6)satisfies this condition it defines the conformal metricg onM. This conformal
Lorentzian structure onM is the projection of the bilinear form

g̃ = 2θ1θ3 − (θ2)2 (16)

fromP toM. Thus, similarly to the contact case, point equivalent classes ofEq. (6)satisfying
the Wuenschmann conditionA = 0 define a conformal structure on the spaceM. If, in
addition condition (b) is satisfied then the pair (˜g, ν̃ = −2Ω2) projects to a well defined
Weyl geometry[(gew, νew)] on the spaceM. We recall that aWeyl geometryon a three-
dimensional manifoldM is the geometry associated with an equivalence class [(g, ν)] of
pairs (g, ν), in whichg is a Lorentzian metric,ν is a 1-form, and two pairs (g, ν) and (g′, ν′)
are in the equivalence relation iff there exists a functionφ onM such thatg′ = e−2φg and
ν′ = ν + 2 dφ.

To see how the Weyl geometry [(gew, νew)] appears in the above context we first remark
that the conditionG ≡ 0, when written in terms of the functionF = F (x, y, p, q) defining
Eq. (6), is

G ≡ 0 ⇔ D2Fqq −DFqp + Fqy = 0. (17)

Then, identifyingM with the quotientJ2/D and using the (x, y, p, q) coordinates onJ2,
we have

g̃ = β2[2ω1(ω3 − 1
3Fqω

2 + ( 1
6DFq − 1

2Fp − 1
9F

2
q )ω1) − (ω2)2],

−ν̃ = 2Ω2 = 2 d logβ + 2
3(Fqp −DFqq)ω1 + 2

3Fqqω
2 + 2

3Fqω
4.

The bilinear form ˜g is identical with(7), thus due to the Wuenschmann conditionA = 0,
it projects to a conformal structure [gew] onM. Calculating the Lie derivative of̃ν with
respect toD we find that

LDν̃ = 2
3(D2Fqq −DFqp + Fqy)ω1 + d(. . .).

Thus, due to condition(17),LDν̃ is a total differential. This means thatν̃ projects to a class
of 1-forms [νew] onM which are given up to an addition of a gradient.
It follows that the so defined Weyl geometry [(gew, νew)] on M satisfies the Einstein–
Weyl equations. To see this we first recall that a three-dimensional Weyl geometry [(g =
gijθ

iθj, ν)] defines a Weyl connection, which is totally determined by the connection 1-
formsΓ i

j satisfying

dθi + Γ i
j ∧ θj = 0, dgij − Γij − Γji = −νgij, Ωij = gikΩ

k
j.

The Weyl geometry is said to be Einstein–Weyl iff the curvature

Ωi
j = 1

2R
i
jklθ

k ∧ θl = dΓ i
j + Γ i

k ∧ Γ k
j
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of this connection satisfies

R(ij) − 1
3Rgij = 0, (18)

where

Rjk = Ri
jik, R(ij) = 1

2(Rij + Rji)

and
R = gijRij, gikgkj = δij.

It follows that in the case of Weyl geometry [(gew, νew)] the Einstein–Weyl condition
(18) reduces to the requirement that the point invariantM of the system(13) vanishes. To
show that conditionsA = G = 0, which were needed to define [(gew, νew)], imply M = 0
we apply the exterior derivative d to the both sides ofEq. (13). Then from the equation
d2θ3 = 0 we deduce thatN = L = 0. Having this and insisting on d2Ω2 = 0 we get that
D = 2H , which is only possible ifM = 0.

Summarizing we have the following theorem.
Theorem 4 (Cartan). A point equivalence class of third order ODEs represented by an
ODE

y′′′ = F (x, y, y′, y′′),

which satisfies Wuenschmann condition(8)and Cartan condition(17)defines a Lorentzian–
Einstein–Weyl geometry[(gew, νew)] on the three-dimensional spaceM. This space can be
identified with the solution space of any of the ODEs from the equivalence class.

It is a nontrivial task to findF = F (x, y, p, q) which satisfies the Einstein–Weyl condi-
tions (8) and (17). Cartan gave several examples of suchFs (see[22] for a discussion of
that issue). Here we present two other ways of constructing them.
Example 2. It is relatively easy to find all point equivalence classes of third order ODEs
which admit at leastfour infinitesimal point symmetries[12]. Among them there is a 1-
parameter family of nonequivalent ODEs represented by

F = (
√
a(2qy − p2) )3

y2
, (19)

which corresponds to nonequivalent Einstein–Weyl geometries for each value of the real
constanta. This constant enumerates nonequivalent ODEs; its sign is correlated with the
sign of (2qy − p2), so that the expression under the square root is positive. Ifa → ∞ the
equivalence class of ODEs may be represented by

F = q3/2, (20)

which also satisfies conditions(8) and (17). Since in the both cases(19) and (20)the
corresponding third order ODEs have the total differential vector fieldD as one of their
infinitesimal point symmetries, then the corresponding Einstein–Weyl geometry has three
infinitesimal symmetries. In case of finitea the Lie algebra of these symmetries is isomorphic
to so(1,2).
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Example 3. Since three-dimensional Lorentzian–Einstein–Weyl geometries are known to
be generated by solutions of various integrable systems, one can try to use such solutions
to associate with them point equivalence classes of ODEs(6). We illustrate this procedure
on an example of solutions to the dKP equation.

The dKP equation for a real functionu = u(x, y, t) can be considered to be the Froebenius
condition

dω̄1 ∧ ω̄1 ∧ ω̄4 = 0, dω̄4 ∧ ω̄1 ∧ ω̄4 = 0 (21)

for the two Pfaffian forms

ω̄1 = dx + (u + v2) dt + vdy, ω̄4 = dv − (uy + uxv) dt − ux dy (22)

in a four-dimensional space parameterized by (x, y, t, v). Indeed, by substitution of(22) to
(21)we find that(21) is equivalent to

uyy = −(ux)
2 + uxt − uuxx, (23)

which is the dKP equation. Since every solution to(23) generates a three-dimensional
Lorentzian–Einstein–Weyl geometry[24] it is reasonable to ask if there is a point equiv-
alence class of third order ODEs associated with each such solution. It turns out that the
answer to this question is positive. Given a solutionu = u(x, y, t) of the dKP equation there
is a point equivalence class of third order ODEs, with a representative in the form(6), such
that the four 1-forms ( ¯ω1, ω̄2, ω̄3, ω̄4) of (12) encoding it have, in a convenient coordinate
system (x, y, t, v) onJ2, representatives ¯ω1 andω̄4 of (22)andω̄2 andω̄3 given by

ω̄2 = (−uuxx − 2uxyv + uxxv
2) dt − uxx dx − uxy dy,

ω̄3 = (−uu2
xx − 4u2

xy + 4uxxuxyv − u2
xxv

2) dt − u2
xx dx + uxx(−2uxy + uxxv) dy.

