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Abstract

We provide five examples of conformal geometries which are naturally associated with ordinary
differential equations (ODES). The first example describes a one-to-one correspondence between the
Wuenschmann class of third order ODEs considered modulo contact transformations of variables and
(local) three-dimensional conformal Lorentzian geometries. The second example shows that every
point equivalent class of third order ODEs satisfying the Wuenschmann and the Cartan conditions
define a three-dimensional Lorentzian—Einstein—Weyl geometry. The third example associates to each
point equivalence class of third order ODEs a six-dimensional conformal geometry of neutral sig-
nature. The fourth example exhibits the one-to-one correspondence between point equivalent classes
of second order ODEs and four-dimensional conformal Fefferman-like metrics of neutral signature.
The fifth example shows the correspondence between undetermined ODEs of the Monge type and
conformal geometries of signature (3, 2). The Cartan normal conformal connection for these geome-
tries is reducible to the Cartan connection with values in the Lie algebra of the noncompact form
of the exceptional groug,. All the examples are deeply rooted in Elie Cartan’s works on exterior
differential systems.
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1. Introduction

One aspect of the null surface formulation of general relativity (NSF) of Fritelli et al.

[7] is to encode the conformal geometry of space—time in the geometry of a certain pair
of partial differential equations (PDESs) on the plane. Although this pair of differential
equations appears in NSF quite naturally, the question arises as to whether it is an accident
oritis a feature of a deeper link between differential equations and conformal structures. A
closer look at this question shows that the phenomenon observed in NSF is only a tip of an
iceberg, and that there is an abundance of examples in which the geometry of differential
equations can be related to the conformal geometry in various dimensions. The main aim
of this paper is to describe these examples and to point out that all of them have their roots
in Elie Cartan’s works on differential systems.

The oldest and the simplest of these examples is due to Karl Wuenschmann. Itis contained
in his Ph.D. dissertatiof23] defended at the University of Greifswald in 1905. His result is
guoted by Elie Cartan in a footnote of RE]. According to Cartan Wuenschmann observed
that certain classes of third order ordinary differential equations (ODESs) define, in a natural
way, a conformal Lorentzian metric on the three-dimensional spaces of their solutions.
Chern in[5] interpreted the result of Wuenschmann in terms of a Cartan normal conformal
connectiorj13] with values in the Lie algebsn(3, 2). Recently, Newman and collaborators
[8] proved that every three-dimensional Lorentzian conformal geometry originates from a
third order ODE from the Wuenschmann class.

Although, due to Cartan, we have the precise coordinates of Wuenschmann thesis we were
unable to get it from the University of Greifswald. Thus, we do not know how Wuenschmann
obtained his result. In a joint pap@] with Fritelliand Newman, we derived it by searching
for third ODEs for which it was possible to define a null separation between the solutions.
We believe, that this derivation is very close to the Wuenschmann one. In the present paper,
in Section 2we give yet another derivation of Wuenschmann'’s result. This presentation is
closely related to the description given in Cartan’s footnote. In particular, we specify under
which differential condition orF = F(x, y, y', ¥”) the third order ODE

Y'=Fx 5.,y @)

is in the Wuenschmann class (conditi@)) and, using= and its derivatives, we give the
explicit formula for the conformal Lorentzian 3-metric. We also calculate the conformal
invariants of these metrics, such as Cotton tensor, and relate them to the contact invariants
of the corresponding ODEs from the Wuenschmann class. We end this section by providing
nontrivial examples of ODEs from the Wuenschmann class.

Our next examples of conformal structures associated with differential equations are
motivated by Cartan’s pap§3]. In this paper Cartan studies the geometry of an GDE
given modulo the point transformation of variables. He shows that if, in addition to the
Wuenschmann conditiof8), the ODE satisfies another point invariant conditfdr), then
it defines a three-dimensional Lorentzian Weyl geometry, i.e. the geometry defined by a
conformal class of Lorentzian 3-metriag] fand a 1-form ] given up to a gradient. This
Weyl geometry turns out to satisfy the Einstein—Weyl equations, which makes Cartan’s
observation important in the integrable systems theory (se¢2]y.
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In Section 3we formulate the equivalence problem for third order ODEs considered
modulo point transformations and present its solutibimeorem 3 due to Cartari3]. We
interpret the result in terms of Cartan’s connectiemwith values in the Lie algebra of a
groupCO(1, 2) x R3—the semidirect product of th8O(1, 2) group extended by the di-
latations, and the translation groupR¥. In case of a generic third order OD(E) this
Cartan connection is defined on a princig(1, 2) fiber bundleP over a certairfour-
dimensional manifold but, if the equation satisfies the Wuenschmann con@jiand the
Cartan conditiorf17), it may be interpreted as a Cartan connection on a prin€iQglL, 2)
fiber bundle over ghreedimensional space identified with the solution spacélfit is
this special case which was studied by Cartarséation 3.1.1ve describe his result in the
modern terminology. In particular, we explicitly write down the formulae for the mettic
and the Weyl 1-formvey, in terms of functionF = F(x, y, y', y”) defining the equation. We
also prove that the conditior{8) and (17)are equivalent to the Einstein—Weyl condition
for the Weyl geometrydew, vew]. The result is summarized ifheorem 4In two examples
(Examples 2 and)3ve provide two nontrivial point equivalent classes of third order ODEs
which satisfy conditiong8) and (17) The class of equations &xample 2is a general-
ization of examplg20) which was known to Tod22]. Example 3shows how to generate
nontrivial F = F(x, y, ¥, y”) satisfying(8) and (17rom particular solutions of reductions
of the Einstein—Weyl geometries in three dimensions. Even very simple solutions, such as a
solutionu = +/2x ofthe dKP equatio(23), give rise to very nontriviafs (see formulé24)).

In Section 3.1.2ve return to the generic case of an OE given modulo point trans-
formation and its Cartan connectienon theSO(1, 2) fiber bundleP. We show that in
this general casP is equipped with a special vector field whose integral curves fofate
The six-dimensional space of leaves of this foliation is naturally equipped with a conformal
metric [¢] of signature (3, 3). This six-dimensional conformal structure encodes all the point
invariant information about the point equivalent class of ORBsIn particular, the Cartan
(point) invariants ofTheorem 3and the curvature of Cartan’s connectiorcan be equiva-
lently described in terms of a Cartan normal conformal connection associated with the con-
formal class of metricsg]. This result, which was not mentioned by Cartan, is summarized
in Theorem 5an explicit formula for this normal conformal connection is given(B¥).

Section 4deals with a geometry of a second order ODE

Y =0, ) )

considered modulo point transformations of variables. It provides a next example of appear-
ances of conformal geometry in the theory of differential equations. This case was studied
by usin a joint paper with Sparliri@6]. In this paper, exploiting an analogy between second
order ODEs and three-dimensional CR-structures, we were able to associate a conformal
4-metric of signature (2, 2) with each point equivalence class of QRES he construc-

tion of this metric, described ifiL6], was motivated by Fefferman’s constructif§j of
Lorentzian metrics on a circle bundle over nondegenerate three-dimensional CR-structures.
Cartan, who formulated and solved the equivalence problem for GBR)Egven modulo

point transformations in his famous pap2}, overlooked existence of this metric. In Ref.

[16], we showed that the conformal class of Fefferman-like (2, 2) signature metrics associ-
ated with a point equivalence class of ODOB§encodes all the point invariant information

of such class. We summarize these resulfBlinorem 6
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In Section Swnhich, in our opinion, is the highlight of the paper, we consider the geometry
of an undetermined equation

Z=F(x, ..,y 2) (3)

for two real functions = y(x) andz = z(x) of one variable. The studies of equations of this
type can be traced back to Gaspard Monge, who knew that every solution to the equation
of the form

?=F(x,y,5.2) (4)

was expressiblevithout integralsby means of an arbitrary function of one variable and its
derivatives. Hilberf11], on an example of equation

Z=0"y7 5)
showed that, in generatg. (3)do not have this property. This resultimpressed Cartan, who
previously[4] consideredEq. (3)as equations for Cauchy characteristics of pairs of PDEs in
the involution defined on the plane. Cartan solved the equivalence problem for these PDEs
which, implicitly, solves an associated equivalence problem for O@BEg$-rom Cartan’s
solution of this equivalence problem it follows that amdeg. (3) only those for which
Fy»» = 0 have general solutions which can be expresgébut integrals

From the geometric point of vieq. (3)for which F~,» # 0 are much more interesting
then those withF,»,» = 0. It follows from Cartan’s worK4] that nonequivalent classes
of Eq. (3)with Fy»,» # 0 are distinguished by means of a curvature of a certain Cartan
connection. Surprisingly, this connection has values in the Lie algebra of the noncompact
form G of theexceptionaliroupG-. The curvature of this connection is vanishing precisely
in the case of equations equivalent to the Hilbert exartfleT his, in particular means that
the symmetry group of a very simple equati@) is isomorphic toG». This fact, noticed
with pride by Cartan if4], was perhaps the first geometric realization of this group predicted
to exist by Cartan and Engel in 1894.

