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INTRINSIC GEOMETRY OF ORIENTED CONGRUENCES INTHREE DIMENSIONSC. DENSON HILL AND PAWE� NUROWSKIAbstrat. Starting from the lassial notion of an oriented ongruene (i.e.a foliation by oriented urves) in R3, we abstrat the notion of an orientedongruene struture. This is a 3-dimensional CR manifold (M, H, J) with apreferred splitting of the tangent spae TM = V ⊕H. We �nd all loal invari-ants of suh strutures using Cartan's equivalene method re�ning Cartan'slassi�ation of 3-dimensional CR strutures. We use these invariants and per-form Fe�erman like onstrutions, to obtain interesting Lorentzian metris infour dimensions, whih inlude expliit Rii-�at and Einstein metris, as wellas not onformally Einstein Bah-�at metris.Contents1. Introdution 22. Classial twist and shear 33. Oriented ongruenes 44. Elements of Cartan's equivalene method 64.1. Cartan invariants 64.2. Bianhi lassi�ation of 3-dimensional Lie algebras 75. Basi relative invariants of an oriented ongruene 76. Vanishing twist and shear 97. Nonvanishing twist and vanishing shear 97.1. The relative invariants K1 and K2 97.2. Desription in terms of the Cartan onnetion 127.3. Conformal Lorentzian metris 137.4. Basi examples 137.5. The ase K1 6= 0, K2 ≡ 0 157.6. The ase K2 6= 0 218. Vanishing twist and nonvanishing shear 248.1. The invariant T0 and the relative invariants T1, K0, K1 268.2. Desription in terms of the Cartan onnetion 288.3. The ase T1 ≡ 0 318.4. The ase T1 6= 0 359. Nonvanishing twist and nonvanishing shear 3610. Appliation 1: Lorentzian metris in four dimensions 3910.1. Vanishing twist � nonvanishing shear ase and pp-waves 3910.2. Nonvanishing twist � vanishing shear ase and the Bah metris 41Date: August 13, 2008.This researh was supported by the Polish grant 1P03B 07529.MSC: 32V05; 53A55; 83C15.Keywords: speial CR manifolds; loal invariants; Bah-�at Lorentzian metris.1
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2 C. DENSON HILL AND PAWE� NUROWSKI11. Appliation 2: Algebraially speial spaetimes 4611.1. Redution of the Einstein equations 4711.2. Examples of solutions 5011.3. Disussion of the redued equations 53Referenes 551. IntrodutionWe study the loal di�erential geometry of oriented ongruenes in 3-dimensionalmanifolds. This geometry turns out to be very losely related to loal 3-dimensionalCR geometry. The latter an be traed bak to Elie Cartan's 1932 papers [3℄, inwhih he used his equivalene method to determine the full set of loal invariantsof loally embedded 3-dimensional stritly pseudoonvex CR manifolds.This paper should be regarded as an extension and re�nement of Cartan's work.This is beause a 3-dimensional manifold with an oriented ongruene on it is an ab-strat 3-dimensional CR manifold with an additional struture: a preferred splitting(see Setion 3). This leads to a notion of loal equivalene of suh strutures, whihis more strit that than of Cartan. Hene the (oarse) CR equivalene lasses ofCartan split into a �ne struture; as a result we produe many new loal invariants,orresponding to many more nonequivalent strutures than in Cartan's situation.From this perspetive, our paper may be also plaed in the realm of speialgeometries, i.e. geometries with an additional struture. These kind of geometries,suh as, for example, speial Riemannian geometries (hermitian, Kähler, G2, et.),�nd appliations in mathematial physis (e.g. string theory). The starting pointof this paper also omes from physis: a ongruene in R3 (i.e. a foliation of R3by urves) is a notion that appears in hydrodynamis (veloity �ow), Newtoniangravity and eletrodynamis (�eld strength lines). These branhes of physis havedistinguished the two main invariants of suh foliations, whih are related to thelassial notions of twist and shear. One of the byproduts of our analysis is also are�nement of these physial onepts.Contemporary physiists, beause of the dimension of spaetime, have beenmuh more interested in ongruenes in four dimensions. Suh ongruenes livein Lorentzian manifolds, and as suh, may be timelike, spaelike or null. It turnsout that the null ongruenes in spaetimes, whih are tangent to unparametrizedgeodesis without shear, loally de�ne a 3-manifold, whih has a CR struture on it.One of the outomes of this paper is that we found onnetions between propertiesof four dimensional spaetimes admitting null and shearfree ongruenes, with theirorresponding three dimensional CR manifolds, and our new invariants of the las-sial ongruenes in three dimensions. In Setions 10 and 11, in partiular, we usethese three dimensional invariants, to onstrut interesting families of Lorentzianmetris with shearfree ongruenes in four dimensions (inluding metris whih areRii �at or Einstein, Bah �at but not onformal to Einstein, et.).Throughout the paper we will always have a nondegenerate (not neessarilyRiemannian) metri gij and its inverse gij . This enables us to freely raise andlower indies at our onveniene. We use the Einstein summation onvention. Wealso denote by ω1ω2 = 1
2 (ω1 ⊗ ω2 + ω2 ⊗ ω1) the symmetrized tensor produt oftwo 1-forms ω1 and ω2. In this paper we shall be working in the smooth ategory;



INTRINSIC GEOMETRY OF ORIENTED CONGRUENCES IN THREE DIMENSIONS 3i.e., everything will be assumed to be C∞, without mentioning it expliitly in whatfollows.A large part of the paper is based on lengthy alulations, whih are requiredby our main tool, namely Cartan's equivalene method. These alulations wereheked by the symboli alulation program Mathematia. The struture of thepaper is re�eted in the table of ontents.We have been inspired by our ontat with Andrzej Trautman, Jaek Tafel andJerzy Lewandowski, whom we thank warmly. We also thank the MathematishesInstitute der Humboldt-Universität zu Berlin, and Ilka Agriola and Jürgen Leit-erer, in partiular, for their kind hospitality during the preparation of this paper.2. Classial twist and shearIn a simply onneted domain U of Eulidean spae R3, equipped with the �atmetri gij = δij , we onsider a smooth foliation by uniformly oriented urves. Let vbe a vetor �eld v = vi∇i tangent to the foliation, onsistent with the orientation.We denote the total symmetrization by round brakets on the indies, the totalantisymetrization by square brakets on the indies, and use ǫijk = ǫ[ijk], ǫ123 = 1.We have the following lassial deomposition(2.1) ∇ivj = αij + σij + 1
3θgij ,where

αij = ∇[ivj] = 1
2ǫijk(curl v)k,

θ = gij∇ivj = div v,

σij = ∇(ivj) − 1
3θgij .The deomposition (2.1) de�nes three funtions, depending on the hoie of v, whihan be used to haraterize the foliation. One of these funtions is the divergene

θ, also alled the expansion of the vetor �eld v. It merely haraterizes the vetor�eld v, hene it is not interesting as far the properties of the foliation is onerned.The seond funtion is
α = |αij | =

√

gikgjlαijαkl,the norm of the antisymmetri part αij , alled the twist of the vetor �eld v.Vanishing of twist, the twist-free ondition α = 0, is equivalent to curl v = 0.Although this ondition is v-dependent, it has a lear geometri meaning for thefoliation. Indeed, a vetor �eld v with vanishing twist may be represented by agradient: v = ∇f for some funtion f : U → R. In suh a ase the level surfaesof the funtion f de�ne a foliation of U with 2-dimensional leaves orthogonal to v.This an be rephrased by saying that the distribution V⊥ of 2-planes, perpendiularto v, is integrable.The third funtion obtained from the deomposition (2.1) is
σ = |σij | =

√

gikgjlσijσkl,the norm of the trae-free symmetri part σij , alled the shear of the vetor �eld v.Regardless of whether or not V⊥ is integrable, the ondition of vanishing shear
σ = 0 is equivalent to ∇(ivj) = 1

3θgij . Realling that the Lie derivative Lvgij =
∇(ivj), we see that the shear-free ondition for v is the ondition that this Liederivative be proportional to the metri. Thus σ = 0 if and only if Lvgij = hgij .This ondition again is v dependent. However, it implies the following geometri



4 C. DENSON HILL AND PAWE� NUROWSKIproperty of the foliation: the metri g|V⊥ indued by gij on the distribution V⊥is onformally preserved when Lie transported along v. To say it di�erently weintrodue a omplex struture J on eah 2-plane of V⊥. This is possible sineeah suh plane is equipped with a metri g|V⊥ and the orientation indued by theorientation of v. Knowing this, we de�ne J on eah 2-plane as a rotation by π
2 ,using the right hand rule. Now we an rephrase the statement about onformalpreservation of the metri g|V⊥ during Lie transport along v, by saying that it isequivalent to the onstany of J under the Lie transport along v.The above notions of expansion, twist and shear are the lassial notions ofelastiity theory. As we have seen, they are not invariants of the foliation by urves,beause they depend on the hoie of the vetor �eld v. Nonetheless they do arrysome invariant information. One of the main purposes of this paper is to �nd all ofthe loal invariants of the intrinsi geometry assoiated with suh foliations. Withthis lassial motivation we now pass to the subjet proper of this paper.3. Oriented ongruenesConsider a smooth oriented real 3-dimensional manifold M equipped with aRiemannian metri g. Assume that M is smoothly foliated by uniformly orientedurves. Suh a foliation is alled an oriented ongruene. Note that we are notassuming that the urves in the ongruene are geodesis for the metri g.Our �rst observation is that M has the struture of a smooth abstrat CRmanifold. To see this we introdue the oriented line bundle V , a subbundle of

TM , onsisting of the tangent lines to the foliation. Using the metri we alsohave V⊥, the 2-plane subbundle of TM onsisting of the planes orthogonal to theongruene. These 2-planes are oriented by the right hand rule and are equippedwith the indued metri g|V⊥ . Hene V⊥ is endowed with the omplex strutureoperator J as we explained in the previous setion. The pair (V⊥, J), by the veryde�nition, equips M with the struture of an abstrat 3-dimensional CR manifold.This CR manifold has an additional struture onsisting in the prefered splitting
TM = V⊥ ⊕ V . It also de�nes an equivalene lass [g] of adapted Riemannianmetris g′ in whih g′(V ,V⊥) = 0 and suh that g′|V⊥ is hermitian for J . Thus,an oriented ongruene in (M, g) de�nes a whole lass of Riemannian manifolds
(M, [g]) whih are adapted to it.Conversely, given an oriented abstrat 3-dimensional CR manifold (M,H, J)with a distinguished line subbundle V suh that V ∩H = {0}, we may reonstrutthe oriented ongruene. The urves of this ongruene onsist of the trajetoriesof V . They are oriented by the right hand rule applied in suh a way that it agreeswith the orientation of H determined by J . Here J : H → H and J2 = −id.Sine TM = H⊕V we reover also the equivalene lass [g] of adapted Riemannianmetris g′ in whih g(V , H) = 0 and suh that g′|H is hermitian for J .We summarize with: let M be an oriented 3-dimensional manifold, thenProposition 3.1. There is a one to one orrespondene between oriented ongru-enes on M with a distinguished orthogonal distribution V⊥, and CR strutures
(H, J) on M with a distinguished line subbundle V suh that TM = H ⊕ V.We now pass to the dual formulation. Given a CR struture (H, J) with aprefered splitting TM = H ⊕ V , we de�ne H0 to be the anihilator of H and V0 to



INTRINSIC GEOMETRY OF ORIENTED CONGRUENCES IN THREE DIMENSIONS 5be the anihilator of V . Note that H0 is a real line subbundle of T ∗M and V0 is a 2-plane subbundle of T ∗M . This H0 is known as the harateristi bundle assoiatedwith the CR struture. V0 is equipped with the omplex struture J∗, the adjointof J with respet to the natural duality pairing. The omplexi�ation CV0 splitsinto CV0 = V0
+ ⊕ V0

−, where V0
± are the ∓i eigenspaes of J∗. Both spaes V0

± areomplex line subbundles of the omplexi�ation CT ∗M of the otangent bundle.
V0
− is the omplex onjugate of V0

+, V0

± = V0
∓.The reason for passing to the dual formulation is that we want to apply Cartan'smethod of equivalene to determine the loal invariants of an oriented ongruenein M . For this we need a loal nonzero setion λ of H0 and a loal nonzero setion

µ of V0
+. Then λ∧ µ ∧ µ̄ 6= 0. Any other loal setion λ′ of H0 and any other loalsetion µ′ of V0

+ are related to λ and µ by λ′ = fλ and µ′ = hµ, for some realfuntion f and some omplex funtion h. This motivates the following de�nition:De�nition 3.2. A struture (M, [λ, µ]) of an oriented ongruene on a 3-dimensionalmanifold M is an equivalene lass of pairs of 1-forms [λ, µ] on M satisfying thefollowing onditions:(i) λ is real, µ is omplex(ii) λ ∧ µ ∧ µ̄ 6= 0 at eah point of M(iii) two pairs (λ, µ) and (λ′, µ′) are equivalent i� there exist nonvanishing fun-tions f (real) and h (omplex) on M suh that(3.1) λ′ = fλ, µ′ = hµ.We say that two suh strutures (M, [λ, µ]) and (M ′, [λ′, µ′]) are (loally) equivalenti� there exists a (loal) di�eomorphism φ : M →M ′ suh that(3.2) φ∗(λ′) = fλ, φ∗(µ′) = hµfor some nonvanishing funtions f (real) and h (omplex) on M . If suh a di�eo-morphism is from M to M it is alled an automorphism of (M, [λ, µ]). The fullset of automorphisms is alled the group of automorphisms of (M, [λ, µ]). A vetor�eld X on M is alled a symmetry of (M, [λ, µ]) i�
LXλ = fλ, LXµ = hµ.Here the funtions f (real) and h (omplex) are not required to be nonvanishing;they may even vanish identially. Observe, that if X and Y are two symmetries of

(M, [λ, µ]) then their ommutator [X,Y ] is also a symmetry. Thus, we may speakabout the Lie algebra of symmetries.Remark 3.3. Note that E. Cartan [3℄ would de�ne a 3-dimensional CR manifold asa struture (M, [λ, µ]) as above, with the exeption that ondition (iii) is weakendto
(iii)CR two pairs (λ, µ) and (λ′, µ′) are equivalent i� there exist nonvanishing fun-tions f (real) and h (omplex) and a omplex funtion p on M suh that

λ′ = fλ, µ′ = hµ+ pλ.In this sense our struture of an oriented ongruene (M, [λ, µ]) is a CR manifoldon whih there is an additional struture. In partiular the di�eomorphisms φ thatprovide an equivalene of our strutures are speial ases of CR di�eomorphisms,whih for CR strutures de�ned a la Cartan by (iii)CR are φ : M → M ′ suhthat φ∗(λ′) = fλ, φ∗(µ′) = hµ+ pλ. In terms of the nowadays de�nition of a CR