In particular,Eq. (21)guarantee that there exists a coordinateX on J2 such that in the
class(12) of forms ω̄4 there is an exact form dX. This defines a functionX, which in turn
is interpreted as the independent variable of the associated ODE. For example, for a very
simple solution

u =
√

2x

of the dKP equation we find that

X = t + 1
2v

2 + √
2x,

which enables us to find the associated class of third order ODEs. This class may be
represented by quite a nontrivial

F (x, y, p, q) = pq(−12+ 3pq − 8
√

1 − pq) + 8(1+ √
1 − pq)

p3
. (24)

It can be checked by a direct substitution that suchF satisfies the Einstein–Weyl conditions
(8) and (17).
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We close this section with a remark, that it is not clear whether all three-dimensional
Lorentzian–Einstein–Weyl geometries have their associated point equivalence classes of
third order ODEs. Our experience, based on the Cartan’s equivalence method, suggests that
it is very likely.

3.1.2. Conformal metric of signature (3, 3) associated with a point equivalence class
of third order ODEs

If an ODE (6) does not satisfy the Wuenschmann condition(15), it is impossible to
define a conformal structure in three dimensions out of the Cartan invariants(13). How-
ever, irrespectively of the Wuenschmann condition(15) being satisfied or not, with each
point equivalence class of ODEs(6), we can associate a conformal metric of signature
(+,+,+,−,−,−), whose conformal invariants encode all the point invariant information
about the corresponding class of ODEs. We achieve this by using Sparling’s procedure[21]
which, with ‘the Levi–Civita part’

Γ = (Γ i
j) =



Ω2 − Ω1 −θ4 0

−Ω3 0 −θ4

0 −Ω3 Ω1 − Ω2




of the Cartan connection(14) and with the bilinear form ˜g = gijθ
iθj of (16), associates a

new bilinear form

˜̃g = εijkθ
iΓ

j

lg
lk

onP. Here

(gij) =




0 0 1

0 −1 0

1 0 0




andεijk is the standard Levi–Civita symbol inR3 so that

˜̃g = 2[(Ω1 − Ω2)θ2 − Ω3θ
1 + θ4θ3].

This bilinear form is degenerate onP and has (+,+,+,−,−,−,0) signature. Denot-
ing the basis of vector fields onP dual to the 1-forms (θ1, θ2, θ3, θ4,Ω1,Ω2,Ω3) by
(X1, X2, X3, X4, Y1, Y2, Y3), we find that the degenerate direction of˜̃g is tangent to the
vector fieldZ = Y1 + Y2.

It is remarkable that, due toEq. (13), the bilinear form˜̃g transforms conformally when
Lie transported alongZ. Explicitly, without any assumptions on the Cartan invariants
A,B,C,D, G,H,K,L,M,N, we have

LZ ˜̃g = ˜̃g.
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Thus, the bilinear form̃̃g naturally descends to a conformal metricgN of neutral signature
on the six-dimensional spaceN of integral curves of the vector fieldZ. This conformal
metric yields all the point invariant information about the corresponding point equivalent
class of ODEs(6). In particular, the Cartan invariantsA,B,C,D,G,H,K,L,M,N can be
understood as curvature coefficients of the Cartan normal conformal connection associated
with gN. This Cartan connection can be represented by the followingso(4,4)-valued 1-form

ωN =




1
2Ω2

1
4(Ω1 − Ω2) − 1

4θ
4 1

4Ω3 τ4 τ5
1
2Γ

3
4 0

Ω1 − Ω2
1
2Ω2

1
2θ

4 Γ 1
3 0 −Γ 2

4 −Γ 3
4 τ4

−Ω3
1
2Ω3

1
2Ω1 Γ 2

3 Γ 2
4 0 Γ 2

6 τ5

θ4 1
2θ

4 0 − 1
2Ω1 + Ω2 Γ 3

4 −Γ 2
6 0 1

2Γ
3

4

θ2 0 − 1
2θ

1 1
2θ

3 − 1
2Ω2 − 1

2Ω3 − 1
2θ

4 1
4(Ω1 − Ω2)

θ1 1
2θ

1 0 1
2θ

2 − 1
2θ

4 − 1
2Ω1 0 − 1

4θ
4

θ3 − 1
2θ

3 − 1
2θ

2 0 −Γ 1
3 −Γ 2

3
1
2Ω1 − Ω2

1
4Ω3

0 θ2 θ1 θ3 Ω1 − Ω2 −Ω3 θ4 − 1
2Ω2




,

(25)

where

τ4 = 1
12[X3(G) − 6H ]θ1 − 1

4Kθ
2 − 1

2Cθ
3,

τ5 = 1
2[−AC − 2X2(L) − 2M + X4(D)]θ1 + 1

12[X3(G) − 6H + 6D]θ2

+ 1
4(−2B + 3K)θ3 + 1

2Gθ
4,

Γ 1
3 = 1

2Ω3 + 1
2(G − L)θ1, Γ 2

3 = Nθ1 + 1
2(G − L)θ2 + Aθ4,

Γ 2
4 = Mθ1 − Hθ2 + 1

2(2B − 3K)θ3 − 1
2(G + L)θ4,

Γ 2
6 = (−H + D)θ1 + 1

2Kθ
2 + Cθ3, Γ 3

4 = 1
2(2B − K)θ1 + Cθ2

onP.
We remark that not all six-dimensional split-signature conformal metrics originate from

a point equivalence third order ODEs. To see this, we calculate the curvature

RN = dωN + ωN ∧ ωN

of ωN and observe2 that it has quite special form when compared to the curvature of Car-
tan’s normal conformal connection associated with a generic (+,+,+,−,−,−) signature
metric.

Summarizing, we have the following theorem.

Theorem 5. Each point equivalence class of third order ODEs

y′′′ = F (x, y, y′, y′′)

2 We omit writing down the explicit formulae for this curvature here.
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defines a conformal split-signature metricgN on a 6--dimensional manifoldN, which is
canonically associated with this class of ODEs. The conformal metricgN yields all the
point invariant information about the corresponding class of third order ODEs.

4. Second order ODEs considered modulo point transformations

This case has been recently carefully studied in Ref.[16]. The ODE part of this paper
includes, in particular, description of the geometry associated with an equation

y′′ = Q(x, y, y′) (26)

considered modulo point transformations(10). This geometry, in the convenient parame-
terization (x, y, p = y′) of the first jet spaceJ1, turns out to be very closely related to the
geometry associated with the following split signature metric, the Fefferman metric:

g = 2[(dp − Qdx) dx − (dy − pdx)(dφ + 2
3Qpdx + 1

6Qpp(dy − pdx))] (27)

onJ1 × R. More precisely, we have the following theorem.

Theorem 6.

(1) Every second order ODE(26) endows its corresponding spaceJ1 × R with an orien-
tation and with the Fefferman metric(27).

(2) If the ODE undergoes a point transformation(10) then its Fefferman metric transforms
conformally.