The main original part aBection Sconsists in an observation that this Cartan connection
can be understood as a reduction of a certain Cartan n@onérmalconnection. This is
associated with a conformal metiigs ) of signature (3, 2) naturally defined I6§) on a
five-dimensional spackparameterized by the five independent variabtes,(y', v, z). It
follows that all the invariant information about the O& satisfyingF,~,» # 0 is encoded
in the conformal properties of the metiigz 2). We introduced this metric motivated by the
Fefferman construction described[6]. Surprisingly, its existence, like the existence of
Fefferman-like metrics described 8ection 4 was overlooked by Cartan.

Section 5has three subsections. The first one makes precise the notion of an equation
having a general solution without integrals. It also contains the proof of Monge’s result
on Eq. (4) quoted above. The proof uses Cartan’s method of equivaldeand aims
to motivate the definition of equivalence problem feq. (3) This definition is given in
Section 5.2n terms of an equivalence of a system of three 1-fo@23onJ. The beginning
of Section 5.3reformulates Cartan’s solution for the equivalence problem for pairs of
PDEs in involution on the plane adapting it to the equivalence problem for @B)&gth
Fyry # 0. This is summarized iTheorem 8 The interpretation of this result in terms
of Cartan'sgz-valued connectiomy, is given by formula(52). The rest of this section
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is devoted to the introduction and the discussion of a five-dimensional conformal (3, 2)-
signature metric whose Cartan normal conformal connection is reducikig; foThis
metric is defined by formuléb3) and is finally expressible entirely in terms of the function
F=F(x,y, ',y z)andits derivatives in formulgs4). The main properties of this metric
are summarized itheorem 9

As an application of this section, Example 6 we consider equations of the form

7 = F(y”).

This generalize$5). We show that in this case there is only one basic invariant of such
equations. The metrioS 3 ) associated with Example 6 turn out to be always conformal

to Einstein metrics. We characterize the Einstein scale for them by means of a simple ODE.
Finally, in case of a generiE, we show that the square of the Weyl tensor for metrics
G3,2) can be interpreted in terms of a classical invariant of a certain polynomial of the
fourth order. This polynomial resembles very much the Weyl tensor polynomial known in
the Newman-Penrose formalidib].

2. Third order ODEs considered modulo contact transformations

In 1905 Wuenschmari@3] observed that the spaces of solutions of a certain class of third
order ODEs are naturally equipped with conformal Lorentzian geometries. His observation
can be summarized as follows.

Consider a third order ordinary differential equation

y'=F(x,y,5.y") (6)

for a real functiony = y(x) of one variable. To simplify notation lgt = y’ andg = y”.
Now, consider the four-dimensional spateparameterized by( y, p, ). This space, the
second jet space, is a natural arena to study the geomesy. @6) In particular, the total
differential vector field

D = 93, + pdy + qdp + Fo,

on J2yields the basic information about the solutiong&)f The integral curves @ foliate
J? with one-dimensional leaves. The leaf sp&aef this foliation is three-dimensional and
can be identified with the three-dimensional space of solutio(@)ofFollowing Cherr5]
we equipJ? with the following bilinear fornt

g =2[dy — pdx][dg — $F,dp + K dy + (3¢F, — F — pK) dx] — [dp — g dx]?,
(7)

where

1 12 1
K = §DF, — {F2 - }F,.

1 Here and in the following we adapt the convention from general relativity in which a symmetrized tensor
product of two 1-formsx andp is denoted by = %(a RB+LRa)egel=a®a.
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Clearly, this form is degenerate. It has signature €, —, 0) and its degenerate direction
is tangent to the vector fielf. It is natural to ask about the transformation properties of
g under the Lie transport along the degenerate direcfiott follows that ¢ transforms
conformally under the Lie transport alomyif and only if the functionF = F(x, y, p, q)
defining the ODE satisfies the following nonlinear differential condition

A=Fy+(D—-3F)K =0. (8)

This condition,the Wuenschmann conditiatefinesthe Wuenschmann class$ third or-

der ODEs. Each equation from this class has a naturally defined conformal Lorentzian
structure on the space of its solutions. In our descriptioik; gatisfies(8), this struc-

ture is obtained by projecting from J2 to the leaf spaceS of integral lines of

D. Since in such casg fransforms conformally alond, it projects to the con-
formal (+, —, —) signature structureg] on S. An interesting feature of the above
Wuenschmann construction is its invariance under the contact transformations of the
ODE (6). More precisely, ifEq. (6) undergoes a transformation of variables of the
form

x—>X=xxyp), y—=>y=yxyp, p—>p=pxyp)
with
)Tx_ﬁx‘i‘P()Ty_ﬁy):}Tp_ﬁp:O

then, if it is in the Wuenschmann class for the functilor= F(x, y, p, g), it is also in the
Wuenschmann class for the transformed functtors- F(x, y, p, q). It follows from the

work of Chern[5] that the Wuenschmann condition is the lowest order contact invariant
condition one can build out df and its partial derivatives. Moreover, every other contact
invariant of an equation from the Wuenschmann class corresponds to a conformal invariant
of the Lorentzian conformal structurg][ These conformal invariants are constructed by
means of the derivatives of the Cotton tenSof [g]. AssumingA = 0 and using the explicit

form of the projection{] of g we calculate that the five independent component afe

C1 = Fagqq> C2 = Kyqq, C3 = Lyg, Cq = Ny,

Cs = —3KyyL + 3K,L, — 3KLyy + 3Ly + 3N, + F,N,,
where

L= _%qu + %quK —Kp - %FqKq’

N = %quL - %Fqu — 2L, + KK4g — Kgy — %KS

It is worth noting that the vanishing af1 implies the vanishing of all th€’;s, so that
the conformal structureg] has vanishing Cotton tensor iff,,,, = 0. In such a case
the corresponding Wuenschmann classEqf (6) is contact equivalent to the equation
y/// — 0

Summing up we have the following theorem.
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Theorem 1 (Wuenschmann)hird order ODEs of the form

y/// — F(.X, y7 y/’ y//)

split onto two main contact nonequivalent clasgee Wuenschmann class and its com-
plement. There are contact nonequivalent equations within the Wuenschmann class. Each
representative of a contact equivalence class of equations satisfying Wuenschmann condi-
tion defines a conformal Lorentzian structure on the space of its solutions. The conformally
equipped solution spaces of contact equivalent equations are conformally redattvht

each equivalence class of equations for whick- 0 has a natural three-dimensional con-
formal Lorentzian structure associated with it

There is a converse to this theorem.

Theorem 2 (Frittelli, Kozameh, Newmankvery three-dimensional Lorentzian confor-
mal structure[g] defines a contact equivalence class of third order ODEs satisfying the
Wuenschmann condition

Below, without the proof which can be found|[i8], we sketch how to pass fromg][to
the associated class of ODEs.

Given a conformal family of Lorentzian metriag] jon a three-dimensional manifol
we start with a particular representatiyef [g]. This, in local coordinategx’}, i = 1, 2, 3,
canbewritten ag = g;; dx! dx/. Since the metrigis Lorentzian itis meaningful to consider
the eikonal equation

ij 95 95
Ox!

for the real-valued functios = S(x’) on M. This equation, being homogeneousSirnas
the completesolution S = S(x’; s) depending on a single paramegeMNow, treatingx's,

i =1, 2, 3 as constant parameters aab an independent variable we eliminatex? and
x3 by triple differentiation of equatio = S(x'; s) with respect tes. As a result we get a
relation of the form

S" =F(s, S, S, 8"), 9)

which shows thats = S(s) satisfies an ODE of the third order. It follows that this equa-
tion satisfies the Wuenschmann condit{@). It also follows that if we start with another
representativg of [g] and find the corresponding complete soluti®r= S(x';s) of the
corresponding eikonal equation we get a third order ODESfer S(s) which is related to
(9) by a contact transformation of variablgsSands’.