6 C. DENSON HILL AND PAWE� NUROWSKImanifold as a triple (M,H, J), this last Cartan ondition is equivalent to the CRmap requirement: dφ ◦ J = J ◦ dφ and similarly for φ−1.Remark 3.4. Two CR strutures whih are not equivalent in the sense of Cartan [3℄are also not equivalent, in our sense, as oriented ongruenes; but not vie versa.On the other hand, every symmetry of an oriented ongruene (M, [λ, µ]) is a CRsymmetry of the CR struture determined by [λ, µ] via (iii)CR; and not vie versa.We omit the proof of the following easy proposition.Proposition 3.5. A given struture (M, [λ, µ]) determines a CR struture (M,H, J)with the preferred splitting TM = H ⊕ V, where H is the annihilator of SpanR(λ)and CV is the annihilator of SpanC(µ)⊕ SpanC(µ̄). The lass of adapted Rieman-nian metris [g] is parametrized by two arbitrary nonvanishing funtions f (real)and h (omplex) and given by
g = f2λ2 + 2|h|2µµ̄.4. Elements of Cartan's equivalene methodHere we outline the proedure we will follow in applying Cartan's method to ourpartiular situation.4.1. Cartan invariants. Consider two strutures (M, [λ, µ]) and (M ′, [λ′, µ′]).Our aim is to determine whether they are equivalent or not, aording to De�-nition 3.2, equation (3.2). This question is not easy to answer, sine it is equivalentto the problem of the existene of a solution φ for a system (3.2) of linear �rstorder PDEs in whih the right hand side is undetermined. Elie Cartan assoiateswith the forms (λ, µ, µ̄) and (λ′, µ′, µ̄′), representing the strutures, two systems ofordered oframes {Ωi} and {Ω′

i} on manifolds P and P ′ of the same dimension, say
n ≥ 3, whih are �ber bundles overM . Then he shows that equations like (3.2) for
φ have a solution if and only if a simpler system(4.1) Φ∗Ω′

i = Ωi, i = 1, 2, ..., nof di�erential equations for a di�eomorphism Φ : P → P ′ has a solution. Note thatderivatives of Φ still our in (4.1), sine Φ∗ is the pullbak of forms from P ′ to P .One famous example is his original solution to the equivalene problem for 3-dimensional stritly pseudoonvex CR strutures. There P and P ′ are 8-dimensional,and his proedure produes two systems of eight linearly independent 1-forms {Ωi}and {Ω′
i}.In our situation, provided n < ∞, and if we are able to �nd n well de�nedlinearly independent 1-forms {Ωi} on P , then (P, {Ωi}) provides the full system ofloal invariants for the original struture (M, [λ, µ]). In partiular, using (P, {Ωi})one introdues the salar invariants, whih are the oe�ients {KI} in the deom-position of {dΩi} with respet to the invariant basis of 2-forms {Ωi ∧ Ωj}.Now in order to determine if two strutures (M, [λ, µ]) and (M ′, [λ′, µ′]) areequivalent, it is enough to have n funtionally independent {KI}. Then the ondi-tion (4.1) beomes(4.2) Φ∗K ′

I = KI , I = 1, 2, ..., n.The advantage of this ondition, as ompared to (4.1), is that (4.2), being the pullbak of funtions, does not involve derivatives of Φ. In this ase the existene of Φ



INTRINSIC GEOMETRY OF ORIENTED CONGRUENCES IN THREE DIMENSIONS 7beomes a question involving the impliit funtion theorem, and the whole problemredues to heking whether a ertain Jaobian is non-degenerate.We remark that an immediate appliation of the invariants obtained by Car-tan's equivalene method is to use them to �nd all the homogeneous examplesof the partiular struture under onsideration. The proedure of enumeratingthese examples is straightforward and algorithmi one the Cartan invariants havebeen determined. In our situation the homogeneous examples will often have loalsymmetry groups of dimension three. The 3-dimensional Lie groups are lassi�edaording to the Bianhi lassi�ation of 3-dimensional Lie algebras [1℄. Sine wewill use this lassi�ation in subsequent setions, we reall it below.4.2. Bianhi lassi�ation of 3-dimensional Lie algebras. In this setion
X1, X2, X3 denote a basis of a 3-dimensional Lie algebra g with Lie braket [·, ·].All the nonequivalent Lie algebras fall into Bianhi types I, II, V I0, V II0, V III,
IX , V , IV , V Ih, V IIh. Apart from types V Ih and V IIh, there is always preiselyone Lie algebra orresponding to a given type. For eah value of the real param-eter h < 0 there is also preisely one Lie algebra of type V Ih. Likewise for eahvalue of the parameter h > 0 there is preisely one Lie algebra of type V IIh. Theommutation relations for eah Bianhi type are given in the following table.Bianhi type: I II V I0 V II0 V III IX

[X1, X2] = 0 0 0 0 −X3 X3

[X3, X1] = 0 0 −X2 X2 X2 X2

[X2, X3] = 0 X1 X1 X1 X1 X1Bianhi type: V IV V Ih V IIh
[X1, X2] = 0 0 0 0
[X3, X1] = X1 X1 −X2 + hX1 X2 + hX1

[X2, X3] = −X2 X1 −X2 X1 − hX2 X1 − hX2Note that Bianhi type I orresponds to the abelian Lie group, type II or-responds to the Heisenberg group; types VIII and IX orrespond to the simplegroups: SO(1, 2), SL(2,R) for type VIII, and SO(3), SU(2) for type IX.5. Basi relative invariants of an oriented ongrueneWe make preparations to apply the Cartan method of equivalene for �ndingall loal invariants of the struture of an oriented ongruene (M, [λ, µ]) on a 3-manifold M .Given a struture (M, [λ, µ]) we take representatives λ and µ of 1-forms from thelass [λ, µ]. Sine (λ, µ, µ̄) is a basis of 1-forms onM we an express the di�erentials
dλ and dµ in terms of the orresponding basis of 2-forms (µ ∧ µ̄, µ ∧ λ, µ̄ ∧ λ). Wehave

dλ = iaµ ∧ µ̄+ bµ ∧ λ+ b̄µ̄ ∧ λ
dµ = pµ ∧ µ̄+ qµ ∧ λ+ sµ̄ ∧ λ(5.1)
dµ̄ = −p̄µ ∧ µ̄+ s̄µ ∧ λ+ q̄µ̄ ∧ λ,where a is a real valued funtion and b, p, q, s are omplex valued funtions on M .Given any funtion u onM we de�ne �rst order linear partial di�erential operatorsating on u by

du = uλλ+ uµµ+ uµ̄µ̄.



8 C. DENSON HILL AND PAWE� NUROWSKINote that uλ is a real vetor �eld ating on u, uµ is a omplex vetor �eld of type(1,0) ating on u and uµ̄ is a omplex vetor �eld of type (0,1) ating on u. Theommutators of these operators, when ating on u are
uµ̄µ − uµµ̄ = −iauλ − puµ + p̄uµ̄

uλµ − uµλ = −buλ − quµ − s̄uµ̄(5.2)
uλµ̄ − uµ̄λ = −b̄uλ − suµ − q̄uµ̄.A funtion u on a CR manifold (M, [λ, µ]) is alled a CR funtion if(5.3) du ∧ λ ∧ µ ≡ 0.In terms of the di�erential operators above this is the same as(5.4) uµ̄ ≡ 0.Thus uµ̄ is just the tangential Cauhy-Riemann operator ating on u. The equation(5.3) or (5.4) is alled the tangential Cauhy-Riemann equation.It is easy to see that eah of the following two onditions(5.5) dλ ∧ λ = 0, dµ ∧ µ = 0,is independent of the hoie of the respresentatives (λ, µ) from the lass [λ, µ].Thus the idential vanishing or not of either the oe�ient a, or the oe�ent s, isan invariant property of the struture (M, [λ, µ]). Using Cartan's terminology thefuntions a and s are the basi relative invariants of (M, [λ, µ]). By de�nition theyorrespond to the idential vanishing or not of the twist (the funtion a) and of theshear (the funtion s) of the oriented ongruene represented by (M, [λ, µ]).They are invariant versions of the lassial v-dependent notions of twist α andshear σ we onsidered in Setion 2. Given an oriented ongruene with vanishingtwist a inM = R3 we an always �nd a vetor �eld v tangent to the ongruene suhthat the twist α for this vetor �eld is zero. We also have an analogous statementfor s and σ. Conversely, every vetor �eld v in R3 whih has vanishing twist α (orshear σ) de�nes an oriented ongruene with vanishing twist a (or shear s).We note that the twist a is just the Levi form of the CR struture and that theshear s is now omplex; its meaning will be explained further in Setion 8.In what follows we will often use the following (see e.g. [12℄)Lemma 5.1. Let µ be a smooth omplex valued 1-form de�ned loally in R3 suhthat µ ∧ µ̄ 6= 0. Then
dµ ∧ µ ≡ 0 if and only if µ = hdζwhere ζ is a smooth omplex funtion suh that dζ ∧ dζ̄ 6= 0, and h is a smoothnonvanishing omplex funtion.Proof. Consider an open set U ∈ R

3 in whih we have µ suh that dµ ∧ µ = 0and µ ∧ µ̄ 6= 0. We de�ne real 1-forms θ1 = Re(µ) and θ2 = Im(µ). They satisfy
θ1∧θ2 6= 0 in U . Sine U ⊂ R3 we trivially have dθ1∧θ1∧θ2 ≡ 0 and dθ2∧θ1∧θ2 ≡
0. Now the real Fröbenius theorem implies that there exists a oordinate hart
(x, y, u) in U suh that θ1 = t11dx + t12dy and θ2 = t21dx + t22dy, with some realfuntions tij in U suh that t11t22 − t12t21 6= 0. Thus in the oordinates (x, y, u)the form µ = θ1 + iθ2 an be written as µ = c1dx + c2dy, where now c1, c2 areomplex funtions suh that c1c̄2 − c̄1c2 6= 0 on U , so neither c1 nor c2 an bezero. The dµ ∧ µ ≡ 0 ondition for µ written in this representation is simply



INTRINSIC GEOMETRY OF ORIENTED CONGRUENCES IN THREE DIMENSIONS 9
c22d( c1c2 )∧dx∧dy ≡ 0. Thus the partial derivative ( c1c2 )u ≡ 0, whih means that theratio c1

c2
does not depend on u. This ratio de�nes a nonvanishing omplex funtion

F (x, y) = c1
c2

of only two real variables x and y. Returning to µ we see that it isof the form µ = c2
(

dy + F (x, y)dx
). Consider the real bilinear symmetri form

G = 2µµ̄ = |c2|2
(

dy2 + 2
(

F (x, y) + F̄ (x, y)
)

dxdy + |F (x, y)|2dx2
). Invoking thelassial theorem on the existene of isothermal oordinates we are able to �ndan open set U ′ ⊂ U with new oordinates (ξ, η, u) in whih G = h2(dξ2 + dη2),where h = h(ξ, η, u) is a real funtion in U ′. This means that in these oordinates

µ = hd(ξ + iη) = hdζ. The proof in the other diretion is obvious. �6. Vanishing twist and shearLet us assume that the struture (M, [λ, µ]) satis�es both onditions (5.5); i.e.,that a ≡ 0 and s ≡ 0. It is easy to see that all suh strutures have no loalinvariants, meaning that all of them are loally equivalent. Indeed, if dλ ∧ λ ≡ 0then the real Fröbenius theorem guarantees that loally λ = fdu. Similarly, if
dµ ∧ µ ≡ 0, then the Lemma 5.1 assures that µ = hdζ. Sine dζ ∧ λ ∧ µ ≡ 0,we see that the funtion ζ is a holomorphi oordinate. Realling the fat that
λ ∧ µ ∧ µ̄ 6= 0, we onlude that if a ≡ 0 and s ≡ 0 then the CR manifold Mwith the prefered splitting is loally equivalent to R × C, with loal oordinates
(u, ζ), suh that u is real. In these oordinates the struture may be representedby λ = du and µ = dζ. The loal group of automorphisms for suh strutures isin�nite dimensional and given in terms of two funtions U = U(u) and Z = Z(ζ)suh that U is real, Uu 6= 0, Z is holomorphi and Zζ 6= 0. The automorphismtransformations are then ũ = U(u), ζ̃ = Z(ζ). Note that from the point of viewof Cartan's method this is the involutive ase in whih n = ∞. There are no loalinvariants in this situation.7. Nonvanishing twist and vanishing shear7.1. The relative invariants K1 and K2. Next let us assume that the struture
(M, [λ, µ]) has some twist, a 6= 0, but has identially vanishing shear, s ≡ 0. Letus interpret this in terms of the orresponding CR struture with the preferedsplitting. The nonvanishing twist ondition dλ∧λ 6= 0 is the ondition that the CRstruture has nonvanishing Levi form. This means that the CR manifold is stritlypseudoonvex and hene is not loally equivalent to R×C. The no shear ondition,
dµ∧µ ≡ 0, by the Lemma 5.1, means that the lass [µ] may be represented by a 1-form µ = dζ with a omplex funtion ζ onM satisfying dζ ∧dζ̄ 6= 0. Note that thisfuntion trivially satis�es the tangential Cauhy-Riemann equation dζ∧λ∧µ = 0 forthis CR struture, and hene is a CR funtion. If Z is any holomorphi funtion withnonvanishing derivative, then Z = Z(ζ) is again a CR funtion with dZ ∧ dZ̄ 6= 0.This gives us a distinguished lass of genuinely omplex CR funtions Z = Z(ζ),whih we denote by [ζ]. Conversely if we have a stritly pseudoonvex 3-dimensionalCR struture (M,H, J) with a distinguished lass [ζ] of CR funtions Z = Z(ζ),suh that dζ ∧ dζ̄ 6= 0 and Z ′ 6= 0, then this CR struture de�nes a representative
(λ, µ = dZ), with λ being a nonvanishing setion of the harateristi bundle H0.This in turn de�nes a struture (M, [λ, µ]) of an oriented ongruene whih has
a 6= 0 and s ≡ 0.Summarizing we have



10 C. DENSON HILL AND PAWE� NUROWSKIProposition 7.1. All loal strutures of an oriented ongruene (M, [λ, µ]) withnonvanishing twist, a 6= 0, and vanishing shear, s ≡ 0, are in a one to one orre-spondene with loal CR strutures (M,H, J) having nonvanishing Levi form andpossessing a distinguished lass [ζ] of genuinely omplex CR funtions on M .Note that the proposition remains true if we drop the nonvanishing twist ondi-tion on the left and drop the nonvanishing Levi form ondition on the right.We now pass to the determination of the loal invariants of (M, [λ, µ]) withnonvanishing twist and vanishing shear. We take a representative (λ, µ). Beauseof our assumptions the formulae (5.1) beome
dλ = iaµ ∧ µ̄+ bµ ∧ λ+ b̄µ̄ ∧ λ
dµ = pµ ∧ µ̄+ qµ ∧ λ(7.1)
dµ̄ = −p̄µ ∧ µ̄+ q̄µ̄ ∧ λ.For example if we were to hoose µ as µ = dζ, where ζ is a partiular representativeof the distinguished lass [ζ] of CR funtions, then dµ would identially vanish, so

p ≡ 0 and q ≡ 0. Although this hoie of µ is very onvenient and quite simpli�esthe determination of the invariants, we will work in the most general representation(7.1) of [λ, µ] to get the formulae for the invariants in their full generality.Given a hoie (λ, µ) as in (7.1) we take the most general representatives(7.2) ω = fλ, ω1 = hµ, ω̄1 = h̄µ̄,of the lass [λ, µ]. Here f 6= 0 (real) and h 6= 0 (omplex) are arbitrary funtions.Then we reexpress the di�erentials dω, dω1 and dω̄1 in terms of the general basis
(ω, ω1, ω̄1). We have:

dω = i
fa

|h|2 ω1 ∧ ω̄1 + [ d log f +
b

h
ω1 +

b̄

h̄
ω̄1 ] ∧ ω(7.3)

dω1 = [ d log h− p

h̄
ω̄1 −

q

f
ω ] ∧ ω1(7.4)

dω̄1 = [ d log h̄− p̄

h
ω1 −

q̄

f
ω ] ∧ ω̄1(7.5)Sine a 6= 0 we an easily ahieve(7.6) dω ∧ ω = iω1 ∧ ω̄1 ∧ ωby taking(7.7) f =

|h|2
a
.Thus ondition (7.6) `�xes the gauge' in the hoie of f .Introduing the real funtions ρ > 0 and φ via h = ρeiφ and maintaining theondition (7.6) we may rewrite equation (7.3) in the form

dω = iω1 ∧ ω̄1 + (Ω + Ω̄) ∧ ω,where the real valued 1-form Ω + Ω̄ is(7.8) Ω + Ω̄ = 2d log ρ+ (b− (log a)µ)µ+ (b̄− (log a)µ̄)µ̄+ tλ.The real funtion t appearing in Ω + Ω̄ an be determined algebraially from theondition that(7.9) (dω1 + dω̄1) ∧ (ω1 − ω̄1) = −ω1 ∧ ω̄1 ∧ (Ω + Ω̄).