(3) All the point invariants of a point equivalence class of ODEs(26) are expressible
in terms of the conformal invariants of the associated conformal class of Fefferman
metrics.

(4) The Fefferman metrics(27)are very special among all the split signature metrics on4-
manifolds. Their Weyl tensor has algebraic type(N,N) in the Cartan–Petrov–Penrose
classification[1,18–20]. Both, the selfdualC+ and the antiselfdualC−, parts of it are
expressible in terms of only one component. In fact, C+ is proportional to

w1 = D2Qpp − 4DQpy − DQppQp + 4QpQpy − 3QppQy + 6Qyy

andC− is proportional to

w2 = Qpppp,

where

D = ∂x + p∂y + Q∂p.

Each of the conditionsw1 = 0 andw2 = 0 is invariant under point transformations
(10).

(5) Cartan normal conformal connection associated with any conformal class[g] of Feffer-
man metrics is reducible to a certainSL(2 + 1,R) connection naturally defined on an
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eight-dimensional bundle overJ1 which, via Cartan’s equivalence method, is uniquely
associated with the point equivalence class of corresponding ODEs(26). The curvature
of this connection has very simple form

Ω ∼




0 w2 ∗

0 0 w1

0 0 0



.

If w1 = 0 or w2 = 0 this connection can be further understood as a Cartan normal
projective connection over a certain two-dimensional space S equipped with a projective
structure[14]. S can be identified either with the solution space of the ODE(26) in the
w1 = 0 case, or with the solution space of its dual3 ODE in thew2 = 0 case.

5. Equationsz′ = F (x, y, y′, y′′, z), noncompact form of the exceptional group
G2 and conformal metrics of signature (3, 2)

5.1. Equations with integral-free solutions

Consider a differential equation of the form

G(x, y, y′, . . . , y(m), z, z′, . . . , z(k)) = 0 (28)

for real functionsy = y(x) andz = z(x) of one real variable. In this equationG : Rm+k+3 →
R and y(r), z(q) denote therth and theqth derivative ofy and z with respect tox. In
1912 Hilbert [11] considered a subclass ofEq. (28) which he calledequations with
integral-free solutions(Germ. integrallose Aufloesungen). These equations are defined as
follows.

Definition 1. Equation(28)hasintegral-free solutionsiff its general solution can be written
as

x = x(t, w(t), w′(t), . . . , w(p)(t)), y = y(t, w(t), w′(t), . . . , w(p)(t)),

z = z(t, w(t), w′(t), . . . , w(p)(t)),

wherew = w(t) is anarbitrarysufficiently smooth real function of one real variable.

As an example consider equation

z′ = y. (29)

3 See e.g.[16] for the concept of dual second order ODEs.
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Clearlyx = t, z = w(t), y = w′(t) is its general solution, which shows that(29) is in the
Hilbert class of equations with integral-free solutions. Very simple equation(29) belongs
to the class offirst order Monge equations

z′ = F (x, y, y′, z), (30)

which areEq. (28)with unknowns of at most of the first order.
Associated with each first order Monge equation(30) there is a four-dimensional space

J parameterized by (x, y, p, z) and two 1-forms

ω1 = dz − F (x, y, p, z) dx, ω2 = dy − pdx.

Every solution of the Monge equation(30) is a curvec(t) = (x(t), y(t), p(t), z(t)) in J on
which the formsω1 andω2 vanish.

Suppose now, that given a Monge equation(30), there exists a transformation of the
associated variables (x, y, p, z)




x

y

p

z




φ−→




x̄

ȳ

p̄

z̄


 =




x̄(x, y, p, z)

ȳ(x, y, p, z)

p̄(x, y, p, z)

z̄(x, y, p, z)


 (31)

such that

dȳ − p̄dx̄ = αω1 + βω2, dp̄ − z̄dx̄ = γω1 + δω2 (32)

with α, β, γ, δ functions onJ satisfying< = αδ − βγ �= 0. In such case

ω1 = <−1[δ(dȳ − p̄dx̄) − β(dp̄ − z̄dx̄)],

ω2 = <−1[−γ(dȳ − p̄dx̄) + α(dp̄ − z̄dx̄)].

Thus, taking

x̄ = t, ȳ = w(t), p̄ = w′(t), z̄ = w′′(t), (33)

we construct a curve inJ on which the formsω1 andω2 identically vanish. Now, the inverse
of φ which givesx = x(x̄, ȳ, p̄, z̄), etc., provides

x = x(t, w(t), w′(t), w′′(t)), y = y(t, w(t), w′(t), w′′(t)),

z = z(t, w(t), w′(t), w′′(t)),

which is an integral-free solution of the Monge equation(30).
We summarize our discussion in the following Lemma.

Lemma 1. Every first order Monge equation(30) admitting coordinate transformation
(31)which realizes(32)has integral-free solutions.

Example 4. Consider equation

z′ = (y′)2. (34)
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Its corresponding forms areω1 = dz − p2 dx, ω2 = dy − pdx. The change of variables
x = 1

2 z̄, y = 1
2(z̄x̄ − p̄), z = 1

2 z̄x̄
2 − p̄x̄ + ȳ, p = x̄ brings them to the formω1 = dȳ −

p̄dx̄ − x̄(dp̄ − z̄dx̄), ω2 = −1
2(dp̄ − z̄dx̄). This proves that substitution(33) leads to the

following integral-free solution ofEq. (34):

x = 1
2w

′′(t), y = 1
2tw

′′(t) − 1
2w

′(t), z = 1
2t

2w′′(t) − tw′(t) + w(t).

A natural question as to whether all the first order Monge equations have integral-free
solutions was answered in affirmative by Monge. Thus, we have the following theorem.

Theorem 7 (Monge).Every first order Monge equation has integral-free solutions.

It is instructive to sketch the proof of this theorem.
Given a Monge equation(30)we consider its associated two 1-forms

ω1 = dz − F (x, y, p, z) dx and ω2 = dy − pdx (35)

on J. We say that another pair of linearly independent 1-forms ( ¯ω1, ω̄2) on J is equivalent
to the pair(35) if there exists a transformation of variables(31) and functionsα, β, γ, δ,
αδ − βγ �= 0, onJ such that

φ∗(ω̄1) = αω1 + βω2, φ∗(ω̄2) = γω1 + δω2. (36)

According toLemma 1, if we were able to show that there is only one equivalence class of
forms (ω1, ω2) equivalent to (d¯y − p̄dx̄,dp̄ − z̄dx̄), the theorem would be proven. Thus,
in the process of proving the Monge theorem, we are led to study the equivalence problem
for two 1-forms given modulo transformations(36) on an open set ofR4. Introducing the
total differential vector fieldD = ∂x + p∂y + F∂z it is not difficult to prove that a pair of
1-forms(35)originating from the Monge equations for which