Example 1. It can be easily checked that

[*+ Q- pH¥? | pq?
[1 - p?3/2 1-p

F(x,y,p.q) =«
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satisfies the Wuenschmann conditi@) for all values of the real parameter Moreover,

the third order ODES” = F(x, y, ¥, ¥”) corresponding to different values ef> 0 are
contact nonequivalent. It follows that the conformal Lorentzian structgjeassociated
with suchFs have four-dimensional group of conformal symmetries, which correspond to
four contact symmetries of the associated third order QT2

3. Third order ODEs considered modulo point transformations

Cartar{3] considered third order ODEs modulo point transformations of variables. These
transformations are more restrictive then the contact transformations. They merely mix the
independent and dependent variables

x = x = x(x, y), y—y=yxy) (10)

of Eq. (6) Cartan in3] found a full set of invariants which determine whether 2 third order
ODEs are transformable to each other by a point transformation of variables. He used his
equivalence method his method starts with a system of four 1-forms

ol=dy—pdr, w?=dp—gqdx, ©>=dg— F(x,y,p q)dx,
ot = dx, (11)

which an ODE of the forn{6) defines on the second jet spate Under transformations
(10) of the ODE(6) the forms(11) transform by

ol = o' = aw?, w? = @ = B(? + yob),

0 = @° = (0 + ro® + po?), o > &% = v + ow?), (12)
wherea, B, , €, A, i, v, o are functions on/2 such thatwfev # 0. These functions are
determined by each particular choice of point transformatl®) Instead of working with
forms '), i = 1, 2, 3, 4, which are defined o#? only up to transformationgl2), Cartan
considers a manifold parameterized by, p, ¢, @, 8, ¥, €, A, ., v, 0) and forms

0! = aw?, 6° = B(w? + yo'), 0% = e(w® + r0® + uot),
6% = v(w* + ow?),

which are well defined there. Using his equivalence method he constructs a seven-
dimensional manifold on which the four forms?*, 62, 6%, 9* supplemented by three other
forms$21, 22 and$23 constitute arigid coframe. This coframe encodes all the pointinvariant
information about the ODEb). More precisely, Cartan proves the following theorem.

Theorem 3. A third order ODE(6) considered modulo point transformations of variables
(10) uniquely defines

e a seven-dimensional manifofe|

e severil-formsol, 62, 63, 6%, 21, 25, 2z onPsuchthat® A 6% A 03 A0 A 21 A 22 A
23 # 0and

e functionsA, B,C, D, G, H, K, L, M, N onP,
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which satisfy the following differential conditions

dor = 21 AT+ 0 A%, A2 = 22A 02+ 23 A 08+ 6% A 63,
do® = (2622 — 21) A 6% + 23 A 6% + AG*OY,
do* = (21 — 22) A 6% + BO? A 0L + CO3 A 61,
d21 = —23 A 6% + (H + D)o* A 6% + (3K — 2B)0* A 6°
+(G + L)o* A 6% — €O A 63,
ds2o = DO A 67 + 2(K — B)9* A 6° + GO A 6% — 2C0° A 63,
d23 = (22 — 21) A 23+ MO* A 6% + (D — H)O* A 63 + NO* A 6%
+ (2K — B)6? A 62 + G6% A 6. (13)

Two third order ODEsy” = F(x, y,y’,y”) andy” = F(x, y, Y, y’) are transformable
to each other by means of a point transformat{d®) if and only if there exists a dif-
feomorphismp : P — P of the corresponding manifoldB and P such thaty*(¢) = €',
i=1234and¢*(2,) =2, u=123.

3.1. Cartan connections associated with third order ODEs considered modulo point
transformations

Among the equivalence classes of third order ODEs describedrtmorem 3
there is a particularly simple class corresponding to the vanishing of all the func-
tions A,B,C,D,G,H,K,L, M, N. In case of such ODEs the corresponding forms
(01, 02, 63, 6%, 21, 22, £23) can be considered a basis of left invariant forms on a Lie group
which naturally identifies with the spad@ The structure constants of this group are de-
termined byEq. (13)with all the functionsA, B, C, D, G, H, K, L, M, N vanishing. This
group turns out to be locally isomorphic @0(1, 2) x RS, the semidirect product of the
SO(1, 2) group extended by the dilatations, and the translation gro®Y.mn this sense,
Theorem 3 can be interpreted in terms @@(1, 2) x R3 Cartan connection defined over
the space/?. Explicitly, the 1-form

2 0 0 0 0
0t 2,— 27 —6* 0 0

w=|6 -2 0 -6 0 |, (14)
3 0 —23821—22 0
0o ¥ -6 N -2

which has values in the Lie algebra®D(1, 2) x R3, defines a Cartan connection ®h
To see this it is enough to observe that the sysf{gB) guarantees that the annihilator of
forms @1, 62, 63, 6%) is integrable, so thaP is fibered over the four-dimensional space of
leaves tangent to this annihilator. This space of leaves naturally identifieg/tithising
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Eqg. (13)and calculating
R=dvo+wArw

to be

with
F = DO A 0?+2(K — B)O* A 03—2C6% A 3+GO A 6%, &% = — A0 A 64,

RY = —HO* A 6% — KO* A6 — CO? A 63 — LO* A 6%,

R% = —MO* A 6% + (H — D)o A 03 + (B — 2K)0% A 6° — NO* A 6% — GO A 0%,

RY, = Bo' A 0% + Cot A 65,
we find thatSO(1, 2) — P — J2 equipped withw is a Cartan bundle with@O(1, 2) x R3
connection over?.

In the next subsection we discuss under which condifidreorem Xan be interpreted

interms of a Cartan connection over a certanee-dimensionalpace, the space with which
all the solution spaces of point equivalent equati@@snay be identified.

3.1.1. A subclass defining Lorentzian—Einstein—Weyl geometries on the solution space
First, the systen{13) guarantees that, not onfy is foliated by the three-dimensional

leaves discussed so far, but it is also foliateddayr-dimensionaleaves. These are tangent

to the integrable distribution on which the fornsg (62, 6°) vanish. Thusr : P — M can

be considered a fiber bundle over the three-dimensional sptictleaves of this foliation.

A four-dimensional grougCO(1, 2) acts naturally on the fibers 1(M) of P equipping

it with a structure of &CO(1, 2) fiber bundle overM. Now, the forme defined by(14)

can be interpreted as@O(1, 2) x R® Cartan connection 080(1, 2) - P — M iff in

the curvatureR there are only horizontal® A 62, 61 A 63 and6? A 6° terms. This is only

possible if

(@ A=0 (15)
and

(b) G=0.

These are also sufficient conditions since, if they are satisfied, the funétiandL also
vanish. Vanishing of each éfandG is a point invariant property of the OD). One can
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also consider these conditions independently of each other. The vanisi#fing prfecisely
the Wuenschmann conditig8) which, being contact invariant, is also a point invariant.
If Eqg. (6)satisfies this condition it defines the conformal metyien M. This conformal
Lorentzian structure oM is the projection of the bilinear form

g =20%° — (6°)° (16)

fromPto M. Thus, similarly to the contact case, point equivalent clasdeg.qb)satisfying
the Wuenschmann conditioft = O define a conformal structure on the spaek If, in
addition condition (b) is satisfied then the pait "= —2£2,) projects to a well defined
Weyl geometry(gew, vew)] ON the spaceM. We recall that aVeyl geometryn a three-
dimensional manifold\ is the geometry associated with an equivalence clgss)J of
pairs (g, v), in whichgis a Lorentzian metriqy is a 1-form, and two pairg(v) and ¢’, v')
are in the equivalence relation iff there exists a functhasn M such thay’ = e=%*g and
VvV =v+2dp.

To see how the Weyl geometryel{w, vew)] appears in the above context we first remark
that the conditiorG = 0, when written in terms of the functiof = F(x, y, p, ¢) defining
Eq. (6) is

— 2
G =0% D?F, — DF,, + F;y = 0. 17)

Then, identifyingM with the quotient/2/D and using thex( y, p, g) coordinates o2,
we have

g = P20 (0° = 3Fg0® + (§DFy = 3Fp — 5F))ot) — (@?)7],
— =22y = 2d log B + 2(Fyp — DFyg)et + F 02 + 3F,0*.