INTRINSIC GEOMETRY OF ORIENTED CONGRUENCES IN THREE DIMENSIONS 11If this ondition is imposed then(7.10) t = −q − q̄.Now, if t is as in (7.10) and f is as in (7.7) we de�ne Ω − Ω̄ to be an imaginary1-form suh that(7.11) (dω1 + dω̄1) ∧ (ω1 + ω̄1) = ω1 ∧ ω̄1 ∧ (Ω − Ω̄).This determines Ω − Ω̄ to be
Ω − Ω̄ = 2idφ+ (q̄ − q)λ+ zµ− z̄µ̄,where z is a still undetermined funtion. The ondition that �xes z in an algebraifashion is the requirement that(7.12) dω1 = Ω ∧ ω1, dω̄1 = Ω̄ ∧ ω̄1.If this is imposed we have(7.13) z = 2p̄+ b− (log a)µ, z̄ = 2p+ b̄− (log a)µ̄.Thus given a struture (M, [λ, µ]) with nonvanishing twist and vanishing shear,the four normalization onditions (7.6), (7.9), (7.11), (7.12) uniquely speify a5-dimensional manifold P , whih is loally M × C, and a well de�ned oframe

(ω, ω1, ω̄1,Ω, Ω̄) on it suh that
ω =

ρ2

a
λ

ω1 = ρeiφµ

ω̄1 = ρe−iφµ̄(7.14)
Ω = d log ρ+ idφ+ (p̄+ b− (log a)µ)µ− pµ̄− qλ

Ω̄ = d log ρ− idφ− p̄µ+ (p+ b̄ − (log a)µ̄)µ̄− q̄λ.Here the omplex oordinate along the fator C in M ×C is h = ρeiφ. The oframe
(ω, ω1, ω̄1,Ω, Ω̄) satis�es

dω = iω1 ∧ ω̄1 + (Ω + Ω̄) ∧ ω
dω1 = Ω ∧ ω1

dω̄1 = Ω̄ ∧ ω̄1(7.15)
dΩ = K1ω1 ∧ ω̄1 +K2ω1 ∧ ω
dΩ̄ = −K1ω1 ∧ ω̄1 +K2ω̄1 ∧ ω,where(7.16) K1 =

1

ρ2
k1, K2 =

e−iφ

ρ3
k2,are funtions on P with k1 and k2 given by

k1 = Re
(

(log a)µµ̄ − (log a)µp− iqa− bµ̄ + bp− 2p̄µ̄ + 2|p|2
)

k2 = aµλ − abλ + i(log a)µ(bµ̄ − b̄µ − bp+ b̄p̄) − 2aµq − aqµ − (aq̄)µ − abq̄.Note that the funtions k1 and k2 are atually de�ned on M . Note also that k1 isreal as a onsequene of the ommutation relations (5.2). The funtions K1 and K2are the relative invariants of the struture (M, [λ, µ]), and (7.15) are the struturalequations for (M, [λ, µ]).



12 C. DENSON HILL AND PAWE� NUROWSKITheorem 7.2. A given struture (M, [λ, µ]) of an oriented ongruene with nonva-nishing twist, a 6= 0, and vanishing shear, s ≡ 0, uniquely de�nes a 5-dimensionalmanifold P , 1-forms ω, ω1, ω̄1,Ω, Ω̄ and funtions K1,K2,K2 on P suh that- ω, ω1, ω̄1 are as in (7.2),- ω ∧ ω1 ∧ ω̄1 ∧ Ω ∧ Ω̄ 6= 0 at eah point of P ,- the forms and funtions K1 (real), K2 (omplex) are uniquely determinedby the requirement that on P they satisfy equations (7.15).In partiular the idential vanishing, or not, of either k1 or k2 are invariant ondi-tions. Also the sign of k1 is an invariant, if k1 6= 0.7.2. Desription in terms of the Cartan onnetion. The above theorem,stated in modern language, means the following. The manifold P is a Cartanbundle H2 → P → M , with H2 a 2-dimensional abelian subgroup of a ertain5-dimensional Lie group G5. The group G5 is a subgroup of SU(2, 1); i.e., the8-dimensional Lie group whih preserves the (2, 1)-signature hermitian form
h(Z,Z) =

(

Z1, Z2, Z3
)

ĥ





Z̄1

Z̄2

Z̄3



 , ĥ =





0 0 2i
0 1 0

−2i 0 0



 .The forms ω, ω1, ω̄1,Ω, Ω̄ in the theorem an be olleted into a matrix of 1-forms
ω̃ =













1
3 (2Ω + Ω̄) 0 0

ω1
1
3 (Ω̄ − Ω) 0

2ω 2iω̄1 − 1
3 (2Ω̄ + Ω),











satisfying
ω̃ĥ+ ĥω̃† = 0.The Lie algebra g5 of the group G5 is then

g5 = {













1
3 (2z2 + z̄2) 0 0

z1
1
3 (z̄2 − z2) 0

2x 2iz̄1 − 1
3 (2z̄2 + z2)













, x ∈ R, z1, z2 ∈ C},and as suh is a real 5-dimensional Lie algebra parametrized by the parameters
x,Re(z1), Im(z1),Re(z2), Im(z2). It is naturally ontained in su(2, 1). The subgroup
H2 orresponds to the subalgebra h2 ⊂ g5 given by x = 0, z1 = 0. Now, ω̃ an beinterpreted as a Cartan onnetion on P [7℄ having values in the Lie algebra g5 ⊂
su(2, 1). It follows from equations (7.15) that the urvature R of this onnetion is

R = dω̃ + ω̃ ∧ ω̃ =





R1 0 0
0 R2 0
0 0 −R1 −R2



 ,where
R1 = − 2

3K2ω ∧ ω1 − 1
3K2ω ∧ ω̄1 + 1

3K1ω1 ∧ ω̄1

R2 = 1
3K2ω ∧ ω1 − 1

3K2ω ∧ ω̄1 − 2
3K1ω1 ∧ ω̄1It yields all the invariant information about the orresponding struture (M, [λ, µ]),very muh in the same way as the Riemann urvature yields all the information



INTRINSIC GEOMETRY OF ORIENTED CONGRUENCES IN THREE DIMENSIONS 13about a Riemannian struture.7.3. Conformal Lorentzian metris. Using the matrix elements ω̃ij of the Car-tan onnetion ω̃ it is onvenient to onsider the bilinear form
G = −iω̃3

jω̃
j
1.This form, when written expliitly in terms of ω, ω1, ω̄1,Ω, Ω̄, is given by

G = 2ω1ω̄1 +
2

3i
ω(Ω − Ω̄).Introduing the basis of vetor �eldsX,X1, X̄1, Y, Ȳ , the respetive duals of ω, ω1, ω̄1,

Ω, Ω̄, one sees that G is a form of signature (+++−0) with the degenerate diretiontangent to the vetor �eld Y + Ȳ = ρ∂ρ. We may think of the Cartan bundle P asbeing foliated by 1-dimensional leaves tangent to this vetor �eld. Now equations(7.15) guarantee that the Lie derivative
L(Y+Ȳ ) G = 2 G,so that the bilinear form G is preserved up to a sale when Lie transported alongthe leaves of the foliation. Therefore the 4-dimensional leaf spae N = P/∼ of thefoliation is naturally equipped with a onformal lass of Lorentzian metris [g], thelass to whih the bilinear form G naturally desends. The Lorentzian metris(7.17) g = 2ω1ω̄1 +

2

3i
ω(Ω − Ω̄)on N are the analogs of the Fe�erman metris [5℄ known in CR manifold theory.We note that N is a irle bundle above M with the �ber oordinate φ.Interestingly metris (7.17) belong to a larger onformal family, whih is alsowell de�ned on N . It turns out that if we start with a bilinear form

Gt = 2ω1ω̄1 + 2ti ω(Ω̄ − Ω)where t is any funtion on P onstant along the Y + Ȳ diretion, then it also wellprojets to a onformal Lorentzian lass [gt] on N with representatives(7.18) gt = 2ω1ω̄1 + 2ti ω(Ω̄ − Ω)parametrized by t. To see this it is enough to look at the expliit expressions forthe forms (ω1, ω̄1, ω,Ω, Ω̄) in (7.14) and to note that Gt is of the form Gt = ρ2(...),where the dotted terms do not depend on the oordinate ρ whih is aligned with
Y + Ȳ on P .Although t may be an arbitrary funtion on N , in what follows we will only beinterested in the ase when t is a onstant parameter.We return to metris gt in Setion 10.2, where we disuss their onformal urva-ture Ft and provide some example of the Lorentzian metris satisfying the so alledBah ondition.7.4. Basi examples.Example 7.3. Note that the assumption that K1 and K2 are onstant on P isompatible with (7.15) i� K1 = K2 = 0. In suh ase the urvature R of theCartan onnetion ω̃ vanishes, and it follows that there is only one, modulo loal



14 C. DENSON HILL AND PAWE� NUROWSKIequivalene, [λ, µ] struture with this property. It oinides with the CR strutureof the Heisenberg group
M = { (z, w) ∈ C

2 : Im(w) = |z|2 }with the preferred splitting V generated by the vetor �eld v = ∂u, u = Re(w).We all this the standard splitting on the Heisenberg group. The resulting orientedongruene has the maximal possible group of symmetries isomorphi to the group
G5.Example 7.4. We reall that a 3-dimensional CR manifold M embedded in C2via

M = { (z, w = u+ iv) ∈ C
2 : v = 1

2H(z) },whereH is a real-valued fution of the variable z ∈ C, is alled rigid. It an be givena struture of an oriented ongruene by hoosing the splitting to be spanned bythe vetor �eld ∂u. As in the above speial ase of the Heisenberg group we all thispreferred splitting onM the standard splitting on a rigid CR struture. Intrinsiallythis CR-manifold with the preferred splitting may be desribed in terms of the forms
λ and µ given by(7.19) λ = du+ i

2 (Hz̄dz̄ −Hzdz), µ = dz.Via (3.1), these forms de�ne a struture (M, [λ, µ]) of an oriented ongruene on
M . In the following we assume that

Hzz̄ 6= 0at every point of M . It means that M is stritly pseudoonvex.De�nition 7.5. A struture (M, [λ, µ]) of an oriented ongruene with vanishingshear and nonvanishing twist on a manifold M is alled (loally) �at i� (loally) ithas vanishing urvature R for its Cartan onnetion ω̃. The neessary and su�ientonditions for that are K1 ≡ 0 and K2 ≡ 0.A short alulation leads to the following proposition.Proposition 7.6. Let (M, [λ, µ]) be a struture of an oriented ongruene assoi-ated with the rigid CR-manifold M via the forms λ and µ of (7.19). Then for anyreal-valued funtion H = H(z) suh that Hzz̄ 6= 0 this struture has vanishing shearand non-vanishing twist. Its relative invariant K2 is identially vanishing, K2 ≡ 0;the relative invariant K1 is given by K1 = 1
ρ2 [log(Hzz̄)]zz̄. When it vanishes thestruture is �at.Example 7.7. We remark that the Heisenberg group CR struture may have var-ious splittings that endow M with nonequivalent strutures of an oriented ongru-ene. To see this we perturb the standard splitting on the Heisenberg group givenby the vetor �eld ∂u. This is aomplished by hoosing a 2-parameter family ofCR-funtions on M given by(7.20) ζǫ1ǫ2 = ǫ1z + ǫ2(u+ i|z|2),and de�ning the struture of an oriented ongruene on M via (3.1) with the forms

λ = du+ i(zdz̄ − z̄dz), µǫ1ǫ2 = dζǫ1ǫ2 .Note that sine λ is a setion of the harateristi bundle H0 of the Heisenberggroup CR-struture, and µǫ1ǫ2 is the di�erential of a CR-funtion, the struture
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(M, [λ, µǫ1ǫ2 ]) is twisting and without shear for all values of the real parameters ǫ1and ǫ2. The real vetor �eld v whih gives the splitting on M is given by

v = ∂u +
ǫ2
ǫ1

[
iǫ1 + 2ǫ2z

−iǫ1 + ǫ2(z̄ − z)
∂z +

−iǫ1 + 2ǫ2z̄

iǫ1 + ǫ2(z − z̄)
∂z̄ ],if ǫ1 6= 0, and

v = i(z∂z − z̄∂z̄)otherwise. A short alulation shows that the relative invariants K1ǫ1ǫ2 and K2ǫ1ǫ2for this 2-parameter family of strutures are
K1ǫ1ǫ2 =

8ǫ22
ρ2|2ǫ2z + iǫ1|4

, K2ǫ1ǫ2 ≡ 0.This proves that the strutures with ǫ2 = 0 and ǫ2 6= 0 are not loally equivalent. Toanalyse if the strutures with ǫ2 6= 0 are equivalent or not we need to apply furtherthe Cartan equivalene method. We will perform it in a more general setting thanthis example.7.5. The ase K1 6= 0, K2 ≡ 0. Let (M, [λ, µ]) be an arbitrary struture of anoriented ongruene whih has nonvanishing twist, vanishing shear, and in additionhas the relative invariants K1 and K2 suh that
K1 6= 0 and K2 ≡ 0.Given suh a struture, using the system (7.15) and the assumption K2 ≡ 0, weobserve that the orresponding strutural form Ω has losed real part,(7.21) d(Ω + Ω̄) ≡ 0.The assumption that K1 6= 0 enables us to make a further redution of the Cartansystem (7.15) de�ning the invariants. Indeed sine K1 = 1