Fpp = 0 and DFp − Fy − FpFz = 0 (37)

and a pair of forms originating from the equations for which at least one of the above
conditions is not satisfied arenotequivalent. Then, the Cartan equivalence method applied
to the forms related to the first order Monge equationsnot satisfying(37) shows that they
areall locally equivalent to (d¯y − p̄dx̄,dp̄ − z̄dx̄). Thus, the first order Monge equations
for which at least one of conditions(37) is not satisfied have general solutions of the form

x = x(t, w(t), w′(t), w′′(t)), y = y(t, w(t), w′(t), w′′(t)),

z = z(t, w(t), w′(t), w′′(t)). (38)

On the other hand, if we apply the Cartan equivalence method to the forms originating
from the Monge equationssatisfying(37), we show that they areall locally equivalent to
(dz̄,dȳ − p̄dx̄). Thus, taking ¯z = const., x̄ = t, ȳ = w(t) and p̄ = w′(t) we show that in
such case the Monge equations have general solutions of the form

x = x(t, w(t), w′(t)), y = y(t, w(t), w′(t)), z = z(t, w(t), w′(t)). (39)

Therefore in the both nonequivalent cases(38) and (39)the Monge equations have integral-
free solutions. This finishes the proof of the Monge theorem.
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Hilbert in [11] considered an equation

z′ = (y′′)2 (40)

and proved that it hasnot the property of having integral-free solutions. It turns out, that
among all the equations which have not this property, the Hilbert equation(40) is, in a
certain sense, the simplest one.

5.2. Equivalence of forms associated with ODEsz′ = F (x, y, y′, y′′, z)

The Hilbert equation(40) is a special case of an equation

z′ = F (x, y, y′, y′′, z). (41)

Equations of this type were considered by Cartan[4] who, in particular, observed that they
describe Cauchy characteristics of pairs of involutive second order PDEs for a real function
of two variables. In the context of the present paper we are interested under what conditions
Eq. (41)have integral-free solutions. The treatment of the problem is a simple generalization
of the method described in the sketch of the proof of Monge’s theorem. Thus, with each
equation(41)we associatethree1-forms

ω1 = dz − F (x, y, p, q, z) dx, ω2 = dy − pdx, ω3 = dp − q dx, (42)

which live on a five-dimensional manifoldJ parameterized by (x, y, p = y′, q = y′′, z).
Following the case of Monge equations, we need to study the equivalence problem for
the triples of linearly independent 1-forms (ω1, ω2, ω3) on an open set ofR5. More pre-
cisely, let (ω1, ω2, ω3) be defined on a open setJ ⊂ R5 parameterized by (x, y, p, q, z) and
(ω̄1, ω̄2, ω̄3) be defined on a set̄J ⊂ R5 parameterized by (¯x, ȳ, p̄, q̄, z̄). We say that the
two triples (ω1, ω2, ω3) and (ω̄1, ω̄2, ω̄3) are (locally) equivalent iff there exists a (local)
diffeomorphismφ : J → J̄



x

y

p

q

z




φ−→




x̄

ȳ

p̄

q̄

z̄




=




x̄(x, y, p, q, z)

ȳ(x, y, p, q, z)

p̄(x, y, p, q, z)

q̄(x, y, p, q, z)

z̄(x, y, p, q, z)




(43)

and aGL (3,R)-valued function

f =



α β γ

δ ε λ

κ µ ν




onJ such that

φ∗(ω̄1) = αω1 + βω2 + γω3, φ∗(ω̄2) = δω1 + εω2 + λω3,

φ∗(ω̄3) = κω1 + µω2 + νω3. (44)
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The equivalence problem for such triples was solved by Cartan. His solution, in particular,
can be applied to the triples of 1-forms(42) originating from the Cartan equations(41).
Cartan’s analysis, restricted to such triples, shows that they split onto two main nonequivalent
classes. The first class originates fromEq. (41)satisfying

Fqq = 0,

the second class is defined by the equations for which

Fqq �= 0.

Both the above classes include nonequivalent triples of 1-forms, but only the first class
originates fromEq. (41)with integral-free solution. All the Cartan equations withFqq �= 0
have not the property of having integral-free solutions. The Hilbert equation(40) is one of
the equations from this class.

Example 5. According to the above discussion, ifk �= 0 andk �= 1 equation

z′ = 1

k
(y′′)k (45)

has not the property of having integral-free solutions. Thus, since one is forced to use
integrals to write down the general solution of(45), we solve it by putting

x = t, y = w(t), z = 1

k

∫
w′′(t)k dt. (46)

Cartan foundbettersolution

x = (k − 1)t
k−2
k−1w′′(t),

y = 1

2
(k − 1)2t

2k−3
k−1 w′′(t)2 − (k − 1)t

k−2
k−1w′(t)w′′(t)

+ 1

2
(k − 1)

∫
t
k−2
k−1w′′(t)2 dt,

z = k − 1

k
t2w′′(t) − tw′(t) + w(t).

We prefer this solution rather then(46) since it involves only second power ofw′′ under
the integral, whereas the solution(46) involves thekth power. This example shows that,
for a given Cartan equation, among many different expressions for its general solution
which involve integrals there could be some preferred ones. The precise meaning of this
observation is worth further investigation.

5.3. G̃2 Cartan connection for equationz′ = F (x, y, y′, y′′, z) and conformal (3, 2)-
signature geometry

We will not comment any further on Cartan equations for whichFqq = 0. Instead, we
concentrate on much more interestingFqq �= 0 case.
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First, we briefly sketch Cartan’s results on equivalence problem for forms

ω1 = dz − F (x, y, p, q, z) dx, ω2 = dy − pdx, ω3 = dp − q dx (47)

satisfying Fqq �= 0. On doing that we supplement these forms to a coframe
(ω1, ω2, ω3, ω4, ω5) on the (x, y, p, q, z) space such that

ω1 = dz − F (x, y, p, q, z) dx, ω2 = dy − pdx, ω3 = dp − q dx,

ω4 = dy, ω5 = dq. (48)

Since we are interested inall forms (ω1, ω2, ω3) which are equivalent to the forms(47)
via transformations(43) and (44) this coframe is not unique. It is given up to the following
freedom:



ω1

ω2

ω3

ω4

ω5




→




ω̄1

ω̄2

ω̄3

ω̄4

ω̄5




=




α β γ 0 0

δ ε λ 0 0

κ µ ν 0 0

π ρ σ τ χ

π′ ρ′ σ′ τ′ χ′







ω1

ω2

ω3

ω4

ω5



,

which suggests that instead of working with a not uniquely defined coframe(48) on the
(x, y, p, q, z) space it is better to use five well defined linearly independent 1-forms




θ1

θ2

θ3

θ4

θ5




=




α β γ 0 0

δ ε λ 0 0

κ µ ν 0 0

π ρ σ τ χ

π′ ρ′ σ′ τ′ χ′







ω1

ω2

ω3

ω4

ω5




on a bigger space parameterized by (x, y, p, q, z, α, β, γ, δ, ε, λ, κ, µ, ν, π, ρ, σ, τ, χ, π′, ρ′,
σ′, τ′, χ′). Now, assuming thatFqq �= 0 and using his equivalence method (which in-
volved several reductions and prolongations4) Cartan was able to prove that on a certain
14-dimensional manifoldP the forms (θ1, θ2, θ3, θ4, θ5) can be supplemented in a unique
way to a unique coframe. More precisely, he proved the following theorem.