The bilinear formgTis identical with(7), thus due to the Wuenschmann conditior= 0,
it projects to a conformal structurgd,] on M. Calculating the Lie derivative af with
respect tdD we find that

Lph = 3(D?*Fyq — DFyp + Fgy)o +d(...).
Thus, due to conditiofiL7), LpV is a total differential. This means thaprojects to a class
of 1-forms [penw] ON M which are given up to an addition of a gradient.
It follows that the so defined Weyl geometrygd(y, vew)] On M satisfies the Einstein—
Weyl equations. To see this we first recall that a three-dimensional Weyl geometey [(

ij0'07, v)] defines a Weyl connection, which is totally determined by the connection 1-
forms F’j satisfying

do’ + Fl:/ N 0, dg,-j — Ij — I'ji = —vgjj, £ = g,-k.ij.
The Weyl geometry is said to be Einstein—Weyl iff the curvature

i _lpi gk A pl _ i i k
Q,li—lejkze NG _dF’j+F’k/\Fj
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of this connection satisfies

R(j) — 3Rgij =0, (18)
where
Rix =R, R =3(Rij+Rj)

and .. . .
R=g"Rij, g* gy =';.

It follows that in the case of Weyl geometrygly, vew)] the Einstein—Weyl condition
(18) reduces to the requirement that the point invarirdf the systen{13) vanishes. To
show that conditiongl = G = 0, which were needed to defingg(y, vew)], imply M =0
we apply the exterior derivative d to the both sidesof (13) Then from the equation
d?63 = 0 we deduce that = L = 0. Having this and insisting or’e2, = 0 we get that
D = 2H, which is only possible iy = 0.

Summarizing we have the following theorem.

Theorem 4 (Cartan). A point equivalence class of third order ODEs represented by an
ODE

y/// — F(.x, y’ yl’ y//)’

which satisfies Wuenschmann conditi@jand Cartan conditior§l7)defines a Lorentzian—
Einstein—Weyl geometfygew, vew)] 0N the three-dimensional spagdd. This space can be
identified with the solution space of any of the ODEs from the equivalence class

Itis a nontrivial task to find® = F(x, y, p, g) which satisfies the Einstein—Weyl condi-
tions (8) and (17) Cartan gave several examples of skch(se€g22] for a discussion of
that issue). Here we present two other ways of constructing them.
Example 2. It is relatively easy to find all point equivalence classes of third order ODEs
which admit at leastour infinitesimal point symmetriefl2]. Among them there is a 1-
parameter family of nonequivalent ODEs represented by

~ Va(2qy — p?))?

¥ ’
which corresponds to nonequivalent Einstein—Weyl geometries for each value of the real
constanta. This constant enumerates nonequivalent ODEs; its sign is correlated with the
sign of (Z7y — p?), so that the expression under the square root is positive—f oo the
equivalence class of ODEs may be represented by

F=¢%2 (20)

which also satisfies condition®) and (17) Since in the both casg49) and (20)the
corresponding third order ODEs have the total differential vector fizlas one of their
infinitesimal point symmetries, then the corresponding Einstein—Weyl geometry has three
infinitesimal symmetries. In case of findg¢he Lie algebra of these symmetries isisomorphic
tosq(1, 2).

F (19)
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Example 3. Since three-dimensional Lorentzian—Einstein—Weyl geometries are known to
be generated by solutions of various integrable systems, one can try to use such solutions
to associate with them point equivalence classes of QBE%Ve illustrate this procedure
on an example of solutions to the dKP equation.

The dKP equation for areal functian= u(x, y, r) can be considered to be the Froebenius
condition

dot A @t At =0, do* At Aw* =0 (21)
for the two Pfaffian forms
ol =dx+ @+ v?)dr+vdy, o =dv— (uy+ uv)dr — u, dy (22)

in a four-dimensional space parameterized:y( ¢, v). Indeed, by substitution ¢R2) to
(21) we find that(21) is equivalent to

Uyy = —(ux)2+ux, — Ullyy, (23)

which is the dKP equation. Since every solution(®3) generates a three-dimensional
Lorentzian—Einstein—Weyl geometf24] it is reasonable to ask if there is a point equiv-
alence class of third order ODEs associated with each such solution. It turns out that the
answer to this question is positive. Given a solutiog u(x, y, r) of the dKP equation there

is a point equivalence class of third order ODEs, with a representative in th€é@reuch

that the four 1-formsdt, ©2, @°, @*) of (12) encoding it have, in a convenient coordinate
system £, y, t, v) on J2, representatives’ andw® of (22) andw? andw® given by

0% = (—Uityy — 2u,yv + Uy 0?) O — 1y dx — Uyy dy,
@ = (—uuix — 4u)zcy + Attt yv — u)zcxvz) dr — u)zcx dx + uxx(—2uxy + uxcv) dy.

In particular,Eq. (21) guarantee that there exists a coordindten J2 such that in the
class(12) of formsw?® there is an exact formxi. This defines a functioX, which in turn

is interpreted as the independent variable of the associated ODE. For example, for a very
simple solution

u=~2x
of the dKP equation we find that
X=t+ 30"+ V2,

which enables us to find the associated class of third order ODEs. This class may be
represented by quite a nontrivial
pq(=12+ 3pg — 81— pq) + 8(1+ 1 - pq)
B .
p

It can be checked by a direct substitution that secatisfies the Einstein—Weyl conditions
(8) and (17)

F(x,y, p,q) = (24)
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We close this section with a remark, that it is not clear whether all three-dimensional
Lorentzian—Einstein—Weyl geometries have their associated point equivalence classes of
third order ODEs. Our experience, based on the Cartan’s equivalence method, suggests that
it is very likely.

3.1.2. Conformal metric of signature (3, 3) associated with a point equivalence class
of third order ODEs

If an ODE (6) does not satisfy the Wuenschmann condit{@b), it is impossible to
define a conformal structure in three dimensions out of the Cartan inva(tEgjtdHow-
ever, irrespectively of the Wuenschmann conditj®B) being satisfied or not, with each
point equivalence class of ODKS6), we can associate a conformal metric of signature
(+, +, +, —, —, —), whose conformal invariants encode all the point invariant information
about the corresponding class of ODEs. We achieve this by using Sparling’s prof&iure
which, with ‘the Levi—Civita part’

-2 -0 0
i _ _ b
0 —823 21— $20

of the Cartan connectiofi4) and with the bilinear forng = g;;6'6/ of (16), associates a
new bilinear form

=€t gk

onP. Here
0O 0 1
(¢)=10 -1 0
1 0 O

ande;j is the standard Levi—Civita symbol RS so that
g = 2[(21 — £22)6% — 230" + 6%67].

This bilinear form is degenerate ga and has ¢, +, +, —, —, —, 0) signature. Denot-
ing the basis of vector fields of dual to the 1-formsdl, 62, 63, 6%, 21, 22, $23) by
(X1, X2, X3, Xa, Y1, Y2, Y3), we find that the degenerate directionZofs tangent to the
vector fieldZ = Y1 + Y».

It is remarkable that, due t8q. (13) the bilinear formg transforms conformally when
Lie transported along. Explicitly, without any assumptions on the Cartan invariants
A,B,C,D,G,H K, L, M, N, we have

L£78=23.

oQu
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Thus, the bilinear forng naturally descends to a conformal melgi¢ of neutral signature

on the six-dimensional spag€ of integral curves of the vector field. This conformal

metric yields all the point invariant information about the corresponding point equivalent
class of ODEg$6). In particular, the Cartan invariants B, C, D, G, H, K, L, M, N can be
understood as curvature coefficients of the Cartan normal conformal connection associated
with gr. This Cartan connection can be represented by the follosaf#y 4)-valued 1-form

%.Qz %(Ql — 27) —21194 71‘.(23 T4 T5 %1—'34 0
-2 12 3¢ ris 0 -I% -Id 74
—23 12 12 I rz o I 75
94 %94 0 —%.Ql-i- 27 F34 —Fzs 0 %F34
WN = )
62 0 —30r 168 —32, 3023 —10° 11— )
1 1p1 1p2 1p4 1 154
G 10 0 10 -36* -2 0 —16
63 7%93 7%02 0 —rl; —r2; %Ql — §22 %1523
0 62 oL B -2 -2 0 -3
(25)
where
14 = $5[X3(G) — 6H]0* — FK62 — 2C6°,

12

75 = 3[—AC — 2Xp(L) — 2M + X4(D)]60* + 5[ X3(G) — 6H + 6D]6?
+3(-2B + 3K)6° + Go*,

s =32+ 3G - L)%,  I'%3=No*+ (G — L)+ A6*,

%y = Mo — H6? + 1(2B - 3K)6° — 3(G + L),

% = (—H+ D)9 + $Kk02 + C6%, I3y = 3(2B - K)o* + C0?

on?P.
We remark that not all six-dimensional split-signature conformal metrics originate from
a point equivalence third order ODEs. To see this, we calculate the curvature

Ry = dwpn + on A oy
of wyr and observethat it has quite special form when compared to the curvature of Car-
tan’s normal conformal connection associated with a genefieH, +, —, —, —) signature

metric.
Summarizing, we have the following theorem.