ρ2 k1 6= 0, we may restritourselves to a (possibly double-sheeted) hypersurfae N0 in P on whih
K1 = ±1,where the sign is determined by the sign of the funtion k1. Reall that this sign isan invariant of the struture.Loally N0 is a irle bundle over M de�ned by the ondition
ρ2 = |k1|.Now the system (7.15) when pullbaked to N0 loally redues to

dω = iω1 ∧ ω̄1 + 2dA ∧ ω
dω1 = dA ∧ ω1 + iΣ ∧ ω1

dω̄1 = dA ∧ ω̄1 − iΣ ∧ ω̄1(7.22)
dΣ = ∓iω1 ∧ ω̄1.Here the real 1-formΣ is the pullbak of the form 1

2i (Ω−Ω̄) from P toN0. Aordingto our hoie of Σ, theminus sign in (7.22) orresponds toK1 = +1. The di�erential
dA of the real funtion A on N0 is determined by the ondition that 2dA is loallyequal to the pullbak of the Ω + Ω̄ from P to N0. Note that this pullbak must belosed due to (7.21). Looking at the expliit expression for Ω + Ω̄ in (7.8), (7.10)and the integrability onditions for (7.22) we �nd that loally we have(7.23) 2dA = A1ω1 + Ā1ω̄1,



16 C. DENSON HILL AND PAWE� NUROWSKIwith(7.24) A1 =
e−iφ
√

|k1|
((log

|k1|
a

)µ + b).The funtion A1 gives a new relative invariant for the strutures (M, [λ, µ]) with
K1 6= 0 and K2 ≡ 0. It follows from the onstrution that two suh strutures
(M, [λ, µ]) and (M ′, [λ′, µ′]) are (loally) equivalent if there exists a (loal) di�eo-morphism of the orresponding manifolds N0 and N0

′ whih transforms the or-responding forms (ω, ω1, ω̄1,Σ) to (ω′, ω′
1, ω̄

′
1,Σ

′). This in turn implies that therelative invariant A1 must be transformed to A′
1.Remark 7.8. We note that among all the strutures with K1 6= 0 and K2 ≡ 0 thesimplest have A1 ≡ 0. Modulo loal equivalene there are only two suh strutures,orresponding to the ∓ sign in (7.22) with A1 ≡ 0. These are the `�at ases' forthe subtree in whih K1 6= 0 and K2 ≡ 0.The funtion A de�ning the relative invariant A1 is de�ned only up to the addi-tion of a onstant, A→ A+ t. Given a family of funtions A(t) = A+ t we onsiderthe family of bilinear forms GA(t) on N0 de�ned by

GA(t) = e−2(A+t)ω1ω2.The forms GA(t) are learly degenerate on N0. Denoting by (X,X1, X̄1, Y ) the dualvetor �elds to the basis of 1-forms (ω, ω1, ω̄1,Σ) on N0, we see that the signature of
GA(t) is (+,+, 0, 0) with the degenerate diretions aligned with the real vetor �elds
X and Y . Next we observe that the system (7.22) implies that [X,Y ] ≡ 0, henethe distribution spanned by X and Y is integrable. Thus N0 is foliated by real 2-dimensional leaves. Loally the leaf spae S of this foliation is a 2-dimensional realmanifold, whih is a Riemann surfae, sine the pullbak to S of the 1-form ω1 givesa basis for the (1, 0) forms. Now the formula (7.23) implies that X(A) = Y (A) ≡ 0.Using this and the system (7.22), a alulation shows that

LXGA(t) ≡ 0, LYGA(t) ≡ 0.This means that the bilinear formsGA(t) desend to Riemannian homotheti metris
gA(t) on the Riemann surfae S. We have the following theorem.Theorem 7.9. The Riemann surfae S naturally assoiated with the struture ofan oriented ongruene having K1 6= 0, K2 ≡ 0 possesses Riemannian homothetimetris gA(t) whose Gaussian urvatures κ(t) are related to the relative invariant
A1 via:

κ(t) = ∓e2(A+t), i.e. 2dA = d log κ.Example 7.7 (ontinued) Calulating A1 for the strutures (M, [λ, µǫ1ǫ2 ]) ofExample 7.7, assuming that ǫ2 6= 0, we easily �nd that for all ǫ1, and ǫ2 6= 0,we have A1 ≡ 0. Thus for all nonzero values of ǫ2, and all values of ǫ1, thestrutures are loally equivalent. Hene the apparent 2-parameter family of thestrutures (M, [λ, µǫ1ǫ2 ]) inludes only two nonequivalent ases; isomorphi to thosewith (ǫ1, ǫ2) = (1, 0), and e.g. to those with (ǫ1, ǫ2) = (0, 1). The �rst ase is the�at ase K1 ≡ 0, K2 ≡ 0, orresponding to the Heisenberg group with the standardsplitting. The seond ase is onsiderably di�erent, being one of the `�at ases' forthe subtree K1 6= 0 and K2 ≡ 0, orresponding to A1 ≡ 0 and the minus sign in



INTRINSIC GEOMETRY OF ORIENTED CONGRUENCES IN THREE DIMENSIONS 17(7.22). In partiular the (0, 1) ase has only a 4-dimensional symmetry group, asopposed to the 5-dimensional symmetry group of the (1, 0) ase.We would like to point out that if we were to hoose a more ompliated CRfuntion than the ζǫ1ǫ2 of (7.20), for example
ζ = ǫ1z + ǫ2(u + i|z|2)m,with m 6= 0 and m 6= 1, we would produe an oriented ongruene (M, [du+i(zdz̄−

z̄dz), dζ]), still twisting and without shear, again based on the Heisenberg group,but not equivalent to either of the two strutures above. The reason for this is thatthe ondition m 6= 0,m 6= 1 makes (M, [du + i(zdz̄ − z̄dz), dζ]) have the relativeinvariant K2 nonvanishing.We now give a loal representation for an arbitrary struture (M, [λ, µ]) withvanishing shear, nonvanishing twist, and with K1 6= 0, K2 ≡ 0. This an be doneby integration of the system (7.22). Interestingly this integration an be performedexpliitly, leading to the following theorem.Theorem 7.10. If (M, [λ, µ]) is a struture of an oriented ongruene with van-ishing shear, nonvanishing twist, and with the relative invariants K1 6= 0, K2 ≡ 0then there exists a oordinate system (u, z, z̄) on M suh that the forms λ and µrepresenting the struture an be hosen to be
λ = du + i

2 (Hz̄dz̄ −Hzdz), µ = dz,where the real funtions A = A(z) and H = H(z) satisfy the system of PDEs
hzz̄ = ∓e2Ae−h(7.25)
Hzz̄ = e−h(7.26)with a real funtion h = h(z). The struture orresponding to suh λ and µ satis�esthe system

dω = iω1 ∧ ω̄1 + 2dA ∧ ω
dω1 = dA ∧ ω1 + iΣ ∧ ω1

dω̄1 = dA ∧ ω̄1 − iΣ ∧ ω̄1

dΣ = ∓iω1 ∧ ω̄1with forms
ω = e2Aλ, ω1 = eAe−h/2eiφµ, ω̄1 = eAe−h/2e−iφµ̄

Σ = dφ+ i
2 (hz̄dz̄ − hzdz).The relative invariant A1 of this struture is given by

A1 = 2e−Aeh/2e−iφAz .Note that the system of PDEs (7.25)-(7.26) is underdetermined. To see thatit always has solutions, hoose a real funtion H = H(z) on the omplex plane.De�ne the real funtion h = h(z) via equation (7.26), insert it into equation (7.25)and solve this real PDE for a real funtion A = A(z). Sine the funtion H an behosen arbitrarily, returning to Example 7.4, we see that this theorem haraterizesthe oriented ongruenes whih are loally equivalent to those de�ned on rigid CRmanifolds with the standard splitting.



18 C. DENSON HILL AND PAWE� NUROWSKICorollary 7.11. Every struture (M, [λ, µ]) of an oriented ongruene with van-ishing shear, nonvanishing twist, and with the relative invariants K1 6= 0, K2 ≡ 0admits one symmetry.Proof. To proof this it is enough to hek that in the loal representation (7.25)-(7.26) the symmetry is generated by X0 = ∂u. �Starting with a struture (M, [λ, µ]) having K1 6= 0 and K2 ≡ 0 we onstrutedits assoiated irle bundle S1 → N0 → M equipped with the invariant forms
(ω, ω1, ω̄1,Σ). Using the dual basis (X,X1, X̄1, Y ) and the system (7.22) we seethat the symmetry X0 lifts to a vetor �eld X̃ = e2AX with the property that

LX̃Σ = 0, LX̃ω1 = 2X̃(A)ω1.We now introdue a quotient 3-dimensional manifold MΣ whose points are theintegral urves of X̃. Then the forms Σ and ω1 desend from N0 to a lass of forms
[Σ, ω1] onMΣ given up to the transformations Σ → Σ, ω1 → hω1. Thus they an beused to de�ne a struture of an oriented ongruene (MΣ, [Σ, ω1]). This struturenaturally assoiated with (M, [λ, µ]) may be loally represented by the oordinates
(φ, z, z̄) of Theorem 7.10 with the representatives Σ and ω1 given by

Σ = dφ+ i
2 (hz̄dz̄ − hzdz), ω1 = dz.Here the real funtion h = h(z) is related to the original struture (M, [λ, µ]) viaequations (7.25)-(7.26). In partiular (MΣ, [Σ, ω1]) is again based on a rigid CRstruture with the standard splitting.Now we use Theorem 7.10 to desribe all the strutures with K1 6= 0 and K2 ≡ 0whih have a 4-dimensional transitive symmetry group. It turns out that they mustbe equivalent to those with dA ≡ 0. This is beause the existene of a 4-dimensionaltransitive symmetry group implies that A1 must be a onstant. But sine A and

h depend only on z and z̄, and A1 has nontrivial eiφ dependene, it is possible i�
Az ≡ 0; hene A1 ≡ 0. Thus aording to Remark 7.8 there are only two suhstrutures. One of them, the one with the upper sign in (7.22), is equivalent to thestruture (ǫ1, ǫ2) = (0, 1) of Example 7.7. To �nd the seond one we use Theorem7.10 and integrate equations (7.25)-(7.26) for A = 0. Modulo equivalene we gettwo solutions

h∓ = 2 log(1 ∓ 1
2zz̄), H∓ = ∓2 log(1 ∓ 1

2zz̄), A = 0whih lead to the two nonequivalent `�at models' with K1 = ±1, A1 ≡ 0. Theseare generated by the forms(7.27) λ∓ = du+ i
2

zdz̄ − z̄dz

1 ∓ 1
2zz̄

, µ = dz.Obviously the struture orresponding to the upper sign is isomorphi to the stru-ture (ǫ1, ǫ2) = (0, 1) of Example 7.7. Interestingly, in either of the two nonequivalentases the forms (λ, µ) an be used to intrinsially de�ne a �at CR struture (in thesense of Cartan's paper [3℄) on M parametrized by (u, z, z̄). Another feature ofthese two nonequivalent strutures is that their Riemann surfae S∓ desribed byTheorem 7.9 is equipped with metris gA(t) whih may be represented by
g∓ =

2dzdz̄

(1 ∓ 1
2zz̄)

2
.



INTRINSIC GEOMETRY OF ORIENTED CONGRUENCES IN THREE DIMENSIONS 19Thus these Riemann surfaes are either loally homotheti to the Poinaré dis (inthe upper sign ase) or to the 2-dimensional sphere S2 (in the lower sign ase). Thisleads to the following de�nition.De�nition 7.12. The two strutures of an oriented ongruene (M, [λ∓, µ]) gen-erated by the forms λ∓, µ of (7.27) are alled the Poinaré dis struture (in theupper sign ase) and the spherial struture (in the lower sign ase).We further note that the natural strutures (MΣ, [Σ∓, ω1]) assoiated with thestrutures (7.27) are loally isomorphi to the original strutures (M, [λ∓, µ]). Fi-nally we note that the forms λ+, µ are idential with the forms whih appear in theelebrated vauum Taub-NUT solution of the Lorentzian Einstein �eld equations(see formulae (11.1)-(11.2) with K − 1 = m = a = 0 and with the oordinate z re-plaed by 2/z). We summarize the onsiderations of this paragraph in the followingTheorem.Theorem 7.13. All strutures (M, [λ, µ]) of an oriented ongruene with vanishingshear, nonvanishing twist, having the relative invariants K1 6= 0, K2 ≡ 0 and pos-sessing a 4-dimensional transitive symmetry group are loally isomorphi to eitherthe Poinaré dis struture (M, [λ−, µ]) or the spherial struture (M, [λ+, µ]), i.e.they are isomorphi to one of the '�at models' for the K1 6= 0 and K2 ≡ 0 ase.We now pass to the determination of all loal invariants for the strutures with
A1 6= 0. Let (M, [λ, µ]) be suh a struture with the orresponding irle bundle
N0 and the system of invariants (7.22). Looking at the expliit form (7.24) of therelative invariant A1, we see that we may always hoose a setion of the bundle N0suh that A1 is real and positive. Loally this orresponds to the hoie of φ as afuntion on the manifold M suh that(7.28) e−iφ

√

|k1|
((log

|k1|
a

)µ + b) =
eiφ

√

|k1|
((log

|k1|
a

)µ̄ + b̄) > 0.If φ satis�es (7.28) then
A1 > 0,and all the strutural objets de�ned by the system (7.22) may be uniquely pull-baked to M . As the result of this pullbak the real 1-form Σ beomes dependenton the pullbaked forms (ω, ω1, ω̄1). Sine these three 1-forms onstitute a oframeon M we may write Σ = B0ω + B1ω1 + B̄1ω̄1 where B0 (real) and B1 (omplex)are funtions on M . Now using the fat that these strutures admit a symmetry(Corollary 7.11), we get B0 ≡ 0. Hene

Σ = B1ω1 + B̄1ω̄1.With this notation the pullbaked system (7.22) beomes
dω = iω1 ∧ ω̄1 + 2A1(ω1 + ω̄1) ∧ ω

dω1 = −(A1 + iB̄1)ω1 ∧ ω̄1(7.29)
dω̄1 = (A1 − iB1)ω1 ∧ ω̄1,with the fourth equation given by(7.30) d(B1ω1 + B̄1ω̄1) = ∓iω1 ∧ ω̄1.