Theorem 8 (Cartan).An equivalence class of forms

ω1 = dz − F (x, y, p, q, z) dx, ω2 = dy − pdx, ω3 = dp − q dx (49)

for whichFqq �= 0, uniquelydefines a 14-dimensional manifold P and a preferred coframe
(θ1, θ2, θ3, θ4, θ5,Ω1,Ω2,Ω3,Ω4,Ω5,Ω6,Ω7,Ω8,Ω9) on it such that

dθ1 = θ1 ∧ (2Ω1 + Ω4) + θ2 ∧ Ω2 + θ3 ∧ θ4,

dθ2 = θ1 ∧ Ω3 + θ2 ∧ (Ω1 + 2Ω4) + θ3 ∧ θ5,

4 See e.g. in Ref.[17] for the definitions of these procedures.
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dθ3 = θ1 ∧ Ω5 + θ2 ∧ Ω6 + θ3 ∧ (Ω1 + Ω4) + θ4 ∧ θ5,

dθ4 = θ1 ∧ Ω7 + 4
3θ

3 ∧ Ω6 + θ4 ∧ Ω1 + θ5 ∧ Ω2,

dθ5 = θ2 ∧ Ω7 − 4
3θ

3 ∧ Ω5 + θ4 ∧ Ω3 + θ5 ∧ Ω4. (50)

Note that the above theorem implies formulae for the differentials of the formsΩµ,
µ = 1,2, . . . ,9. Explicitly, these differentials are:

dΩ1 = Ω3 ∧ Ω2 + 1
3θ

3 ∧ Ω7 − 2
3θ

4 ∧ Ω5 + 1
3θ

5 ∧ Ω6 + θ1 ∧ Ω8

+ 3
8c2θ

1 ∧ θ2 + b2θ
1 ∧ θ3 + b3θ

2 ∧ θ3 + a2θ
1 ∧ θ4 + a3θ

1 ∧ θ5

+ a3θ
2 ∧ θ4 + a4θ

2 ∧ θ5,

dΩ2 = Ω2 ∧ (Ω1 − Ω4) − θ4 ∧ Ω6 + θ1 ∧ Ω9 + 3
8c3θ

1 ∧ θ2 + b3θ
1 ∧ θ3

+ a3θ
1 ∧ θ4 + a4θ

1 ∧ θ5 + b4θ
2 ∧ θ3 + a4θ

2 ∧ θ4 + a5θ
2 ∧ θ5,

dΩ3 = Ω3 ∧ (Ω4 − Ω1) − θ5 ∧ Ω5 + θ2 ∧ Ω8 − 3
8c1θ

1 ∧ θ2 − b1θ
1 ∧ θ3

− a1θ
1 ∧ θ4 − a2θ

1 ∧ θ5 − b2θ
2 ∧ θ3 − a2θ

2 ∧ θ4 − a3θ
2 ∧ θ5,

dΩ4 = Ω2 ∧ Ω3 + 1
3θ

3 ∧ Ω7 + 1
3θ

4 ∧ Ω5 − 2
3θ

5 ∧ Ω6 + θ2 ∧ Ω9 − 3
8c2θ

1 ∧ θ2

− b2θ
1 ∧ θ3−a2θ

1 ∧ θ4 − a3θ
1 ∧ θ5 − b3θ

2 ∧ θ3 − a3θ
2 ∧ θ4 − a4θ

2 ∧ θ5,

dΩ5 = Ω1 ∧ Ω5 + Ω3 ∧ Ω6 − θ5 ∧ Ω7 + θ3 ∧ Ω8 + 9
32δ1θ

1 ∧ θ2

+ 3
4c1θ

1 ∧ θ3 + 3
4b1θ

1 ∧ θ4 + 3
4b2θ

1 ∧ θ5 + 3
4c2θ

2 ∧ θ3

+ 3
4b2θ

2 ∧ θ4 + 3
4b3θ

2 ∧ θ5,

dΩ6 = Ω2 ∧ Ω5 + Ω4 ∧ Ω6 + θ4 ∧ Ω7 + θ3 ∧ Ω9 + 9
32δ2θ

1 ∧ θ2 + 3
4c2θ

1 ∧ θ3

+ 3
4b2θ

1 ∧ θ4 + 3
4b3θ

1 ∧ θ5 + 3
4c3θ

2 ∧ θ3 + 3
4b3θ

2 ∧ θ4 + 3
4b4θ

2 ∧ θ5,

dΩ7 = 4
3Ω5 ∧ Ω6 + (Ω1 + Ω4) ∧ Ω7 + θ4 ∧ Ω8 + θ5 ∧ Ω9 + 9

64eθ
1 ∧ θ2

− 3
8δ1θ

1 ∧ θ3 − 3
8c1θ

1 ∧ θ4 − 3
8c2θ

1 ∧ θ5 − 3
8δ2θ

2 ∧ θ3

− 3
8c2θ

2 ∧ θ4 − 3
8c3θ

2 ∧ θ5,

dΩ8 = Ω5 ∧ Ω7 + (2Ω1 + Ω4) ∧ Ω8 + Ω3 ∧ Ω9 + h1θ
1 ∧ θ2 + h2θ

1 ∧ θ3

+h3θ
1 ∧ θ4 + h4θ

1 ∧ θ5 + h5θ
2 ∧ θ3 + h4θ

2 ∧ θ4 + h6θ
2 ∧ θ5,

dΩ9 = Ω6 ∧ Ω7 + (Ω1 + 2Ω4) ∧ Ω9 + Ω2 ∧ Ω8 + k1θ
1 ∧ θ2

+ 1
32(3e + 32h5)θ1 ∧ θ3 + 1

32(−3δ1 + 32h4)θ1 ∧ θ4

+ 1
32(−3δ2 + 32h6)θ1 ∧ θ5 + k2θ

2 ∧ θ3 + 1
32(−3δ2 + 32h6)θ2 ∧ θ4

+k3θ
2 ∧ θ5, (51)
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wherea1, a2, a3, a4, a5, b1, b2, b3, b4, c1, c2, c3, δ1, δ2, e, h1, h2, h3, h4, h5, h6, k1, k2, k3
are functions onP uniquely defined by the equivalence class of forms(49).