Theorem 5. Each point equivalence class of third order ODEs

y/// — F(.x, y7 y/, y//)

2 We omit writing down the explicit formulae for this curvature here.
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defines a conformal split-signature metgg on a 6--dimensional manifoldV, which is
canonically associated with this class of ODEs. The conformal mgfrigields all the
point invariant information about the corresponding class of third order ODEs

4. Second order ODEs considered modulo point transformations

This case has been recently carefully studied in Ref]. The ODE part of this paper
includes, in particular, description of the geometry associated with an equation

Y= 0, y.Y) (26)

considered modulo point transformatiofi®). This geometry, in the convenient parame-
terization &, y, p = y') of the first jet spacd?, turns out to be very closely related to the
geometry associated with the following split signature metric, the Fefferman metric:

g =2[(dp — Q dx)dx — (dy — pdx)(dp + §0,dx + 0 ,(dy — pdx))] (27)
onJ! x R. More precisely, we have the following theorem.
Theorem 6.

(1) Every second order ODE26) endows its corresponding spagé x R with an orien-
tation and with the Fefferman metr{27).

(2) Ifthe ODE undergoes a point transformatitt0) then its Fefferman metric transforms
conformally

(3) All the point invariants of a point equivalence class of ODES6) are expressible
in terms of the conformal invariants of the associated conformal class of Fefferman
metrics

(4) The Fefferman metriq®7)are very special among all the split signature metricglen
manifolds. Their Weyl tensor has algebraic typé N) in the Cartan—Petrov—Penrose
classification[1,18-20] Both the selfdualC* and the antiselfdual’—, parts of it are
expressible in terms of only one component. In,factis proportional to

w1 = DZQPP —4DQpy — DQppQp +40,0Qpy — 3Qpp Oy + 6ny
andC~ is proportional to
w2 = Qpppp,
where
D =0, + pdy + Q0,.
Each of the conditions; = 0 and wz = 0 is invariant under point transformations
(20).

(5) Cartan normal conformal connection associated with any conformal ¢thed Feffer-
man metrics is reducible to a certaBL (2 + 1, R) connection naturally defined on an
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eight-dimensional bundle oveét which via Cartan’s equivalence methgd uniquely
associated with the point equivalence class of corresponding @B&sT he curvature
of this connection has very simple form

0 wy =*
22~10 0 wp

0O 0 O

If w1 = 0 or wo = 0 this connection can be further understood as a Cartan normal
projective connection over a certain two-dimensional space S equipped with a projective
structure[14]. S can be identified either with the solution space of the QZ&}in the

w1 = 0 case or with the solution space of its d?aDDE in thew, = 0 case

5. Equationsz’ = F(x, y, y', y”, z), noncompact form of the exceptional group
G and conformal metrics of signature (3, 2)

5.1. Equations with integral-free solutions

Consider a differential equation of the form
GO, v,y ..., y™, 2,7, ..., %) =0 (28)

forreal functiony) = y(x) andz = z(x) of one real variable. In this equatich: R”+++3 _

R and y(), (@ denote therth and theqth derivative ofy and z with respect tox. In

1912 Hilbert[11] considered a subclass &fq. (28) which he calledequations with
integral-free solutiongGerm. integrallose Aufloesungen). These equations are defined as
follows.

Definition 1. Equation(28) hasintegral-free solutionsf its general solution can be written
as

x = x(t, w), @), ..., wP@), vy = v w), w),..., wP@),
z =2t w(e), w'(0), ..., wP),

wherew = w(z) is anarbitrarysufficiently smooth real function of one real variable

As an example consider equation

7=y (29)

3 See e.g[16] for the concept of dual second order ODEs.
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Clearlyx =1, z = w(t), y = w/(¢) is its general solution, which shows th&0) is in the
Hilbert class of equations with integral-free solutions. Very simple equéfi®pbelongs
to the class ofirst order Monge equations

J=F(x, Y, 2), (30)

which areEq. (28)with unknowns of at most of the first order.
Associated with each first order Monge equati8) there is a four-dimensional space
J parameterized by( y, p, z) and two 1-forms

ot =dz — F(x, y, p, z) dx, w?=dy— pdx.

Every solution of the Monge equatidB0) is a curvec(r) = (x(z), y(z), p(t), z(t)) in J on
which the formsw! andw? vanish.

Suppose now, that given a Monge equat{8), there exists a transformation of the
associated variables,(y, p, z)

x X x(x, v, p,2)
o KN I SR (31)
p p plx, y, p,z)
z z 2(x, y, . 2)
such that
dy — pdx = aw® + Bo?, dp — Zdr = yo! + §0? (32)
with «, B, y, § functions onJ satisfyingA = a8 — By # 0. In such case
o' = ATH3(dy - pdx) — A(dp — zd)],
o® = A7 —y(dy — pd¥) + o(dp — Zd¥)].
Thus, taking
xX=t, y = w(t), p=w(r), z=w"(r), (33)

we construct a curve ihion which the forms»! andw? identically vanish. Now, the inverse
of ¢ which givesx = x(x, y, p, z), etc., provides

x=x(t, wn), w(@), w' @), y=ytw), w),w' @),
z = z(t, w(r), w'(r), w" (1)),

which is an integral-free solution of the Monge equat(8a).
We summarize our discussion in the following Lemma.

Lemma 1. Every first order Monge equatiof80) admitting coordinate transformation
(31) which realizeg32) has integral-free solutions

Example 4. Consider equation

=02 (34)
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Its corresponding forms ame! = dz — p?dx, w* = dy — pdx. The change of variables
x =3z, y=3(x—p), z= 32x%> — px+y, p = x brings them to the forna! = dy —
pdx — x(dp — zdx), 0? = —%(dﬁ— z dx). This proves that substitutiof33) leads to the
following integral-free solution oEqg. (34)

x = Juw'(r), y = Stw’(1) — 3w'(r), z = 320" () — w'(t) + w(b).

A natural question as to whether all the first order Monge equations have integral-free
solutions was answered in affirmative by Monge. Thus, we have the following theorem.

Theorem 7 (Monge).Every first order Monge equation has integral-free solutions

It is instructive to sketch the proof of this theorem.
Given a Monge equatiof80) we consider its associated two 1-forms

wt=dz— F(x,y, p,z)dx and w?=dy— pdx (35)

onJ. We say that another pair of linearly independent 1-foras {?) on J is equivalent
to the pair(35) if there exists a transformation of variablgkl) and functionsy, 8, v, §,
ad — By # 0, onJ such that

" (@) = awt + o,  ¢F(@02) = yo! + 0. (36)

According toLemma 1 if we were able to show that there is only one equivalence class of
forms @!, w?) equivalent to (¢ — pdx, dp — z dx), the theorem would be proven. Thus,

in the process of proving the Monge theorem, we are led to study the equivalence problem
for two 1-forms given modulo transformatio(®6) on an open set dR*. Introducing the

total differential vector field> = 9, + pd, + F9; it is not difficult to prove that a pair of
1-forms(35) originating from the Monge equations for which

Fpp=0 and DF,— F,— F,F, =0 (37)

and a pair of forms originating from the equations for which at least one of the above
conditions is not satisfied ar®tequivalent. Then, the Cartan equivalence method applied
to the forms related to the first order Monge equatiootsatisfying(37) shows that they
areall locally equivalent to (¢ — p dx, dp — z dx). Thus, the first order Monge equations
for which at least one of conditior{87) is not satisfied have general solutions of the form

x = x(r, w(r), w'(r), w' (7)), y = y(t, w(r), w'(r), w”(r)),
z = z(t, w(r), w' (1), w”(z)). (38)

On the other hand, if we apply the Cartan equivalence method to the forms originating
from the Monge equationsatisfying(37), we show that they arall locally equivalent to

(dz, dy — pdx). Thus, takingz = const, x = ¢, y = w(¢) and p = w’'(¢r) we show that in

such case the Monge equations have general solutions of the form

x=x(tw@). w @),  y=yEwe)w @), =z w), w). (39)

Therefore in the both nonequivalent caé&®) and (39the Monge equations have integral-
free solutions. This finishes the proof of the Monge theorem.
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Hilbert in [11] considered an equation
=0 (40)

and proved that it hasot the property of having integral-free solutions. It turns out, that
among all the equations which have not this property, the Hilbert equétidyis, in a
certain sense, the simplest one.