20 C. DENSON HILL AND PAWE� NUROWSKIRemark 7.14. Note that sine on N0 the omplex funtion A1 was onstrainedby d(A1ω1 + Ā1ω̄1) = 0, beause of (7.23), the equations (7.29)-(7.30) should besupplemented by the equation d[A1(ω1 + ω̄1)] = 0 for A1 > 0. This however isequivalent to
dA1 ∧ (ω1 + ω̄1) = [iA1(B1 + B̄1)]ω1 ∧ ω̄1,and turns out to follow from the integrability onditions for (7.29)-(7.30).Writing these integrability onditions expliitly we have:

dA1 = [a11 + i
2A1(B1 + B̄1)]ω1 + [a11 − i

2A1(B1 + B̄1)]ω̄1

dB1 = B11ω1 + [b12 + 1
2A1(B̄1 −B1) + i(± 1

2 − |B1|2)]ω̄1(7.31)
dB̄1 = [b12 − 1

2A1(B̄1 −B1) − i(± 1
2 − |B1|2)]ω1 + B̄11ω̄1,where the real funtions a11, b12 are the salar invariants of the next higher orderthan A1 and B1.Theorem 7.15. The funtions A1 > 0 and B1 (omplex) onstitute the full systemof basi salar invariants for the strutures (M, [λ, µ]) with K1 6= 0, K2 ≡ 0 and

A1 6= 0. It follows from the onstrution that two suh strutures (M, [λ, µ]) and
(M ′, [λ′, µ′]) are (loally) equivalent i� there exists a (loal) di�eomorphism between
M and M ′ whih transforms the orresponding forms (ω, ω1, ω̄1) to (ω′, ω′

1, ω̄
′
1).This in partiular implies that the invariants A1 and B1 must be transformed to A′

1and B′
1.The system (7.29)-(7.31) and the above theorem an be used to �nd all strutureswithK1 6= 0 andK2 ≡ 0 having a stritly 3-dimensional transitive symmetry group.These are the strutures desribed by the system (7.29)-(7.31) with onstant basiinvariantsA1 > 0, B1. It follows that it is possible only if B1 = iτ , A1 = ±1−2τ2

2τ > 0and τ 6= 0 is a real parameter. This leads to only two quite di�erent ases, whihare desribed by Propositions 7.16 and 7.17.Proposition 7.16. (i) All loally nonequivalent strutures (M, [λ, µ]) of orientedongruenes having vanishing shear, nonvanishing twist, K1 6= 0, K2 ≡ 0, andpossessing a stritly 3-dimensional transitive group Gh of symmetries of Bianhitype V Ih, h ≤ 0, may be loally represented by
λ = ybdu− y−1dx, µ = y−1(dx + idy).Here (u, z, z̄) with z = x+ iy are oordinates on M and

b = −2(1 ∓ 2τ2).The real parameter τ is related to the invariants B1 and A1 via
B1 = iτ, A1 = −∓1 + 2τ2

2τ
> 0,and as suh enumerates nonequivalent strutures.(ii) Regardless of the values of τ the strutures orresponding to the upper and lowersigns in the expressions above are nonequivalent. In the ase of the lower signs thereal parameter τ < 0. In the ase of the upper signs τ < − 1√

2
or 0 < τ < 1

2 or
1
2 < τ < 1√

2
.(iii) The strutures are loally CR equivalent to the Heisenberg group CR strutureonly in the ase of the upper signs with τ =

√
3

2
√

2
.



INTRINSIC GEOMETRY OF ORIENTED CONGRUENCES IN THREE DIMENSIONS 21(iv) The symmetry group is of Bianhi type V Ih, with the parameter h ≤ 0 relatedto τ via
h = −

(3 ∓ 4τ2

1 ∓ 4τ2

)2

.In the lower sign ase the possible values of h are −9 < h < −1, and for eah valueof h we always have one struture with the symmetry group Gh. In the upper signase h may assume all values h ≤ 0, h 6= −1. In this ase, we always have- two nonequivalent strutures with symmetry group Gh with h < −9;- one struture with symmetry group Gh with −9 ≤ h < −1; if the parameter
τ is τ =

√
3

2
√

2
then h = −9 and the struture is based on the Heisenberggroup with a partiular nonstandard splitting;- two nonequivalent strutures with symmetry group Gh with −1 < h < 0;- one struture with symmetry group of Bianhi type V I0.Proposition 7.17. Modulo loal equivalene there exists only one struture (M, [λ, µ])of an oriented ongruene having vanishing shear, nonvanishing twist, K1 6= 0,

K2 ≡ 0, and possessing a stritly 3-dimensional transitive group of symmetries ofBianhi type IV . Loally it may be represented by the forms
λ = y−1(du + log ydx), µ = y−1(dx+ idy).Here (u, z, z̄) with z = x + iy are oordinates on M . The struture has the basiloal invariants A1 = 1

2 and B1 = i
2 .Summarizing we have the following theorem.Theorem 7.18. All loally nonequivalent strutures (M, [λ, µ]) of oriented ongru-enes having vanishing shear, nonvanishing twist, K1 6= 0, K2 ≡ 0, and possessinga stritly 3-dimensional transitive group of symmetries are loally equivalent to oneof the strutures de�ned in Propositions 7.16 and 7.17.Remark 7.19. Example 7.3, Theorem 7.13 and Theorem 7.18 desribe all loallynonequivalent homogeneous strutures of an oriented ongruene having vanishingshear, nonvanishing twist and with the invariant K2 ≡ 0. They may have- maximal symmetry group of dimension 5, and then they are loally isomor-phi to the Heisenberg group with the standard splitting.- symmetry group of exat dimension 4, and then they are loally isomorphito one of the two nonequivalent strutures of Theorem 7.13.- symmetry group of exat dimension 3 whih must be of either Bianhi type

V Ih or IV ; in this ase they are given by Propositions 7.16 and 7.17.7.6. The ase K2 6= 0. Looking at the expliit expresion for K2 in (7.16) we seethat in this ase we may �x both ρ and φ by the requirement that(7.32) K2 = 1.Indeed this normalization fores ρ and φ to be
ρ = |k2|

1
3 , φ = Arg(k2).This provides an embedding of M into P . Using it (tehnially speaking, by in-serting ρ and φ in the de�nitions of the invariant oframe (7.14)) we pullbak the



22 C. DENSON HILL AND PAWE� NUROWSKIforms (ω1, ω̄1, ω,Ω, Ω̄) on P to M . Also K1 is pullbaked to M , so that
K1 =

k1

|k2|
2
3

.Sine M is 3-dimensional the pullbaked forms are no longer linearly independent,and the pulbak of the derived form Ω deomposes onto the invariant oframe
(ω1, ω̄1, ω) on M . We denote the oe�ients of this deomposition by (Z1, Z2, Z0)so that:

Ω = Z1ω1 + Z2ω̄1 + Z0ω

Ω̄ = Z̄2ω1 + Z̄1ω̄1 + Z̄0ω.These oe�ients onstitute the basi salar invariants of the strutures under on-sideration. They satisfy the following di�erential system:
dω = iω1 ∧ ω̄1 + (Z1 + Z̄2)ω1 ∧ ω + (Z2 + Z̄1)ω̄1 ∧ ω
dω1 = −Z2ω1 ∧ ω̄1 − Z0ω1 ∧ ω(7.33)
dω̄1 = Z̄2ω1 ∧ ω̄1 − Z̄0ω̄1 ∧ ωwith

d[Z1ω1 + Z2ω̄1 + Z0ω] = K1ω1 ∧ ω̄1 + ω1 ∧ ω
d[Z̄2ω1 + Z̄1ω̄1 + Z̄0ω] = −K1ω1 ∧ ω̄1 + ω̄1 ∧ ω.Instead of onsidering the last two equations above, it is onvenient to replae themby the integrability onditions for the system (7.33). These are:

dZ1 = Z11ω1 + (−K1 + iZ0 − Z1Z2 + Z2Z̄2 + Z21)ω̄1 + (Z0Z̄2 + Z01 − 1)ω

dZ̄1 = (−K1 − iZ̄0 − Z̄1Z̄2 + Z2Z̄2 + Z̄21)ω1 + Z̄11ω̄1 + (Z̄0Z2 + Z̄01 − 1)ω

dZ2 = Z21ω1 + Z22ω̄1 + (Z02 + Z0Z̄1 + Z0Z2 − Z̄0Z2)ω

dZ̄2 = Z̄22ω1 + Z̄21ω̄1 + (Z̄02 + Z̄0Z1 + Z̄0Z̄2 − Z0Z̄2)ω(7.34)
dZ0 = Z01ω1 + Z02ω̄1 + Z00ω

dZ̄0 = Z̄02ω1 + Z̄01ω̄1 + Z̄00ω

dK1 = K11ω1 + K̄11ω̄1 +K10ω,where, in addition to the basi salar invariants Z0, Z1, Z2,K1, we have introduedthe salar invariants of the next higher order: Z00, Z01, Z02, Z11, Z21, Z22 (omp-lex) and K10 (real). Note that if the basi salar invariants Z0, Z1, Z2,K1 wereonstants, all the higher order invariants suh as Z00, Z01, Z02, Z11, Z21, Z22,K10would be identially vanishing.Theorem 7.20. All loally nonequivalent strutures (M, [λ, µ]) of oriented ongru-enes having vanishing shear, nonvanishing twist, and with K2 6= 0 are desribedby the invariant system (7.33) with the integrabilty onditions (7.34).Now we pass to the determination of all nonequivalent strutures with K2 6= 0whih have a stritly 3-dimensional transitive group of symmetries. They orre-spond to the strutures of Theorem 7.20 with all the salar invariants being on-stants. It turns out that there are two families of suh strutures. The �rst family



INTRINSIC GEOMETRY OF ORIENTED CONGRUENCES IN THREE DIMENSIONS 23is desribed by the following invariant system:
dω1 = eiα[−(2 sinα)−1/3ω1 ∧ ω̄1 − (2 sinα)1/3ω1 ∧ ω],

dω̄1 = e−iα[(2 sinα)−1/3ω1 ∧ ω̄1 − (2 sinα)1/3ω̄1 ∧ ω],

dω = iω1 ∧ ω̄1 + (2 sinα)−1/3(eiαω1 ∧ ω + e−iαω̄1 ∧ ω).All the nonvanishing salar invariants here are:
K1 = (2 sinα)−2/3and

Z1 = i(2 sinα)2/3, Z2 = eiα(2 sinα)−1/3, Z0 = eiα(2 sinα)1/3.Two di�erent values α and α′ of the parameter yield di�erent respetive quadru-ples (K1, Z0, Z1, Z2) and (K ′
1, Z

′
0, Z

′
1, Z

′
2), and hene orrespond to nonequivalentstrutures.The seond family of nonequivalent strutures with a stritly 3-dimensional groupof symmetries orresponds to the following invariant system:

dω = iω1 ∧ ω̄1 + iβ−1ω ∧ (ω1 − ω̄1)

dω1 = −i(βω + β−1ω̄1) ∧ ω1(7.35)
dω̄1 = i(βω + β−1ω1) ∧ ω̄1.The nonvanishing salar invariants here are:(7.36) K1 = (β3 + 3)β−2, Z1 = −2iβ−1, Z2 = −iβ−1, Z0 = −iβ.The orresponding strutures of an oriented ongruene are parametrized by a realparameter β 6= 0. This means that eah β 6= 0 de�nes a distint struture.A further analysis of this system shows that the ongruene strutures desribedby it have a transitive symmetry group of Bianhi type V II0 (i� β = −2

1
3 ), Bianhitype V III (i� β > −2

1
3 ), and of Bianhi type IX (i� β < −2

1
3 ).If we parametrize the 3-dimensional manifold M by (u, z, z̄), the strutures

(M,λ, µ) orresponding to the system (7.35) may be loally represented by:
λ = du+

2βe−iβu + iz̄

β(zz̄ − 2β2(2 + β3))
dz +

2βeiβu − iz

β(zz̄ − 2β2(2 + β3))
dz̄(7.37)

µ = − 2β2e−iβu

zz̄ − 2β2(2 + β3)
dz, µ̄ = − 2β2eiβu

zz̄ − 2β2(2 + β3)
dz̄.Note that the above (λ, µ) an be also used to de�ne a CR struture on M . De-spite the fat that the 3-dimensional CR strutures are assoiated with this (λ, µ)by fairly more general transformations, (λ, µ) → (fλ, hµ + pλ), than the orientedongruene strutures, whih are de�ned by the restrited (λ, µ) → (fλ, hµ) trans-formations, eah s 6= 0 in (7.37) de�nes also a distint CR struture in the sense ofCartan.Three partiular values of β 6= 0 in (7.37) are worthy of mention. These are:

β = βB = −2
1
3 ,when the loal symmetry group (both the CR and the oriented ongruene symme-try) hanges the struture from Bianhi type IX , with β < βB; through Bianhitype V II0, with β = βB; to Bianhi type V III, with β > βB .



24 C. DENSON HILL AND PAWE� NUROWSKINext is:
β = βH = −1,when the lowest order Cartan invariant of the CR struture assoiated with λβHand µβH

is identially vanishing [15℄; in this ase the CR struture beomes loallyequivalent to the Heisenberg group CR struture, and the 3-dimensional transitiveCR symmetry group of Bianhi type IX is extendable, from the loal SO(3) group,to the 8-dimensional loal CR symmetry group SU(2, 1).The third distinguished β is:
β = βK = −3

1
3 .Note that for β = βK our invariant K1 of the ongruene struture (λβ , µβ) van-ishes, K1 ≡ 0, as in (7.36). This ase is of some importane, sine it will be shownin Setion 10.2 that the ongruene strutures with K1 ≡ 0 and K2 6= 0 have verynie properties. 8. Vanishing twist and nonvanishing shearNow we assume the opposite of Setion 7, namely that (M, [λ, µ]) has someshear, s 6= 0, but has identially vanishing twist, a ≡ 0. As in Setion 6 theno twist ondition dλ ∧ λ ≡ 0 yields λ = fdt for some real funtion t on M .Thus in this ase we again have a foliation of M by the level surfaes t = const.Eah leaf C of this foliation is a 2-dimensional real submanifold whih is equippedwith a omplex struture J determined by the requirement that its holomorphivetor bundle H1,0 = {X − iJX,X ∈ Γ(TC)} oinides with the anihilator of

SpanC(λ) ⊕ SpanC(µ̄). But the simple situation of M being loally equivalent to
R×C is no longer true. If s 6= 0 the manifoldM gets equipped with the struture ofa �bre bundle C → M → V , with �bres C being 1-dimensional omplex manifolds� the leaves of the foliation given by t = const, and with the base V being 1-dimensional, and parametrized by t. This an be rephrased by saying that we havea 1-parameter family of omplex urves C(t), with omplex struture tensors JC(t),whih are not invariant under Lie transport along the vetor �eld ∂t. Reall thathaving a omplex struture in a real 2-dimensional vetor spae is equivalent tohaving a onformal metri and an orientation in the spae. Thus the ondition ofhaving s 6= 0 means that, under Lie transport along ∂t, the metris on the 2-planestangent to the surfaes t = const hange in a fashion more general than onformal.This means that small irles on these two planes do not go to small irles when Lietransported along ∂t. They may, for example, be distorted into small ellipses, whihintuitively means that the ongruene generated by ∂t has shear. This explains thename of the omplex parameter s, as was promised in Setion 5.We now pass to a more expliit desription of this situation. We start with an ar-bitrary struture (M, [λ, µ]) with dλ∧λ = 0. This guarantees that the 2-dimensionaldistribution anihilating λ de�nes a foliation in M , and M is additionally equippedwith a transversal ongruene of urves. Note that a foliation of a 3-spae by 2-surfaes equipped with a ongruene loally an either be desribed in terms ofoordinates (t, x, y) suh that the tangent vetor to the ongruene is ∂t (in suhase the surfaes are in general urved for eah value of the parameter t), or interms of oordinates (u, z, z̄) suh that loally the surfaes are 2-planes (in suhase the ongruene is tangent to a vetor �eld with a more ompliated represen-tation X = ∂u+S∂z+ S̄∂z̄. Regardless of the desriptions the leaves of the foliation