The system(50) and (51)provides all the local invariants for the equivalence class of
forms(49)satisfyingFqq �= 0. If one is given two triples of 1-forms

ω1 = dz − F (x, y, p, q, z) dx, Fqq �= 0, ω2 = dy − pdx, ω3 = dp − q dx

and

ω̄1 = dz̄ − F̄ (x̄, ȳ, p̄, q̄, z̄) dx̄, F̄q̄q̄ �= 0, ω̄2 = dȳ − p̄dx̄, ω̄3 = dp̄ − q̄ dx̄

on respective manifoldsJ and J̄ parameterized by (x, y, p, q, z) and (x̄, ȳ, p̄, q̄, z̄), then
there exists a local diffeomorphism




x

y

p

q

z




φ→




x̄

ȳ

p̄

q̄

z̄




=




x̄(x, y, p, q, z)

ȳ(x, y, p, q, z)

p̄(x, y, p, q, z)

q̄(x, y, p, q, z)

z̄(x, y, p, q, z)




realizing

φ∗(ω̄1) = αω1 + βω2 + γω3, φ∗(ω̄2) = δω1 + εω2 + λω3,

φ∗(ω̄3) = κω1 + µω2 + νω3

iff there exists a diffeomorphismΦ : P → P̄ between the associated 14-dimensional man-
ifolds P andP̄ of Theorem 8such that

Φ∗(θ̄i) = θi, Φ∗(Ω̄µ) = Ωµ

for all i = 1,2,3,4,5 andµ = 1,2,3, . . . ,9. This, in particular means that to realize the
equivalence between the (ωi)s and (ω̄i)s, the diffeomorphismΦ must also satisfy

Φ∗(ā1) = a1, Φ∗(b̄1) = b1, Φ∗(c̄1) = c1, etc.

This gives severe algebraic (i.e. non-differential) constraints onΦ and, in generic cases,
quickly leads to the answer if the two systems of forms (ωi) and (ω̄i) are equivalent.

In view of the above we ask for those equivalence classes of forms(49)
which correspond to systems(50) and (51) with all the scalar invariants
(a1, a2, a3, a4, a5, b1, b2, b3, b4, c1, c2, c3, δ1, δ2, e, h1, h2, h3, h4, h5, h6, k1, k2, k3) be-
ing constants. It follows that it is possible if and only if all of them are identically equal
to zero. In this well defined case the system(50) and (51)can be understood as a system
consisting of right invariants forms (θi,Ωµ) on a 14-dimensional Lie group. This group



P. Nurowski / Journal of Geometry and Physics xxx (2004) xxx–xxx 25

is simple and has indefinite Killing form, as can be seen from the structure constant coef-
ficients defined by the system(50) and (51)with all the scalar invariants vanishing. This
identifies this group as a noncompact real formG̃2 of the exceptional groupG2.

It follows that there is only one equivalence class of forms(49) corresponding to the
system(50) and (51)with all the scalar invariants vanishing. It can be defined by the function

F = q2

associated with the Hilbert equation

z′ = (y′′)2.

In case of general scalar invariants, the system(50) and (51)defines a curvature of a
certain Cartañg2-valued connection which ‘measures’ how much the equivalence class

of forms (49) is distorted from the flat Hilbert case corresponding toF = q2. To de-
fine this connection we first observe that the system(50) and (51)guarantees thatP is
foliated by nine-dimensional leaves. These are the integral manifolds of the distribution
spanned by vector fieldsYµ, µ = 1,2, . . . ,9 which, together withXi, i = 1,2, . . . ,5,
form a frame (X1, X2, X3, X4, X5, Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9) dual to the invariant
coframe (θ1, θ2, θ3, θ4, θ5,Ω1,Ω2,Ω3,Ω4,Ω5,Ω6,Ω7,Ω8,Ω9) onP. (The fact that this
distribution is integrable, is a simple corollary, from(Eq. 50), which show that the basis
θi, i = 1,2, . . . ,5, of its annihilator is a differential ideal.) This proves that the manifold
P is fibered over a five-dimensional space of leaves of this distribution. This space may be
identified with the (x, y, p, q, z) spaceJ on which the original formsωi, i = 1,2, . . . ,5,
defining the equivalence class(49) reside. Thus we have a fibrationP → J , which is actu-
ally a principal fiber bundle with the nine-dimensional parabolic subgroupH of G̃2 as its
structure group. On this fiber bundle the following matrix of 1-forms:

ωG̃2
=




−Ω1 − Ω4 −Ω8 −Ω9 − 1√
3
Ω7

1
3Ω5

1
3Ω6 0

θ1 Ω1 Ω2
1√
3
θ4 −1

3θ
3 0 1

3Ω6

θ2 Ω3 Ω4
1√
3
θ5 0 −1

3θ
3 −1

3Ω5

2√
3
θ3 2√

3
Ω5

2√
3
Ω6 0 1√

3
θ5 − 1√

3
θ4 − 1√

3
Ω7

θ4 Ω7 0 2√
3
Ω6 −Ω4 Ω2 Ω9

θ5 0 Ω7 − 2√
3
Ω5 Ω3 −Ω1 −Ω8

0 θ5 −θ4 2√
3
θ3 −θ2 θ1 Ω1 + Ω4




(52)

becomes a Cartan connection with values in the Lie algebra ofG̃2. (The fact that
ωG̃2

is g̃2-valued can be checked e.g. by successive replacement of 1 of the 14 forms

(θ1, θ2, θ3, θ4, θ5,Ω1,Ω2,Ω3,Ω4,Ω5,Ω6,Ω7,Ω8,Ω9) in ωG̃2
by 1 with simultaneous

replacement of all the others forms by 0. The so obtained 14 matrices satisfy the commu-
tation relations of̃g2.) The curvature of this connection

R = dωG̃2
+ ωG̃2

∧ ωG̃2
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being horizontal, involves onlyθi ∧ θj terms. This when compared withEq. (51), enables
the scalar invariants to be interpreted as the curvature coefficients ofωG̃2

.
Another interpretation ofωG̃2

can be obtained by recalling thatG̃2 is naturally embedded
in SO(4,3) as its subgroup stabilizing a generic 3-form inR(4,3). We have chosen a seven-
dimensional representation of the Lie algebrag̃2 in such a way that the connectionωG̃2

can be
interpreted as a reduction of a Cartan normal conformal connection associated with a certain
(3, 2)-signature conformal metric defined onJ. In the following we describe this view point.