5.2. Equivalence of forms associated with OREs: F(x, y, y', y”, 2)

The Hilbert equatiorf40)is a special case of an equation
' =Fx, Y.y, 2). (41)

Equations of this type were considered by Caftdrwho, in particular, observed that they
describe Cauchy characteristics of pairs of involutive second order PDESs for a real function
of two variables. In the context of the present paper we are interested under what conditions
Eq. (41)have integral-free solutions. The treatment of the problem is a simple generalization
of the method described in the sketch of the proof of Monge’s theorem. Thus, with each
equation(41) we associatéhreel-forms

o' =dz — F(x, y, p, q, z) dx, w?=dy— pdx, w® =dp — gdx, (42)

which live on a five-dimensional manifold parameterized byx(y, p = y',q =", 2).
Following the case of Monge equations, we need to study the equivalence problem for
thetriples of linearly independent 1-formsof, w2, »3) on an open set dR®. More pre-
cisely, let @1, w?, w3) be defined on a open sétc R® parameterized by( y, p, ¢, z) and

(@', @2, ®°) be defined on a set ¢ R® parameterized byx(y, p, ¢, z). We say that the

two triples !, w?, »%) and @1, ®?, ®°) are (locally) equivalent iff there exists a (local)
diffeomorphismg : J — J

X x x(x, v, p,q,2)
y y y(x, ¥, p, g, 2)
p |55 =]y a2 (43)
q q q(x,y, p, g, 2)
z z 2(x, ¥, P, 4, 2)

and aGL (3, R)-valued function

apBy
f=1]9d6¢€exr

KLV
onJ such that
¢ (@Y = aw! + pu? + yo©, " (@°) = st + €w® + 1°,
¢*(@°) = kot + pw? + v, (44)
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The equivalence problem for such triples was solved by Cartan. His solution, in particular,
can be applied to the triples of 1-fornié2) originating from the Cartan equatioél).
Cartan's analysis, restricted to such triples, shows that they split onto two main nonequivalent
classes. The first class originates fr&u. (41)satisfying

Fagq =0,
the second class is defined by the equations for which

F,y #0.

Both the above classes include nonequivalent triples of 1-forms, but only the first class
originates fromEq. (41)with integral-free solution. All the Cartan equations wijy, # 0

have not the property of having integral-free solutions. The Hilbert equétidns one of

the equations from this class.

Example 5. According to the above discussionkit£ 0 andk # 1 equation
1
¢ =20 (45)

has not the property of having integral-free solutions. Thus, since one is forced to use
integrals to write down the general solution(dt), we solve it by putting

1
x =1, y = w(t), i=7 / w” (1) dr. (46)
Cartan foundettersolution
k=2
x = (k— Dtk=1w" (1),

y= }(k - 1)2t%’w"(t)2 — (k= 1)y 1w "(Nw” (1)
+= (k 1) / i_ w’ ()2 dr,

=kt - e w' (1) — tw' () + w(?).

We prefer this solution rather théd6) since it involves only second power of’ under

the integral, whereas the soluti¢46) involves thekth power. This example shows that,

for a given Cartan equation, among many different expressions for its general solution
which involve integrals there could be some preferred ones. The precise meaning of this
observation is worth further investigation.

5.3. G, Cartan connection for equatiori = F(x, y, ', y”, z) and conformal (3, 2)-
signature geometry

We will not comment any further on Cartan equations for whi¢h = 0. Instead, we
concentrate on much more interestifg # 0 case.
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First, we briefly sketch Cartan’s results on equivalence problem for forms
wt=dz— F(x,y,p.q.2)dx, @?>=dy—pdy, @>=dp—gqdx (47)

satisfying F,, # 0. On doing that we supplement these forms to a coframe
(0, 0?, 3, w*, w®) onthe &, v, p, ¢, z) space such that

a)l:dz—F(x,y,p,q,z)dx, wzzdy—pdx, w3=dp—qu,
w* = dy, w® =dg. (48)

Since we are interested ail forms @?!, w2, »®) which are equivalent to the forn{@7)
via transformation$43) and (44 this coframe is not unique. It is given up to the following
freedom:

wt ol a g y 0 O w?
w? w? § € x 0 O w?
B3| =] « uw v 0 O o |,
ot o* TP T X ot
w® a)_5 7 o SR 'Y w®

which suggests that instead of working with a not uniquely defined coff@@jeon the
(x, v, p, g, z) space it is better to use five well defined linearly independent 1-forms

ot a B y 0 O wt
62 § € 1 0 w?
#Bl=|« o v 0 0 3
o4 TP T X o*
6> 7 op o T X )\

on a bigger space parameterized byy p, g, z, @, B, v, 8, €, A, k, U, V, T, p, G, T, X, 7T, 0,

o', 7, x'). Now, assuming thaf,, # 0 and using his equivalence method (which in-
volved several reductions and prolongatin8artan was able to prove that on a certain
14-dimensional manifol@ the forms ¢, 62, 63, 9%, °) can be supplemented in a unique
way to a unique coframe. More precisely, he proved the following theorem.

Theorem 8 (Cartan).An equivalence class of forms
wt=dz — F(x, y, p, q, ) dx, w?=dy— pdx, w=dp—qdx (49)

for which qu # 0, uniquelydefines a 14-dimensional manifold P and a preferred coframe
(61, 62,6%, 6%, 65, 21, 22, §23, 24, 25, 26, 27, 28, §29) On it such that

dot = 6% A (2921 + 24) + 6% A 22+ 6% A 64,
do? = 01 A 23+ 0% A (21 + 2824) + 6° A 6°,

4 See e.g. in Ref17] for the definitions of these procedures.
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do® = 01 A 25+ 6% A 26 + 603 A (21 + 24) + 6% A 65,
do% = 01 A 27+ 565 A 26+ 64 A 21+ 05 A 2,

d9° = 02 A 27 — 365 A 25+ 0% A 23+ 05 A Q2. (50)

Note that the above theorem implies formulae for the differentials of the feems

u=212...

deq =

ds2; =

d23 =

ds24 =

d§2s =

d2e =

d$27 =

d2g =

d2g =

, 9. Explicitly, these differentials are:

23N 22+ 303 A 27— 304 A 25+ 3605 A 26+ 01 A 28

+ 3c20 A 67 + o A 6% + b36? A 0% + abt A 0% + azbt A 65

+ a392 N + a492 A 95,

22 A (21— $24) — 0% A 26+ 01 A 29+ 3301 A 02 + b3t A 63
+az0t A 0% + aabt A 6° + bat? A 6% + anb® A 0% + as0? A 6°,

23 A (24— 21) — 0° A 25+ 6% A 25 — 3c16* A 62 — b16* A 65

— a1 A 0% — as0t A 6° — bo6? A 6% — a0? A 6% — az6? A 6,

2o A 23+ 3603 A 27+ 30% A 25— 36° A Q26+ 0% A 29 — 3co6* A 6P
— b0 A 03—az0™ A 0% — azbt A6 — b36? A 63 — az0? A 0% — ast? A6,
20N 25+ 23N Q26— 0° A 27+ 03 A Q2+ 558101 A 02

+ 30101 A 03 + 35161 A O + 30201 AP + 30067 A O3

+ 35262 A 0% + 3b36? A 65,

22N 25+ Q24 A Q26+ 0% A 27+ 63 A Q9+ 558200 A 02 + 320 A 63
+ 3201 A 0%+ 3b30t A6 + 3c36? A 0% + 2b30% A 0% + 35462 A 65,
3025 A 26+ (214 24) A 27+ 6% A 28+ 0° A 29+ e A 6?

— 35101 A 03 — 30108 A 0% — 320 A 65 — 25,67 A 6B

— 3020% N 0% — 3c36% A 6P,

25 A 27+ (29214 24) A Q8+ 23 A 29 + h161 A 6% + hott A 63
+h30t A 6% + hatt A6 + hs0? A 6% + ha6? A 6% + het? A 6°,

Q6 A 27+ (21 + 224) A 29 + 22 A 28 + k16* A 62

+ 35(3e + 3215)0% A 63 + 35(—381 + 3214)0% A 6%

+35(—352 + 326)0% A 6° + ko2 A 63 + 35(—352 + 32h6)0% A 6*
+k36% A 6°, (51)
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whereay, az, as, as, as, b1, bz, b3, ba, c1, c2, c3, 81, 82, € h1, h2, h3, ha, hs, he, k1, k2, k3
are functions o uniquely defined by the equivalence class of fo(d8).