INTRINSIC GEOMETRY OF ORIENTED CONGRUENCES IN THREE DIMENSIONS 25are given by the level surfaes of the real parameters t = const (in the �rst ase,as in the begining of this Setion) or u = const (as it will be used in this Setionfrom now on). Having this in mind and realling the allowed transformations (3.1)we onlude that our (M, [λ, µ]) with dλ ∧ λ = 0 may be represented by a pair of1-forms
λ = du, µ = dz +Hdz̄ +Gdu,where H = H(u, z, z̄) and G = G(u, z, z̄) are omplex-valued funtions on M , withoordinates (u, z, z̄), suh that |H | < 1. The foliation has leaves tangent to thevetor �elds ∂z , ∂z̄. Eah leaf is equipped with a omplex struture, whih may bedesribed by saying that its T (1,0) spae is spanned by the vetor �eld(8.1) Z = ∂z − H̄∂z̄;onsequently the T (0,1) spae is spanned by the omplex onjugate vetor �eld

Z̄ = ∂z̄ −H∂z.The ongruene on M whih gives the preferred splitting is tangent to the realvetor �eld(8.2) X = ∂u + ḠH−G
1−HH̄ ∂z + GH̄−Ḡ

1−HH̄ ∂z̄.Thus we have the following proposition.Proposition 8.1. All strutures (M, [λ, µ]) with vanishing twist, a ≡ 0, may beloally represented by(8.3) λ = du, µ = dz +Hdz̄ +Gdu,where H = H(u, z, z̄) and G = G(u, z, z̄) are omplex-valued funtions on M , withoordinates (u, z, z̄), suh that |H | < 1. They have nonvanishing shear s 6= 0 i�
Hu −GHz +HGz −Gz̄ 6= 0.The following two ases are of partiular interest:

• H ≡ 0. In this ase all surfaes u = const are equipped with the standardomplex struture. The oordinate z is the holomorphi oordinate forit, but the ongruene is tangent to a ompliated real vetor �eld X =
∂u −G∂z − Ḡ∂z̄.

• G ≡ 0. Here eah surfae u = const has its own omplex struture J , forwhih z is not a holomorphi oordinate; J is determined by speifying aomplex funtion H . A nie feature of this ase is that the ongruene isnow tangent to the very simple vetor �eld X = ∂u, whih enables us toidentify oordinates t and u.Note that in Proposition 8.1 we made an assumption about the modulus of thefuntion H . The modulus equal to one is exluded beause it violates the onditionthat the forms λ, µ, µ̄ are independent. We exluded also the H > 1 ase, sinebeause of the oordinate transformation z → z̄ followed by H → 1/H , suhstrutures are in one to one equivalene with those having |H | < 1. We now turn tothe question about nonequivalent strutures among those overed by Proposition8.1.



26 C. DENSON HILL AND PAWE� NUROWSKI8.1. The invariant T0 and the relative invariants T1, K0, K1. To answer thiswe have to go bak to the begining of Setion 5 and again perform the Cartananalysis on the system (5.1), but now with a ≡ 0, s 6= 0. In this ase the formulae(5.1) beome
dλ = bµ ∧ λ+ b̄µ̄ ∧ λ
dµ = pµ ∧ µ̄+ qµ ∧ λ+ sµ̄ ∧ λ(8.4)
dµ̄ = −p̄µ ∧ µ̄+ s̄µ ∧ λ+ q̄µ̄ ∧ λ.It is onvenient to write the omplex shear funtion s as

s = |s|eiψ .Now for a hosen pair (λ, µ) representing the struture, using (8.4), we �nd thatthe di�erentials of the Cartan frame(8.5) (ω, ω1, ω̄1) = (fλ, ρeiφµ, ρe−iφµ̄)are:
dω = d log f ∧ ω +

b

ρ
e−iφω1 ∧ ω +

b̄

ρ
eiφω̄1 ∧ ω

dω1 = idφ ∧ ω1 + d log ρ ∧ ω1 +
p

ρ
eiφω1 ∧ ω̄1 +

q

f
ω1 ∧ ω +

|s|
f

ei(2φ+ψ)ω̄1 ∧ ω

dω̄1 = −idφ ∧ ω̄1 + d log ρ ∧ ω̄1 −
p̄

ρ
e−iφω1 ∧ ω̄1 +

|s|
f

e−i(2φ+ψ)ω1 ∧ ω +
q̄

f
ω̄1 ∧ ω.Beause of s 6= 0, we an gauge the struture so that(8.6) dω1 ∧ ω1 = ω1 ∧ ω̄1 ∧ ω.This requirement de�nes f modulo sign to be f = ±|s|. Writing f as

f = eiǫπ|s|,where ǫ = 0, 1, and still requiring the normalization (8.6), we get
φ = − 1

2ψ + ǫπ2 .Thus the funtions f and φ are �xed modulo ǫ.After this normalization we introdue a real 1-form Ω suh that(8.7) (dω1 − dω̄1) ∧ (ω1 + ω̄1) = 2Ω ∧ ω1 ∧ ω̄1.This equation de�nes Ω to be
Ω = d log ρ+ zω1 + z̄ω̄1 + (1 − eiǫπ q+q̄2|s| )ω,where z is an auxiliary omplex parameter. The ondition that �xes z in an alge-brai fashion is:(8.8) dω1 ∧ ω = Ω ∧ ω1 ∧ ω, dω̄1 ∧ ω = Ω ∧ ω̄1 ∧ ω.It uniquely spei�es z to be

z =
(iψµ−2p̄)

2ρ e
i
2 (ψ−ǫπ), z̄ =

(−iψµ̄−2p)
2ρ e−

i
2 (ψ−ǫπ).Thus given a struture (M, [λ, µ]) with vanishing twist and nonvanishing shear, thethree normalization onditions (8.6), (8.7), (8.8) uniquely speify a 4-dimensional



INTRINSIC GEOMETRY OF ORIENTED CONGRUENCES IN THREE DIMENSIONS 27manifold P , whih is loally M × R+, and a well de�ned oframe (ω, ω1, ω̄1,Ω) onit suh that
ω = eiǫπ |s|λ

ω1 = ρe−
i
2 (ψ−ǫπ)µ

ω̄1 = ρe
i
2 (ψ−ǫπ)µ̄(8.9)

Ω = d log ρ+
(iψµ−2p̄)

2ρ e
i
2 (ψ−ǫπ)ω1 +

(−iψµ̄−2p)
2ρ e−

i
2 (ψ−ǫπ)ω̄1 +

(1 − eiǫπ q+q̄2|s| )ω.Here the positive oordinate along the fator R+ in the �bration R+ → P →M is
ρ. The oframe (ω, ω1, ω̄1,Ω) satis�es

dω = T1ω1 ∧ ω + T̄1ω̄1 ∧ ω
dω1 = Ω ∧ ω1 + (ω1 + ω̄1) ∧ ω + iT0ω1 ∧ ω
dω̄1 = Ω ∧ ω̄1 + (ω1 + ω̄1) ∧ ω − iT0ω̄1 ∧ ω(8.10)
dΩ = iK0ω1 ∧ ω̄1 +K1ω1 ∧ ω + K̄1ω̄1 ∧ ωwhere(8.11) T0 = ψλ+i(q̄−q)

2|s| eiǫπ, T1 =
t1
ρ
, K0 =

k0

2ρ2
, K1 =

k1

2ρand
t1 = (b|s| + |s|µ)

e
i
2 (ψ−ǫπ)

|s|
k0 = −ψµµ̄ − ψµ̄µ + pψµ + p̄ψµ̄ + 2i(pµ − p̄µ̄)(8.12)
k1 = 2(t1 − t̄1) +

e
i
2 ǫπ[(bq̄ − bq − qµ + q̄µ + iqψµ − iψµλ)e

i
2ψ + iψµ̄|s|e−

i
2ψ]|s|−1.Note that funtions T0, T1, K0 and K1 are invariants of the struture on the bundle

R+ → P →M , with the �ber oordinate ρ. They are de�ned modulo the parame-ter ǫ = 0, 1. Thus two strutures whih di�er only by the value of ǫ are equivalent.If we want to look for the invariants on the original manifoldM we must examinethe �ber oordinate dependene of the strutural funtions T0, T1, K0 and K1.Sine the last three funtions T1, K0, K1 have a nontrivial ρ dependene they donot projet to invariant funtions on M . However, sine in all these ases thisdependene is just saling by ρ we onlude that they lead to the relative invariantson M . Thus the vanishing or not of any of the funtions t1, k1 (omplex), k0 (real)is an invariant property of the struture on M . The situation is quite di�erentfor the real funtion T0. Although originally de�ned on P it is onstant along the�bers. Thus it projets to a well de�ned invariant on the original manifold M .Thus T0 is an invariant of the struture onM . We summarize the above disussionin the following Theorem.Theorem 8.2. A given struture (M, [λ, µ]) of an oriented ongruene with vanish-ing twist, a ≡ 0, and nonvanishing shear, s 6= 0, uniquely de�nes a 4-dimensionalmanifold P , 1-forms ω, ω1, ω̄1,Ω and funtions T0,K0 (real) T1,K1 (omplex) on
P suh that



28 C. DENSON HILL AND PAWE� NUROWSKI- ω, ω1, ω̄1,Ω are as in (8.9),- ω ∧ ω1 ∧ ω̄1 ∧ Ω 6= 0 at eah point of P ,- the forms and funtions T0, T1,K0,K1 are uniquely determined by the re-quirement that on P they satisfy equations (8.10).In partiular T0 is an invariant of the struture on M ; the idential vanishing, ornot, of either of the funtions t1, k0 or k1 de�ned in (8.12) is an invariant onditionon M .The strutures overed by Theorem 8.2 admit symmetry groups of at most fourdimensions. Those for whih the symmetry group is stritly 4-dimensional have allthe relative invariants t1, k0, k1 equal to zero and onstant invariant T0. When�nding suh strutures it is enough to onsider T0 = α = const ≥ 0 sine, due tothe fat that T0 is de�ned modulo sign (eiǫπ = ±1), eah struture with T0 = α < 0is equivalent to the one with T0 = |α|. Inspeting all the possibilities we get thefollowing theorem.Theorem 8.3. All loally nonequivalent strutures (M, [λ, µ]) of oriented on-gruenes having vanishing twist, nonvanishing shear, and possessing a stritly 4-dimensional transitive group of symmetries are parametrized by a real onstant
α ≥ 0 as follows.

• if 0 ≤ α < 1 they an be loally represented by
λ = du, µ = dx+ e2u

√
1−α2

(α+ i
√

1 − α2)dy

• if α = 1 they an be loally represented by
λ = du, µ = dx+ (i+ 2u)dy

• if α > 1 they an be loally represented by
λ = du,

µ = [(i+ α) cos(u
√

α2 − 1) − i
√

α2 − 1 sin(u
√

α2 − 1)]dx+

[(i+ α) sin(u
√

α2 − 1) + i
√

α2 − 1 cos(u
√

α2 − 1)]dy.Here (u, x, y) are oordinates on M . The real parameter α ≥ 0 is just the invariant
T0 = α and as suh enumerates nonequivalent strutures.8.2. Desription in terms of the Cartan onnetion. Equations (8.10) anbe better understood in terms of the matrix ω̃ of 1-forms de�ned by

ω̃ =













2(Ω − ω) 0 0

ω1 Ω − ω ω

ω̄1 ω Ω − ω,











where the 1-forms (ω1, ω̄1, ω,Ω) are as in (8.10) or as is (8.9).This matrix has values in the 4-dimensional Lie algebra g4 whih is a semidiretprodut of two 2-dimensional Abelian Lie algebras
h0 = {













2x 0 0

0 x y

0 y x













| x, y ∈ R }
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h1 = {













0 0 0

u+ iv 0 0

u− iv 0 0













| u, v ∈ R },for whih the ommutator is the usual ommutator of 3 × 3 matries. Thus(8.13) g4 = h0 ⊕ h1,as the diret sum of vetor spaes h0 and h1, with the ommutator between h0 and
h1 given by

[h0, h1] ⊂ h1.It turns out that due to the relations (8.10), ω̃ is a Cartan onnetion on theprinipal �bre bundle R+ → P →M , whih has as its struture group a 1-parameterLie group generated by the vetor �eld ρ∂ρ dual to Ω.Remark 8.4. It is worthwile to note that the �bre bundle R+ → P →M has someadditional struture. Indeed, equations (8.10) guarantee that P is foliated by 2-dimensional leaves of the integrable 2-dimensional real distribution D anihilatingforms ω1 and ω̄1. Thus, loally, P has also the struture of a �bre bundle over theleaf spae P/D. This is atually a prinipal �ber bundle H0 → P → P/D, withthe struture group H0 having h0 as its Lie algebra.Equations (8.10) imply that the urvature R of the Cartan onnetion ω̃ is
R = dω̃ + ω̃ ∧ ω̃ =





2R1 0 0
R3 R1 R2

R̄3 R2 R1



 ,where
R1 = iK0ω1 ∧ ω̄1 + (K1 − T1)ω1 ∧ ω + (K̄1 − T̄1)ω̄1 ∧ ω
R2 = T1ω1 ∧ ω + T̄1ω̄1 ∧ ω
R3 = iT0ω1 ∧ ω.In partiular the absene of vertial Ω∧ terms in the urvature on�rms our inter-pretation of ω̃ as a g4-valued Cartan onnetion on P over M .The Cartan onnetion ω̃ yields all the invariant information about the orre-sponding strutures (M, [λ, µ]) and an be used in an invariant desription of variousexamples of suh strutures. In partiular, the invariant deomposition (8.13) maybe used to distinguish two large lasses (M, [λ, µ])0 and (M, [λ, µ])1 of nonequiva-lent strutures (M, [λ, µ]). These are de�ned by the requirement that the urvature

R of their Cartan onnetion ω̃ has values in the respetive parts h0 for (M, [λ, µ])0,and h1 for (M, [λ, µ])1.8.2.1. Curvature R ∈ h0. The urvature R of the Cartan onnetion ω̃ resides in
h0 i� it is of the form

R =





2R1 0 0
0 R1 R2

0 R2 R1



 .