Given an equivalence class of forms(49) satisfyingFqq �= 0 and using the forms
(θ1, θ2, θ3, θ4, θ5) associated with them via Theorem 8 we define a following bilinear form

g̃ = 2θ1θ5 − 2θ2θ4 + 4
3θ

3θ3 (53)

on P. This form is clearly degenerate and has signature (+,+,+,−,−,0,0,
0,0,0,0,0,0,0). Using the frame (X1, X2, X3, X4, X5, Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9)
onP defined above, we see that the degenerate directions of ˜g are tangent to the vectorsYµ.
Now, the system(50)guarantees that the form ˜g scales when Lie dragged along any of the
directionsYµ. In other words we have

LYµg̃ = λµg̃

with some functionsλµ. This, when compared with the fact that the distribution spanned
by Yµ, µ = 1,2, . . . ,9, defines a foliation onP, means that the degenerate bilinear form
g̃ projects fromP to J, the space of leaves of this foliation, defining there a conformal
metric [G(3,2)] of signature (+,+,+,−,−). It is this conformal structure that yields all the
information about the local invariants of an equivalence class of forms(49). Calculating the
Cartan normal conformal connection of this conformal structure, leads to the conclusion
that it is reducible to thẽg2-valued Cartan connectionωG̃2

onP.
Remarkably the conformal metric [G(3,2)] is defined on the same spaceJ on which the

original formsωi, i = 1,2, . . . ,5, defining the equivalence class(49)were defined. Thus, it
is possible to write down a local representativeG(3,2) of [G(3,2)] in coordinates (x, y, p, q, z)
in which the formsωi read

ω1 = dz − F (x, y, p, q, z) dx, ω2 = dy − pdx, ω3 = dp − q dx,

ω4 = dy, ω5 = dq.

Introducing the total differential operatorD onJ by

D = ∂x + p∂y + q∂p + F∂z,

we find that a representative of [G(3,2)] is given by

G(3,2) = [DF 2
qqF

2
qq+6DFqDFqqqF

2
qq − 6DFqqqFpF

2
qq − 3DDFqqF

3
qq + 9DFqpF

3
qq

− 9FppF
3
qq + 9DFqzFqF

3
qq − 18FpzFqF

3
qq + 3DFzF

4
qq − 6DFqF

2
qqFqqp

+ 6FpF
2
qqFqqp−8DFqDFqqFqqFqqq+8DFqqFpFqqFqqq+3DDFqF

2
qqFqqq

− 3DFpF
2
qqFqqq − 3DFzFqF

2
qqFqqq + 4(DFq)

2F 2
qqq − 8DFqFpF

2
qqq
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− 3(DFq)
2FqqFqqqq + 4F 2

pF
2
qqq + 6DFqFpFqqFqqqq − 3F 2

pFqqFqqqq

− 6DFqFqF
2
qqFqqz + 6FpFqF

2
qqFqqz − 3DFqF

3
qqFqz + 12FpF

3
qqFqz

+ 3F 2
qqFqqqFy − 6DFqqqFqF

2
qqFz + 4DFqqF

3
qqFz + 6FqF

2
qqFqqpFz

+ 8DFqqFqFqqFqqqFz − 4DFqF
2
qqFqqqFz − 9FqpF

3
qqFz + FpF

2
qqFqqqFz

− 8DFqFqF
2
qqqFz + 8FpFqF

2
qqqFz + 6DFqFqFqqFqqqqFz

− 6FpFqFqqFqqqqFz + 18F 3
qqFqy + 6F 2

q F
2
qqFqqzFz + 3FqF

3
qqFqzFz

− 2F 4
qqF

2
z + FqF

2
qqFqqqF

2
z + 4F 2

q F
2
qqqF

2
z − 3F 2

q FqqFqqqqF
2
z

− 9F 2
q F

3
qqFzz](ω

1)2 + [6DFqqqF
2
qq − 6F 2

qqFqqp − 8DFqqFqqFqqq

+ 8DFqF
2
qqq − 8FpF

2
qqq − 6DFqFqqFqqqq + 6FpFqqFqqqq − 6FqF

2
qqFqqz

+ 6F 3
qqFqz + 2F 2

qqFqqqFz − 8FqF
2
qqqFz + 6FqFqqFqqqqFz]ω

1ω2

+ [10DFqqF
3
qq − 10DFqF

2
qqFqqq + 10FpF

2
qqFqqq − 10F 4

qqFz

+ 10FqF
2
qqFqqqFz]ω

1ω3 + 30F 4
qqω

1ω4 + [30DFqF
3
qq − 30FpF

3
qq

− 30FqF
3
qqFz]ω

1ω5 + [4F 2
qqq − 3FqqFqqqq](ω

2)2 − 10F 2
qqFqqqω

2ω3

+ 30F 3
qqω

2ω5 − 20F 4
qq(ω

3)2. (54)

Despite of its ugliness this formula may be useful if one wants to write down the Cartan
invariant forms (θi,Ωµ) and the scalar invariantsa1, a2, . . . directly in terms of the function
F = F (x, y, y′, y′′, z) and its derivatives.

We can summarize the above considerations in the following theorem.

Theorem 9. All the invariant information about a class of forms

ω1 = dz − F (x, y, p, q, z) dx, ω2 = dy − pdx, ω3 = dp − q dx,

ω4 = dy, ω5 = dq

associated with a second order Monge equation

z′ = F (x, y, y′, y′′, z)

satisfyingFqq �= 0 are encoded in the conformal class of(3, 2)-signature metricsG(3,2)
which are naturally defined on the J space parameterized by(x, y, p, q, z).

Among all five-dimensional(3, 2)-signature metrics the metricsG(3,2) are distinguished
by the requirement that theirso(4,3)-valued Cartan normal conformal connection isre-
ducibleto a g̃2-valued Cartan connectionωG̃2

.

Interestingly the conformal metricsG(3,2) are very rarely conformal to Einstein metrics.
Even weaker curvature conditions, which are necessary for a metric to be conformal to
Einstein, such as e.g.conformal C-space conditions(see Ref.[10] for the definition), are
not always satisfied by the metricsG(2,3). However there are examples of the second order



28 P. Nurowski / Journal of Geometry and Physics xxx (2004) xxx–xxx

Monge equations which correspond to the conformally Einstein metricsG(3,2). Below, we
present one of such examples.

Example 6. Consider a second order Monge equation

z′ = F (y′′) with Fy′′y′′ �== 0.

SinceF depends on only one variableq we will denote its derivatives byFq = F ′, etc. Its
corresponding forms onJ are

ω1 = dz − F (q) dx, ω2 = dy − pdx, ω3 = dp − q dx,

ω4 = dy, ω5 = dq. (55)

The invariant forms (θ1, θ2, θ3, θ4, θ5,Ω1,Ω2,Ω3,Ω4,Ω5,Ω6,Ω7,Ω8,Ω9) of
Theorem 8 are totally determined by forms (θ1, θ2, θ3, θ4, θ5,Ω1,Ω2,Ω3,Ω4,

Ω5,Ω6,Ω7,Ω8,Ω9) on J which satisfy system(50) and (51). Staring with (55) we
find that onJ these forms can be represented by