The systen{50) and (51)provides all the local invariants for the equivalence class of
forms(49) satisfyingF,, # 0. If one is given two triples of 1-forms

wt=dz — F(x, y, p, g, z) dx, Fyy #0, w?=dy—pdx, w’=dp—gqdx
and
ol=dz - F(x,y, p.q.2)dv, Fz#0, @°=dy—pdy, @°=dp—gqdx

on respective manifoldd and J parameterized byx( y, p, ¢, z) and &, y, p, ¢, ), then
there exists a local diffeomorphism

X X x(x, y, p, q, 2)
y y y(x, v, p. g, 2)
p |37 |=]5xyp42
q q q(x,y, p, 4, 2)
z z z(x, ¥, p, 4, 2)

realizing
¢ (@Y = aw! + B’ + yo©, " (@°) = st + €v® + 1°,
" (@°) = kot + po® + vo®

iff there exists a diffeomorphism : P — P between the associated 14-dimensional man-
ifolds P and P of Theorem &uch that

o* (') = ¢, D*(2,) = 2,

foralli=1,23,4,5 and;‘L =1,2, 3 ..., 9. This, in particular means that to realize the
equivalence between the'(s and ¢")s, the diffeomorphisn® must also satisfy

@*(a1) = a1, @*(b1) = by, @*(c1) = c1, eta

This gives severe algebraic (i.e. non-differential) constraint@and, in generic cases,
quickly leads to the answer if the two systems of form§ énd (') are equivalent.

In view of the above we ask for those equivalence classes of fo{#%
which correspond to systemg50) and (51) with all the scalar invariants
(a1, az, az, aa, as, b1, ba, b3, by, c1, c2, 3, 81, 82, e, h1, ho, h3, ha, hs, he, k1, k2, k3) be-
ing constants. It follows that it is possible if and only if all of them are identically equal
to zero. In this well defined case the systésf)) and (51)can be understood as a system
consisting of right invariants form#/( £2,,) on a 14-dimensional Lie group. This group
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is simple and has indefinite Killing form, as can be seen from the structure constant coef-
ficients defined by the syste(®80) and (51)with all the scalar invariants vanishing. This
identifies this group as a noncompact real fagmof the exceptional groug .

It follows that there is only one equivalence class of foi@8) corresponding to the
system(50) and (51)vith all the scalar invariants vanishing. It can be defined by the function

F = q2
associated with the Hilbert equation

Z/ — (y//)Z'
In case of general scalar invariants, the sys{&@) and (51)defines a curvature of a
certain Cartargz-valued connection which ‘measures’ how much the equivalence class

of forms (49) is distorted from the flat Hilbert case correspondingfe= ¢2. To de-

fine this connection we first observe that the sys{é@) and (51)guarantees tha® is
foliated by nine-dimensional leaves. These are the integral manifolds of the distribution
spanned by vector fieldg,, © =1, 2, ..., 9 which, together withX;, i =1,2,...,5,

form a frame &1, X2, X3, X4, X5, Y1, Yo, Y3, Y4, Y5, Yg, Y7, Yg, Yg) dual to the invariant
coframe ¢, 62, 63, 6%, 6°, §21, §22, 23, 24, 25, §26, §27, 28, £29) onP. (The fact that this
distribution is integrable, is a simple corollary, fraffag. 50) which show that the basis
6',i=1,2,...,5, of its annihilator is a differential ideal.) This proves that the manifold

P is fibered over a five-dimensional space of leaves of this distribution. This space may be
identified with the £, y, p, ¢, z) spaceJ on which the original forms», i =1,2,...,5
defining the equivalence clagt9)reside. Thus we have a fibratigh— J, which is actu-

ally a principal fiber bundle with the nine-dimensional parabolic subgtbah G» as its
structure group. On this fiber bundle the following matrix of 1-forms:

—21— 24 -8 —9 —%97 1025 192 0
o @2 2 6 -3 0 192
02 Q2 Q4 0 —36° 30
wg, = %93 %95 %96 0 %95 —%94 —%97 (52)
6% 27 0 %96 —Q24 2 29
6° 0 —%95 23 —21 —$28
0 6> —* %93 -2 01 2142

becomes a Cartan connection with values in the Lie algebrs of (The fact that

wg, IS Go-valued can be checked e.g. by successive replacement of 1 of the 14 forms
(0L, 62, 63, 0%, 65, 21, 22, 23, 24, 25, 26, 27, 28, 29) N wg, by 1 with simultaneous
replacement of all the others forms by 0. The so obtained 14 matrices satisfy the commu-
tation relations ofj,.) The curvature of this connection

R = da)@2 + wg, N og,
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being horizontal, involves onl§ A 6/ terms. This when compared wikr. (51) enables
the scalar invariants to be interpreted as the curvature coefficients of
Another interpretation abg;, can be obtained by recalling th@p is naturally embedded
in SO(4, 3) as its subgroup stabilizing a generic 3-fornRif:3). We have chosen a seven-
dimensional representation of the Lie algefpréan such a way that the connectiog,, can be
interpreted as a reduction of a Cartan normal conformal connection associated with a certain
(3, 2)-signature conformal metric defineddrn the following we describe this view point.
Given an equivalence class of fornf49) satisfying F,,, # 0 and using the forms
(61, 62, 63, 6%, 6°) associated with them via Theorem 8 we define a following bilinear form

g = 20M6° — 20%9* + 36%6° (53)

on P. This form is clearly degenerate and has signatuse , +, —, —, 0,0,
0,0,0,0,0,0,0). Using the frameX1, X2, X3, X4, X5, Y1, Y2, Y3, Y4, Y5, Y, Y7, Yg, Yo)

onP defined above, we see that the degenerate directignareftangent to the vectors.
Now, the systen50) guarantees that the forgstales when Lie dragged along any of the
directionsY,,. In other words we have

EY,Lg’ = )‘ug

with some functions.,,. This, when compared with the fact that the distribution spanned
byY,, u=12...,9, defines a foliation o, means that the degenerate bilinear form
2 projects fromP to J, the space of leaves of this foliation, defining there a conformal
metric [G 3 2)] of signature §-, +, 4+, —, —). Itis this conformal structure that yields all the
information about the local invariants of an equivalence class of f#8isCalculating the
Cartan normal conformal connection of this conformal structure, leads to the conclusion
that it is reducible to thgz-valued Cartan connectiapg;, onP.

Remarkably the conformal metriGls 2)] is defined on the same spagen which the
original formsw’,i = 1, 2, ..., 5, defining the equivalence cla@®)were defined. Thus, it
is possible to write down a local representati¥g ») of [G (3 2)] in coordinatesX, y, p, g, z)
in which the formsw' read

wlzdz—F(x,y,p,q,z)dx, wzzdy—pdx, w3=dp—61dX,
w* = dy, w® = dg.

Introducing the total differential operatBron J by
D = 3, + pdy +qd, + FO,,

we find that a representative a3 2)] is given by

G@a = [DFqu F;q+6DFqDF,,,,q qu —6DF,,,F, F;q —3DDF,, F;q +9DF,, qu

—9F,,Fo +9DF, F,Fy — 18F,.F,Fy + 3DF.F, — 6DF,F; Fy,,

99

2 2
+6F, F, Fp—8DF,DF FyyFpyu+8DF F,Foy Fupy+3DDF, Fo Fagq

2 2
—3DF,F2 Fpy — 3DF,F,F2 Fy

+ 4(DF4)2quqq — 8DF,F, quq
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- S(DFq)ququqqq +4FF, + 6DF,F, FoqFogaq — SFEququqq

P~ 999

—6DF, FyF. Fpp. + 6F, FyF2 Fype — 3DF, Fo Fy. + 12F, Fo .

99

2 2 3 2
+3F2 FyggFy — 6DF 0 F,F2 F. + ADF, F3 F, + 6F,F% F,, F.

+8DF,,F,FyyFyyyF. — ADF,F2 F,, F, — 9F,, F2 F, + F,F2 F,,,F.

q9° qq qr = qq” < PTqq” 999" 2

—8DF,F,F. F.+8F,F,F., F.+6DF,F,FyFyF.