30 C. DENSON HILL AND PAWE� NUROWSKIAn example of a struture (M, [λ, µ]) with suh R is given by the following forms
(ω1, ω̄1, ω,Ω):

ω1 = er(dx+ ie2(u+f)dy),

ω̄1 = er(dx− ie2(u+f)dy),

ω = du,

Ω = dr + 2du+ 2fxdx,with a real funtion f = f(x, y) of real variables x and y. These two variables,supplemented with the real u and r, onstitute a oordinate system (u, x, y, r) on
R+ → P →M . The triple (u, x, y) parametrizesM , and r is related to the positive�ber oordinate ρ via ρ = er.For eah hoie of a twie di�erentiable funtion f = f(x, y) the forms (ω1, ω̄1, ω,Ω)satisfy the di�erential system (8.10) with

K1 ≡ 0, T1 ≡ 0, T0 ≡ 0,and the relative invariant K0 being
K0 = −e−2(r+u+f)fxy.A speial ase here is fxy ≡ 0, in partiular f ≡ 0. If this happens the orrespondingstrutures (M, [λ, µ]) are all equivalent to the struture with 4-dimensional transi-tive symmetry group having α = 0 in Theorem 8.3. If fxy 6= 0, then K0 6= 0, andthe orresponding strutures have the urvature of the Cartan onnetion ω̃ in theform

R = −e−2(r+u+f)





2iω1 ∧ ω̄1 0 0
0 iω1 ∧ ω̄1 0
0 0 iω1 ∧ ω̄1



 fxy.As suh they are speial ases of strutures with R ∈ h0. We will retutn to themin Setion 8.3.1, where we further analyze the ase K0 6= 0, T1 = 0 and K1 = 0.8.2.2. Curvature R ∈ h1. The ase of R ∈ h0 is entirely haraterized by the re-quirement that all the relative invariants t1, k0, k1 identially vanish. Examplesof suh strutures are strutures with a 4-dimensional transitive group of symme-tries given in Theorem 8.3. However these examples do not exhaust the list ofnonequivalent strutures having R ∈ h1. To �nd them all we proeed as follows.We want to �nd all strutures with
R =





0 0 0
R3 0 0
R̄3 0 0



 ,i.e. those for whih all the relative invariants T1, K1, K0, as in (8.10), vanish:(8.14) T1 ≡ 0, K0 ≡ 0, K1 ≡ 0.Assuming (8.14), equations (8.10) guarantee that real oordinates u and r may beintrodued on P suh that
ω = du, Ω = dr.Then, taking the exterior derivatives of both sides of equations (8.10), we see that(8.14) fores T0 to be a real funtion of u only. Denoting this funtion by α = α(u)we have

T0 = α(u).



INTRINSIC GEOMETRY OF ORIENTED CONGRUENCES IN THREE DIMENSIONS 31Integrating the system for suh T0, and denoting the u-derivatives by primes, weget the following theorem.Theorem 8.5. A struture (M, [λ, µ]) of an oriented ongruene with vanishingtwist, a ≡ 0, nonvanishing shear, s 6= 0, and having the urvature of its orrespond-ing Cartan onnetion ω̃ of the pure h1 type, R ∈ h1, an be loally representedby
λ = du, µ = dz − (

h̄′

h
+
h̄

h
− iα

h̄

h
)dz̄,where the omplex funtion h = h(u) 6= 0 satis�es a seond order ODE:(8.15) h′′ + 2h′ + (α2 + iα′)h = 0.Here the nonequivalent strutures are distinguished by the real invariant T0 = α(u).Note that if α(u) = const we reover the strutures from Theorem 8.3.8.3. The ase T1 ≡ 0. Now we pass to the general ase T1 ≡ 0. To proeed wehave to distinguish two subases:

• K1 ≡ 0
• K1 6= 0.8.3.1. The ase K1 ≡ 0. In this situation we have

dΩ = iK0ω1 ∧ ω̄1,with K0 given by (8.11)-(8.12). Sine K0 is not identially equal to zero, beausethis orreponds to the ase t1 ≡ 0, k0 ≡ 0, k1 ≡ 0 already studied, we use it to �x
ρ by the requirement(8.16) K0 = sign(k0) = ±1.We note that this sign is an invariant of the strutures under onsideration. Thisimplies that the strutures with di�erent signs are nonequivalent.After the normalization (8.16) the forms (ω1, ω̄1, ω,Ω) are de�ned as forms on
M . Performing the standard Cartan analysis on the system (8.10), we veri�ed thatafter pullbak to M it reads:

dω = 0,

dω1 = (iB −A)ω1 ∧ ω̄1 + iT0ω1 ∧ ω + ω̄1 ∧ ω,(8.17)
dω̄1 = (iB +A)ω1 ∧ ω̄1 + ω1 ∧ ω − iT0ω̄1 ∧ ω,
d[(A+ iB)ω1 + (A− iB)ω̄1 + ω] = ±iω1 ∧ ω̄1.Here the real funtions A,B, T0 are the salar invariants on M . They satisfy thefollowing integrability onditions

dA = [A1 + i
2 (B1 + B̄1 ± 1)]ω1 + [A1 − i

2 (B1 + B̄1 ± 1)]ω̄1 + (A−BT0)ω

dB = B1ω1 + B̄1ω̄1 + (AT0 −B)ω(8.18)
dT0 ∧ ω = 0,with the funtions A1 (real) and B1 (omplex) being the salar invariants of thenext higher order. In priniple, we ould have written the expliit fotmulae forall these salar invariants in terms of the de�ning variables b, q, p and s of (8.4).We refrain from doing this, beause the formulae are quite ompliated, and notenlightening.



32 C. DENSON HILL AND PAWE� NUROWSKIWe summarize these onsiderations in the following theorem.Theorem 8.6. All loally nonequivalent strutures (M, [λ, µ]) of oriented ongru-enes having vanishing twist, nonvanishing shear, with T1 ≡ 0 and K1 ≡ 0, aredesribed by the invariant forms (ω, ω1, ω̄1) satisfying the system (8.17)-(8.18) on
M .Thus having a representative (λ, µ) of a struture with vanishing twist, non-vanishing shear and with T1 ≡ 0, we always an gauge it to the invariant formssatisfying system (8.17)-(8.18). The other way around: given two 1-forms ω and ω1satisfying the system (8.17)-(8.18), we may onsider them as a representative pair
(λ = ω, µ = ω1) of a ertain struture with vanishing twist, nonvanishing shear andwith T1 ≡ 0.The immediate onsequene of the integrabilty onditions (8.18) is the nonexis-tene of strutures (8.17) with a stritly 3-dimensional transitive group of symme-tries. This is beause, if suh strutures existed, they would have onstant invariants
A, B and T0. Thus, for suh strutures the right hand sides of all the equations(8.18) would be zero. But this is impossible, sine in suh a situation the seondequation (8.18) implies B1 ≡ 0 whih, when ompared with equating to zero ther.h.s of the �rst equation (8.18), gives ontradition.A family of nonequivalent strutures (M, [λ, µ]) from this branh of the lassi�-ation is given in Setion 8.2.1. Indeed, onsider the examples of this setion forwhih

fxy 6= 0.Sine this guarantees that K1 6= 0, and sine we have T1 = 0 and K1 = 0 (and,what is less important for us here T0 = 0) for them, we may perform the abovedesribed normalization proedure on the invariant forms (ω1, ω̄1, ω,Ω) de�ned in8.2.1. A simple alulation, based on the normalization(8.19) − e−2(r+u+f)fxy = ±1,leads to the redution to M , where the invariant forms read:
ω = du,

ω1 = e−(u+f)
(

∓ fxy
)

1
2 (dx+ ie2(u+f)dy),

ω̄1 = e−(u+f)
(

∓ fxy
)

1
2 (dx− ie2(u+f)dy).They satisfy the system (8.17)-(8.18) with the funtions A and B given by:

A = 1
4

(

∓ fxy
)− 3

2

(

2fxfxy + fxxy

)

eu+f

B = 1
4

(

∓ fxy
)− 3

2

(

2fyfxy − fxyy

)

e−u−f .These strutures an thus be represented on M by
λ = du, µ = dx+ ie2

(

u+f(x,y)
)

dy.The only salar invariants for them are the funtions A and B as above, sine aswe already notied, the salar invariant T0 identially vanishes, T0 ≡ 0.Note in partiular, that given a funtion f = f(x, y), two strutures (M, [λ, µ])with λ, µ as above, orresponding to two di�erent signs of fxy are nonequivalent.This is beause the sign ± in (8.19) is an invariant of suh strutures.



INTRINSIC GEOMETRY OF ORIENTED CONGRUENCES IN THREE DIMENSIONS 33Remark 8.7. The strutures desribed above belong to a sublass of strutures forwhih the urvature R is muh more restrited than to h0. Sine, in addition to
T0 ≡ 0, we have here T1 ≡ 0, the urvature R is atually ontained in the diagonal1-dimensional subalgebra of h0. Moreover, sine also K1 ≡ 0, the urvature R doesnot involve ω∧ terms. This means that in this example, similarly as in all exampleswith T0 ≡ T1 ≡ K1 ≡ 0, the urvature of the Cartan onnetion ω̃ is horizontal fromthe point of view of the prinipal �ber bundle H0 → P → P/D disussed in Remark8.4. Thus here, the Cartan onnetion ω̃ an be reinterpreted as a g4-valued Cartanonnetion on the bundle H0 → P → P/D .8.3.2. The ase K1 6= 0. If K1 6= 0 we an use de�nition (8.11) to sale it in suha way that it has values on the unit irle

K1 = eiγ .This �xes ρ uniquely, and the system (8.10) is again redued to an invariant systemon M . This reads (with new A and B):
dω = 0,

dω1 = (iB −A)ω1 ∧ ω̄1 + (1 − C + iT0)ω1 ∧ ω + ω̄1 ∧ ω,(8.20)
dω̄1 = (iB +A)ω1 ∧ ω̄1 + ω1 ∧ ω + (1 − C − iT0)ω̄1 ∧ ω,

d[(A+ iB)ω1 + (A− iB)ω̄1 + Cω] =

iK0ω1 ∧ ω̄1 + eiγω1 ∧ ω + e−iγ ω̄1 ∧ ω.Here, all the real invariants are T0, A, B, C, γ and K0 are well de�ned funtionsonM . They are expressible in terms of the original variables de�ning the strutureand the funtions k0, k1 of (8.12). In partiular,
K0 = 2

k0

|k1|2
.To disuss the integrabilty onditions for the system (8.20) we have to distinguishtwo ases:

• either K1 = eiγ 6= ±1,
• or K1 = eiγ ≡ ±1.



34 C. DENSON HILL AND PAWE� NUROWSKIIn the �rst ase:
dT0 = i(eiγω1 − e−iγ ω̄2) + T00ω

dA = 1
2 [i(K0

2 +A1) +A2]ω1 + 1
2 [−i(K0

2 +A1) +A2]ω̄1 +A0ω

dB = 1
2 [−K0

2 +A1 + iB1]ω1 + 1
2 [−K0

2 +A1 − iB1]ω̄1 +B0ω(8.21)
dC = [−2A+AC +A0 +BT0 + i(BC −AT0 +B0) + eiγ ]ω1 +

[−2A+AC +A0 +BT0 − i(BC −AT0 +B0) + e−iγ ]ω̄1 + C0ω

dγ = [B + (A+ γ1) cotγ + iγ1]ω1 + [B + (A+ γ1) cotγ − iγ1]ω̄1 + γ0ω

dK0 = K01ω1 + K̄01ω̄1 + 2[(A+ γ1) csc γ + (1 − C)K0]ω,and in addition to the the basi salar invariants K0, γ, A, B, C, we have higherorder salar invariants A0, A1, A2, B0, B1, C0, γ0, γ1 (all real) and K01 (omplex).In the seond ase, when eiγ ≡ ±1, one of the integrabilty onditions is thevanishing of the salar invariant A of (8.20),
A ≡ 0.The rest of the integrabilty onditions are

dT0 = ±i(ω1 − ω̄2) + T00ω

dB = [−K0

2 + iB1]ω1 + [−K0

2 − iB1]ω̄1 +B0ω(8.22)
dC = [BT0 + i(BC +B0) ± 1]ω1 +

[BT0 − i(BC +B0) ± 1]ω̄1 + C0ω

dK0 = K01ω1 + K̄01ω̄1 + 2[∓B + (1 − C)K0]ω,with the new higher order salar invariants B0, B1, C0 (all real) and K01 (omplex).Theorem 8.8. All loally nonequivalent strutures (M, [λ, µ]) of oriented ongru-enes having vanishing twist, nonvanishing shear, with T1 ≡ 0 and K1 6= 0, aredesribed by the invariant forms (ω, ω1, ω̄1) satisfying
• either the system (8.20), (8.21) on M , in whih ase K1 = eiγ 6= ±1,
• or the system (8.20), (8.22) on M , in whih ase K1 ≡ ±1 and A ≡ 0.As it is readily seen fom the integrabilty onditions (8.21), (8.22) neither ofthese ases admits strutures with a stritly 3-dimensional transitive symmetrygroup (look at the equations for dT0 in (8.21), (8.22), and observe that T0 = const,whih implies dT0 = 0, is forbidden!).



INTRINSIC GEOMETRY OF ORIENTED CONGRUENCES IN THREE DIMENSIONS 358.4. The ase T1 6= 0. To analyze this ase we again start with the basi system(8.10) and we assume that t1 6= 0. This assumption enables us to normalize T1 sothat its modulus is equal to one. Thus now we require
|T1| = 1,whih uniquely �xes ρ to be
ρ = |t1|.After suh normalization all the forms beome forms on M and, depending on theloation of T1 on the unit irle, we have to onsider two ases:

• either T1 = eiδ 6= ±1,
• or T1 = ±1.We analyze the T1 6= ±1 ase �rst. Here we easily redue the system (8.10) to thefollowing system on M :

dω = (eiδω1 + e−iδω̄1) ∧ ω,
dω1 = (iB −A)ω1 ∧ ω̄1 + (1 − C + iT0)ω1 ∧ ω + ω̄1 ∧ ω,(8.23)
dω̄1 = (iB +A)ω1 ∧ ω̄1 + ω1 ∧ ω + (1 − C − iT0)ω̄1 ∧ ω.It has the following integrability onditions:

dδ = [δ1 + i((B − δ1) cot δ −A)]ω1 + [δ1 − i((B − δ1) cot δ −A)]ω̄1 + δ0ω(8.24)
dT0 ∧ ω =

{[B0 +BC −AT0 + 2 sin δ + i(2A−AC −BT0 −A0 + C1) −
eiβ(T0 − iC)]ω1 +

[B0 +BC −AT0 + 2 sin δ − i(2A−AC −BT0 −A0 + C̄1) −
e−iβ(T0 + iC)]ω̄1} ∧ ω.Here, the new salar invariants are: T0, δ, A,B,C (real), and the higher order salarinvariants are: δ0, δ1, B0 (real) and C1 (omplex).In the T1 ≡ ±1 ase the equations (8.23) are still valid, provided that we put

B ≡ 0.This ondition is implied by T1 ≡ ±1. Thus in this ase the invariant forms satisfy
dω = ±(ω1 + ω̄1) ∧ ω,
dω1 = −Aω1 ∧ ω̄1 + (1 − C + iT0)ω1 ∧ ω + ω̄1 ∧ ω,(8.25)
dω̄1 = Aω1 ∧ ω̄1 + ω1 ∧ ω + (1 − C − iT0)ω̄1 ∧ ω.The integrability onditions for this system are:
dT0 = T00ω +
(

(∓1 −A)T0 + i(2A−AC −A0 + C1 ± C)
)

ω1 +(8.26)
(

(∓1 −A)T0 − i(2A−AC −A0 + C̄1 ± C)
)

ω̄1,with the invariant sign equal to ±1, the new salar invariants being: T0, A, C (real),and the higher order salar invariants being: B0, T00 (real) and C1 (omplex).We summarize with the following theorem.