θ1 = ω1, θ2 = ω2, θ3 = −(F ′′)1/3ω3,

θ4 = (F ′′)−1/3[ω5 − 1
3F

(3)(F ′′)−1ω3 + 1
30(−3F ′′F (4) + 4F (3)2)(F ′′)−3ω2],

θ5 = −(F ′′)2/3ω4, Ω1 = 0,

Ω2 = 1
90[−45F ′′F (3)F (4) + 40F (3)3 + 9(F ′′)2F (5)](F ′′)−5θ2

+ 1
30[−3F ′′F (4) + 4F (3)2](F ′′)−

10
3 θ3, Ω3 = 0, Ω4 = 0, Ω5 = 0,

Ω6 = − 1
30[−3F ′′F (4) + 4F (3)2](F ′′)−10/3θ5, Ω7 = 0, Ω8 = 0, Ω9 = 0. (56)

In this setting the only nonvanishing function among (a1, a2, a3, a4, a5, b1, b2,

b3, b4, c1, c2, c3, δ1, δ2, e, h1, h2, h3, h4, h5, h6, k1, k2, k3) is

a5 = −224F (3)4 + 336F ′′F (3)2F (4) − 80(F ′′)2F (3)F (5) + (F ′′)2[−51F (4)2 + 10F ′′F (6)]

100(F ′′)20/3
. (57)

Now applying formula(53) to the forms(56), or using formula(54) for F = F (q), we
get the following representative for the metrics [G(3,2)]:

G(3,2) = 30(F ′′)4[dq dy − pdqx] + [4F (3)2 − 3F ′′F (4)] dz2

+ 2[−5(F ′′)2F (3) − 4F ′F (3)2 + 3F ′F ′′F (4)] dpdz + 2[15(F ′′)3

+ 5q(F ′′)2F (3) − 4FF (3)2 + 4qF ′F (3)2 + 3FF ′′F (4) − 3qF ′F ′′F (4)] dx dz

+ [−20(F ′′)4 + 10F ′(F ′′)2F (3) + 4(F ′)2F (3)2 − 3(F ′)2F ′′F (4)] dp2

+ 2[−15F ′(F ′′)3 + 20q(F ′′)4 + 5F (F ′′)2F (3) − 10qF ′(F ′′)2F (3)

+ 4FF ′F (3)2 − 4q(F ′)2F (3)2 − 3FF ′F ′′F (4) + 3q(F ′)2F ′′F (4)] dpdx

+ [−30F (F ′′)3 + 30qF ′(F ′′)3 − 20q2(F ′′)4 − 10qF (F ′′)2F (3)

+ 10q2F ′(F ′′)2F (3) + 4F 2F (3)2 − 8qFF ′F (3)2 + 4q2(F ′)2F (3)2

− 3F 2F ′′F (4) + 6qFF ′F ′′F (4) − 3q2(F ′)2F ′′F (4)] dx2. (58)
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It is a matter of checking that this metric is conformal to an Einstein metricg = e2ΥG(3,2)
with the conformal factorΥ = Υ (q) satisfying equation

10(F ′′)2[Υ ′′ − (Υ ′)2] − 40F ′′F (3)Υ ′ + 17F ′′F (4) − 56F (3)2 = 0.

Cartan[4] classified various types of nonequivalent forms(49)according to the roots of the
polynomial

Ψ (z) = a1z
4 + 4a2z

3 + 6a3z
2 + 4a4z + a5,

where (a1, a2, a3, a4, a5) are the scalar invariants given by(51). This polynomial encodes
partial5 information of the Weyl tensor of the associated metricsG(3,2). In particular, its
invariant IΨ = 6a2

3 − 8a2a4 + 2a1a5 is, modulo a numerical factor, proportional to the
square of the Weyl tensorC2 = CµνρσCµνρσ of the metricG(3,2). Vanishing ofIΨ means
thatΨ = Ψ (z) has a root with multiplicity no smaller than 3. Our example above corresponds
to the situation when this multiplicity is equal to 4. According to Cartan[4] all nonequivalent
forms for whichΨ has quartic root are covered by this example. The nonequivalent classes
are distinguished by the only nonvanishing scalar invarianta5 of (57), to which the Weyl
tensor of metric(58) is proportional.

We were unable to construct an example of forms(49) for whichΨ has precisely triple
root. For this it is enough to assume that among the scalar invariants (a1, a2, a3, a4, a5) only
a4 is nonvanishing. In such situation Cartan shows that the system(50) and (51)reduces to
an invariant coframe onJ. Despite the fact that in this case the system is reducible to five
dimensions it is difficult, to find nonhomogeneous examples of forms which satisfy it.
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Appendix A

In the null coframe (α1, α2, α3, α4α5) = (θ1, θ2, 2
√

3
3 θ3, θ4, θ5) in which the metric(54)

is

G(3,2) = 2α1α5 − 2α2α4 + (α3)2

5 For completeness we give the exact formula for the Weyl tensor of metricsG(3,2) in Appendix A.
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the Weyl tensor 2-forms are:

Cµν = 1

2
Cµνρσα

ρ ∧ ασ =




0 0 0 −w14 w15

0 0 0 w15 −w25

0 0 0 −w34 w35

w14 −w15 w34 0 −w45

−w15 w25 −w35 w45 0



,

where

w14 = 3

8
c3α

1 ∧ α2 +
√

3

2
b3α

1 ∧ α3 + a3α
1 ∧ α4

+ a4α
1 ∧ α5 +

√
3

2
b4α

2 ∧ α3 + a4α
2 ∧ α4 + a5α

2 ∧ α5,

w15 = 3

8
c2α

1 ∧ α2 +
√

3

2
b2α

1 ∧ α3 + a2α
1 ∧ α4 + a3α

1 ∧ α5 +
√

3

2
b3α

2 ∧ α3

+a3α
2 ∧ α4 + a4α

2 ∧ α5,

w25 = 3

8
c1α

1 ∧ α2 +
√

3

2
b1α

1 ∧ α3 + a1α
1 ∧ α4 + a2α

1 ∧ α5

+
√

3

2
b2α

2 ∧ α3 + a2α
2 ∧ α4 + a3α

2 ∧ α5,

w34 = 3
√

3

16
δ2α

1 ∧ α2 + 3

4
c2α

1 ∧ α3 +
√

3

2
b2α

1 ∧ α4 +
√

3

2
b3α

1 ∧ α5

+3

4
c3α

2 ∧ α3 +
√

3

2
b3α

2 ∧ α4 +
√

3

2
b4α

2 ∧ α5,

w35 = 3
√

3

16
δ1α

1 ∧ α2 + 3

4
c1α

1 ∧ α3 +
√

3

2
b1α

1 ∧ α4 +
√

3

2
b2α

1 ∧ α5

+3

4
c2α

2 ∧ α3 +
√

3

2
b2α

2 ∧ α4 +
√

3

2
b3α

2 ∧ α5,

w45 = − 9

64
eα1 ∧ α2 + 3

√
3

16
δ1α

1 ∧ α3 + 3

8
c1α

1 ∧ α4 + 3

8
c2α

1 ∧ α5

+ 3
√

3

16
δ2α

2 ∧ α3 + 3

8
c2α

2 ∧ α4 + 3

8
c3α

2 ∧ α5.
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