3 2 72 3
— 6F, Fy FyqFpqqqF: + 18F2 Fyy + 6F2F2 o F. + 3F,F2 F,. F,

4 12 2 2 252 2 2 2
—2F FC+ FyF Fu  F+AFSF, F7— 3F Fyy Fuggq F,

—9F2F) F.|(0") + [6DFy F2 — 6F. Fuyp — 8DF gy Fyy Fygq

+8DF F., —8F,F. — 6DF FyyFyyq + 6F, FyyFyugy — 6F, F2 Fyp.

999 999

3 2 2 2
+6F, Fyo + 2F2 FyogF. — 8F,F2 F. + 6F, Fyy Fyp Flo' o

+[10DF, F} — 10DF,F? Fyyy + 10F, F7 Fyyy — 10F, F.

99" qq 97 qq
+10F, FZ Fyy  F.]o'o® + 30F, w'»* + [30DF, F, — 30F, F,,

—30F, F, F.lo'o® + [4F.

0 = 3FFagg(@0?)? — 10F, Fppp0r’ 0’

a4
+ 30Fq3qa)2w5 — ZOF;q(a)3)2. (54)

Despite of its ugliness this formula may be useful if one wants to write down the Cartan
invariant forms €', £2,,) and the scalar invariants, az, . . . directly in terms of the function
F=F(x,y, ¥,y z)andits derivatives.

We can summarize the above considerations in the following theorem.

Theorem 9. All the invariant information about a class of forms
ol =dz — F(x, y, p. g, z) dx, w?=dy— pdx, w® =dp — gdx,
w* = dy, w® =dg

associated with a second order Monge equation
Z=Fx, 5.5,y 2)

satisfyingF,, # 0 are encoded in the conformal class (@ 2)-signature metricsG 3 2
which are naturally defined on the J space parameterizegthy, p, g, z).

Among all five-dimensiongB, 2)-signature metrics the metricss ») are distinguished
by the requirement that thego(4, 3)-valued Cartan normal conformal connectionres
ducibleto agy-valued Cartan connectioag, .

Interestingly the conformal metri@S3 2) are very rarely conformal to Einstein metrics.
Even weaker curvature conditions, which are necessary for a metric to be conformal to
Einstein, such as e.gonformal C-space conditior{see Ref[10] for the definition), are
not always satisfied by the metricg; 3). However there are examples of the second order
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Monge equations which correspond to the conformally Einstein mediigs). Below, we
present one of such examples.

Example 6. Consider a second order Monge equation

7 = F(y") with Fyryr #=0.
SinceF depends on only one varialidgwve will denote its derivatives by, = F’, etc. Its
corresponding forms ohare

o' = dz — F(g) dx, w? =dy — pdx, »® =dp — qdx,

ot = dy, »® = dg. (55)

The invariant forms L, 62,63, 6% 6°, 21, 22, 23, 24, 25, 26, 27, 28, 29)  Of
Theorem 8 are totally determined by forms6X, 62,63, 6% 6°, 21, 20, 23, 24,
25, 26, 27, 28, £29) on J which satisfy systen{(50) and (51) Staring with (55) we
find that onJ these forms can be represented by

01 — wl’ 92 — (L)Z, 93 — _(F//)1/3w3’
94 — (F//)—1/3[w5 _ %F(?,)(F//)—le + 3%)(—3F”F(4) + 4F'(3)2)(1_7//)—36()2]7
95 — —(F//)2/3w4, Ql — O,

2, = &[—45F"FOF® 4 40FCR + 9(F")*FO)(F") 502

10
+L[-3F F® L 4AFC2(Fy 36°,  23=0, 2,=0, 25 =0,
Q6 = — 5[ —3F"FW + 4F®2](F") 10368, 2:=0, £25=0, £29=0. (56)

In this setting the only nonvanishing function amonas, @2, as, as, as, b, b,
b3, ba, c1, ¢2, 3,81, 82, e, hy, ho, h3, ha, hs, he, k1, k2, k3) iS

—224FG 4 336F" FE2F®) _ 80(F")2FO FO) 4 (F")’[-51F™? + 10F" F®)]
100(F//)20/3 !

Now applying formula(53) to the forms(56), or using formulg54) for F = F(g), we
get the following representative for the metri€xg 2)]:

G2 = 30(F")*[dgdy — pdgx] + [4F®? — 3F" F¥]dz?
+2[-5(F"*F® — 4F F®? 1 3F' F" F¥)dp dz + 2[15(F")°
+5¢(F")?F® — 4FF®2 4 44 F' F®2 L 3FF"F® — 3¢F' F" FP] dx dz
+[—20(F")* 4+ 10F'(F"Y F® 4 4(F'y F®? — 3(F')?F" F¥]dp?
+2[—15F'(F")® 4 20g(F")* + 5F(F")*F® — 10gF'(F")?F®
+A4FF F®2 _ 49(F2F®2 _ 3FF' F"FW 4 3¢(F'*F'F®dp dx
+[—30F(F")® 4 30gF'(F")® — 204%(F")* — 10gF(F")?F®
+ 1042 F' (F")?F® 4+ 4F?F®2 _ 8 FF' FO? 4 442(F')?FC?
—3F2F"F® 4 6¢FF F"F® — 34%(F')?F" F®] dx?. (58)

(67)

as =
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It is a matter of checking that this metric is conformal to an Einstein metrice?” G 3 2
with the conformal factol” = 7°(¢) satisfying equation

10(F"Y[r" — (Y)?] — 40F"FOY' + 17F"F® — 56F()2 = 0,

Cartan[4] classified various types of nonequivalent for@#8) according to the roots of the
polynomial

W(z) = a1z + 4azz® + 6asz® + 4asz + as,

where @1, az, as, as, as) are the scalar invariants given f1). This polynomial encodes
partiaP information of the Weyl tensor of the associated meteigs ). In particular, its
invariant Iy = 6a§ — 8azas + 2ajas is, modulo a numerical factor, proportional to the
square of the Weyl tens@f? = CHY9 C o0 OF the metricG s 2). Vanishing ofly means
that¥ = ¥(z) has aroot with multiplicity no smaller than 3. Our example above corresponds
to the situation when this multiplicity is equal to 4. According to Caftdrll nonequivalent
forms for which¥ has quartic root are covered by this example. The nonequivalent classes
are distinguished by the only nonvanishing scalar invaiigraf (57), to which the Weyl
tensor of metri¢58)is proportional.

We were unable to construct an example of fof@®) for which ¥ has precisely triple
root. For this itis enough to assume that among the scalar invariants( as, aa, as) only
a4 is nonvanishing. In such situation Cartan shows that the sy@eéjand (51yeduces to
an invariant coframe od. Despite the fact that in this case the system is reducible to five
dimensions it is difficult, to find nonhomogeneous examples of forms which satisfy it.
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Appendix A

In the null coframed?, o2, o, a*a®) = (6%, 62, %593, 6*, %) in which the metrig54)
is

G@p2) = 20ta® — 2020 + (0°)?

5 For completeness we give the exact formula for the Weyl tensor of mélyics in Appendix A
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the Weyl tensor 2-forms are:

0 0 0 —wis wis
0 0 0 wis  —W2s
Cu = %Cuvpga’o Ao’ = 0 0 0 —w34 w3s |,
w14 —W15 W34 0 —wss
—wWis W25 —W35 W45 0

where

3 3
w14 = 503011 Aa? + %b:gal Aol + agal N

1 2 2

V3
+ aqo /\0{5+7b4a2/\a3+a4a /\ot4+a5ot /\055,

1 3

3 3
wis = écza Aa? + %bzal Aol + azotl

3
N —i—agal Ao+ %_bgaz Ao

+a3a2 A a4 + (146\!2 A as,

1

3 3
wog = écla Ao+ %blal Aol + alal

/\ot4+a2(xl /\6(5

3
-I-?bzozz Aol + a2a2 Ao+ a3a2 N

3/3

w3q = —820{1 Ad?+ §62tx
16 4

1 5

3 3
Aol + %bz[xl Aot + %bgal Ao

3 3 3
—l-chaZ Aol + ‘/7_1930[2 Ao+ \/7_1940(2 A 055,

1 5

3v3 3 3 3
w35 = F(?lal Ao? + 261 Aol 4 \/T_blal Aot + %bzal Ao

3 3 3
—l-chaz Aol + %_bzaz Aot + %_b3cx2 A a5,

9 3V3 3 3
w4 = —aeal Aa? + 1—\{5_81011 Ao+ éclal N A éczal Aa®

3V3 3
+ —]\_/6_620[2 Aad + §C20l

2 2 5

4 3
Ao +503a Ao,
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