36 C. DENSON HILL AND PAWE� NUROWSKITheorem 8.9. All loally nonequivalent strutures (M, [λ, µ]) of oriented ongru-enes having vanishing twist, nonvanishing shear, with T1 6= 0, are desribed by theinvariant forms (ω, ω1, ω̄1) satisfying
• either the system (8.23), (8.24) on M , in whih ase T1 = eiδ 6= ±1,
• or the system (8.25), (8.26) on M , in whih ase T1 ≡ ±1.We pass to the determination of the strutures with stritly 3-dimensional tran-sitive group of symmetries.Using the system (8.23), (8.24) we easily establish that in the ase T1 6= ±1 thestrutures are governed by the following system of invariant forms:

dω = (eiδω1 + e−iδω̄1) ∧ ω,

dω1 = −1 − C − cos 2δ

1 − C + cos 2δ
e−iδω1 ∧ ω̄1 + (1 − C + i sin 2δ)ω1 ∧ ω + ω̄1 ∧ ω,(8.27)

dω̄1 =
1 − C − cos 2δ

1 − C + cos 2δ
eiδω1 ∧ ω̄1 + ω1 ∧ ω + (1 − C − i sin 2δ)ω̄1 ∧ ω.In a similar way, if T1 ≡ ±1, using the system (8.25), (8.26), we see that thestrutures with 3-dimensional symmetry groups are governed by the following sys-tem:

dω = ±(ω1 + ω̄1) ∧ ω,
dω1 = ±ω1 ∧ ω̄1 + iT0ω1 ∧ ω + ω̄1 ∧ ω,(8.28)
dω̄1 = ∓ω1 ∧ ω̄1 + ω1 ∧ ω − iT0ω̄1 ∧ ω.9. Nonvanishing twist and nonvanishing shearThe Cartan proedure applied to this ase is very similar to the one in Setion8 onerned with a ≡ 0 and s 6= 0. There, before the �nal redution to threedimensions, the proedure stopped at the intermediate 4-dimensional manifoldM×

R+ parametrized by the points of M and the positive oordinate ρ. In the presentase, in addition to s 6= 0, we also have a 6= 0, whih enables us to make animmediate redution to three dimensions and thus to produe invariants on M .Expliitly this redution is ahieved as follows.We start with the general system (5.1) of Setion 5. We have
a 6= 0, s 6= 0and we again write the omplex shear funtion s as

s = |s|eiψ .Now, for a hosen pair (λ, µ) representing the struture, we impose the onditions
dω ∧ ω = iω1 ∧ ω̄1 ∧ ω(9.1)

dω1 ∧ ω1 = ω1 ∧ ω̄1 ∧ ω(9.2)on the Cartan frame
ω = fλ, ω1 = ρeiφµ, ω̄1 = ρe−iφµ̄.Note that (9.1) is possible beause of a 6= 0 and (9.2) is possible beause of s 6= 0. Itis a matter of straightforward alulation to show that these two onditions uniquelyspeify the hoie of f , ρ and φ. To write the relevant formulae for f , ρ and φ we



INTRINSIC GEOMETRY OF ORIENTED CONGRUENCES IN THREE DIMENSIONS 37denote the sign of a by eiǫπ, where ǫ = 0 or 1. Then having eiǫπ = sign(a), theseformualae are:
f = eiǫπ|s|, ρeiφ =

√

|a|
√

|s|e−
i
2 (ψ−ǫπ)and the forms (ω, ω1, ω̄1) satisfy

dω = iω1 ∧ ω̄1 + k1ω1 ∧ ω + k̄1ω̄1 ∧ ω
dω1 = k2ω1 ∧ ω̄1 + k3ω1 ∧ ω + ω̄1 ∧ ω(9.3)
dω̄1 = −k̄2ω1 ∧ ω̄1 + ω1 ∧ ω + k̄3ω̄1 ∧ ω.Here the omplex funtions k1, k2, k3 are de�ned on M and:

k1 =
(b|s| + |s|µ)
√

|a|
√

|s|3
e
i
2 (ψ−ǫπ)

k2 =
−(log |a|)µ̄ + 2p− (log |s|)µ̄ + iψµ̄

2
√

|a|
√

|s|
e−

i
2 (ψ−ǫπ)

k3 =
ibµ̄ − ib̄µ − ibp+ ib̄p̄+ e−iǫπ|a|(q − q̄ − (log |s|)λ + iψλ)

2|a||s|These funtions onstitute the full system of invariants of (M, [λ, µ]) for a 6= 0,
s 6= 0.Theorem 9.1. A given struture (M, [λ, µ]) of an oriented ongruene with nonva-nishing twist, a 6= 0, and nonvanishing shear, s 6= 0, uniquely de�nes the frame ofinvariant 1-forms ω, ω1, ω̄1 and invariant omplex funtions k1, k2, k3 on M . Theforms and the funtions are determined by the requirement that they satisfy thesystem (9.3). Starting with an arbitrary representative (λ, µ) of the struture [λ, µ],the forms are given by

ω = eiǫπ|s|λ, ω1 =
√

|a|
√

|s|e−
i
2 (ψ−ǫπ)µ, ω̄1 =

√

|a|
√

|s|e
i
2 (ψ−ǫπ)µ̄,where the shear funtion is s = |s|eiψ. Here eiǫπ, ǫ = 0, 1, denotes the sign ofthe twist funtion a. The system (9.3) enodes all the invariant information of thestruture (M, [λ, µ]).We pass to the determination of all homogeneous examples with a 6= 0, s 6= 0.Now the maximal dimension of a group of transitive symmetries is three. Thestrutures with 3-dimensional groups of symmetries orrespond to those satisfyingsystem (9.3) with all the funtions k1, k2, k3 being onstants. Applying the exteriordi�erential to the system (9.3) with k1, k2, k3 onstants we arrive at the followingTheorem.Theorem 9.2. All homogeneous strutures (M, [λ, µ]) with nonvanishing twist,

a 6= 0, and nonvanishing shear, s 6= 0, have a stritly 3-dimensional symmetrygroup and fall into four main types haraterized by:I: k3 = 1. In this ase there is a 2-real parameter family of nonequivalentstrutures distinguished by real onstants x and y related to the invariants
k1 and k2 via:

k1 = x, k2 = iy.



38 C. DENSON HILL AND PAWE� NUROWSKIII: k3 = eiφ, 0 < φ < 2π. In this ase there is a 2-real parameter family ofnonequivalent strutures distinguished by real onstants x, y whih togetherwith the parameter φ are onstrained by the equation
cosφ(1 − 2xy + cosφ) = 0.The invariants k1, k2, k3 are then given by

k1 = x(cot φ2 + i), k2 = −iy(cot φ2 + i), k3 = cosφ+ i sinφ.III: k3 + k̄3 = 0, k3 6= ±i. In this ase there is a 3-real parameter familyof nonequivalent strutures distinguished by real onstants y′ 6= ±1, x, yrelated to the invariants k1, k2, k3 via:
k1 = x+ iy, k2 = k̄1 = x− iy, k3 = iy′.IV: |k3| 6= 1, k3 + k̄3 6= 0. In this ase there is a 3-real parameter family ofnonequivalent strutures distinguished by real onstants x′ 6= 0, y′, x, yonstrained by the equation

x′
2

+ y′
2

+ 2y′(x2 + y2) − 4xy = 1.The invariants k1, k2, k3 are then given by
k1 = x+ iy, k3 = x′ + iy′, k2 =

k̄1(1 + k2
3) − k1(k3 + k̄3)

1 − |k3|2
.Among all the strutures overed by the above theorem, the simplest have k1 =

k2 = k3 ≡ 0. This unique struture belongs to the ase III above and is the �atase for the branh a 6= 0, s 6= 0. We desribe it in the following proposition.Proposition 9.3. A struture of an oriented ongruene (M, [λ, µ]) with nonvan-ishing twist, a 6= 0, nonvanishing shear s 6= 0 and having k1 = k2 = k3 ≡ 0, may beloally represented by forms(9.4) λ = du+

√
2eiu − iz̄

zz̄ − 1
dz +

√
2e−iu + iz

zz̄ − 1
dz̄, µ =

2eiu

zz̄ − 1
dz −

√
2λ,where (u, z, z̄) are oordinates on M . This struture has the loal symmetry groupof Bianhi type VIII, loally isomorphi to the group SL(2,R).Remark 9.4. There are more strutures with a 6= 0, s 6= 0, whih have a 3-dimensional transitive symmetry group of Bianhi type VIII. It is quite ompliatedto write them all here. For example, among them, there is a 1-parameter family ofnonequivalent strutures with k1 = k2 ≡ 0. They may be represented by(9.5) λ = du+

κeiu − iz̄

zz̄ − 1
dz +

κe−iu + iz

zz̄ − 1
dz̄, µ = (κ2 − 1)

2eiu

zz̄ − 1
dz − κλ,where κ > 0, κ 6= 1. The only nonvanishing invariant for this 1-parameter familyis k3 = −i(1 − 2

κ2 ). It may be onsidered as a deformation of the �at ase above,whih orresponds to κ =
√

2.Remark 9.5. In a similar way, among all the strutures with a 6= 0, s 6= 0, whihhave a 3-dimensional transitive symmetry group of Bianhi type IX, we may easilyharaterize those with k1 = k2 ≡ 0. They may be represented by(9.6) λ = du+
κeiu − iz̄

zz̄ + 1
dz +

κe−iu + iz

zz̄ + 1
dz̄, µ = (κ2 + 1)

2eiu

zz̄ + 1
dz − κλ,where κ > 0. Here the only nonvanishing invariant is k3 = −i(1 + 2

κ2 ).



INTRINSIC GEOMETRY OF ORIENTED CONGRUENCES IN THREE DIMENSIONS 39Remark 9.6. It is interesting to remark whih of the strutures (9.5), (9.6) or-respond to the �at CR-struture in the sense of Cartan. Aording to [15℄, theyorrespond to κ = 0,
√

2 in the (9.5) ase, and κ = 0 in the (9.6) ase. Thus inthese ases the orresponding strutures of an oriented ongruene are loally CR-equivalent to the hyperquadri CR struture of Example 7.3, with a nonstandardsplitting, whih auses the shear s 6= 0.It is a rather ompliated matter to desribe whih Bianhi types having a 3-dimensional transitive symmetry group orrespond to a given homogeneous stru-ture with a 6= 0, s 6= 0. We remark that the groups of Bianhi types I and V areexluded for suh strutures. We also fully desribe the situation for Bianhi typesII and IV. This is summarized in the following theorem.Theorem 9.7.There are only two nonequivalent strutures of an oriented ongruene (M, [λ, µ])with a 6= 0, s 6= 0, whih have a loal transitive symmetry group of Bianhi type II.They may be loally represented by
λ = du+ i

2 (zdz̄ − z̄dz), µ = dz ±
√

2(1 − i)λ,where (u, z, z̄) are oordinates on M . The onstant invariants are
k1 = ±1 − i√

2
, k2 = ±1 + i√

2
, k3 = −i,and the sign ±1 distinguishes between the nonequivalent strutures.There are also only two 2-parameter families of nonequivalent strutures of anoriented ongruene (M, [λ, µ]) with a 6= 0, s 6= 0, whih have a loal transitivesymmetry group of Bianhi type IV. They may be loally represented by

λ = y−1(du − log ydx), µ = y−1d(x + iy) ±
√

2(1 − i)wλ,where (u, x, y) are oordinates on M and w = Re(w) + iIm(w) 6= 0 is a omplexparameter. The onstant invariants are
k1 = ±1 − i√

2
+

i

2w̄
, k2 = ±1 + i√

2
+

i

2w̄
, k3 = −i± (

1 + i

w̄
+

1 − i

w
),and the two real parameters Re(w) and Im(w), together with the sign ±1 distinguishbetween the nonequivalent strutures.Remark 9.8. We remark that the strutures with a symmetry group of Bianhi typeII are in a sense the limiting ase of the two families of strutures with Bianhi typeIV. They orrespond to the limit |w| → ∞.10. Appliation 1: Lorentzian metris in four dimensionsIn this setion we use our results about oriented ongruene strutures to on-strut Lorentzian metris in 4-dimensions.10.1. Vanishing twist � nonvanishing shear ase and pp-waves. Sine ouroriented ongruene strutures are 3-dimensional objets, we onentrate only onthose strutures, whih in some natural manner de�ne an assoiated 4-dimensionalmanifold. As we noted in the setions devoted to the Cartan analysis of the orientedongruene strutures, in some ases, suh as those desribed in Setion 8, theCartan bundle P enoding the basi invariants of the strutures is 4-dimensional.



40 C. DENSON HILL AND PAWE� NUROWSKISo in this ase, i.e. when the twist a ≡ 0 and the shear s 6= 0, we have a 4-dimensional manifold naturally assoiated with the oriented ongruene struture.Moreover, in suh ase the Cartan proedure provides us also with a rigid oframeof invariant forms (ω1, ω̄1, ω,Ω) on P . Using these forms we may de�ne(10.1) g = 2ω1ω̄1 + 2ωΩ,or, as suggested by the form of the assoiated Cartan onnetion,(10.2) g = 2ω1ω̄1 + 2ω(Ω − ω).These both are well de�ned Lorentzian metris on P , whih are built only from theobjets naturally and invariantly assoiated with the oriented ongruene struture.To be more spei�, let us onsider the strutures with the urvature of theCartan onnetion R ∈ h1, as desribed in Theorem 8.5. In this ase the bundle Pis parametrized by (z, z̄, u, r) and the invariant forms are:
Ω = dr, ω = du

ω1 = er
(

hdz − (h̄′ + h̄− iαh̄)dz̄
)

ω̄1 = er
(

h̄dz̄ − (h′ + h+ iαh)dz
)

,with funtions α = α(u) (real) and h = h(u) (omplex) satisfying the ordinarydi�erential equation 8.15. Inserting these forms in the formulae (10.1)-(10.2), weget the respetive 4-dimensional Lorentzian metris
g0 = 2e2r

(

hdz − (h̄′ + h̄− iαh̄)dz̄
)(

h̄dz̄ − (h′ + h+ iαh)dz
)

+ 2dudr,and
g−1 = 2e2r

(

hdz − (h̄′ + h̄− iαh̄)dz̄
)(

h̄dz̄ − (h′ + h+ iαh)dz
)

+ 2du(dr − du).It turns out that both these metris have quite nie properties.Atually, introduing a still bigger lass of metris
gc = 2e2r

(

hdz − (h̄′ + h̄− iαh̄)dz̄
)(

h̄dz̄ − (h′ + h+ iαh)dz
)

+ 2du(dr − cdu),with c = const ∈ R, one heks that they all are of type N in the Petrov lassi�-ation of 4-dimensional Lorentzian metris. This means that their Weyl tensor isexpressed in terms of only one nonvanishing omplex funtion Ψ4, alled the Weylspin oe�ient, whih reads
Ψ4 = 2(iα− c− 1).All the other Weyl oe�ients (Ψ0,Ψ1,Ψ2,Ψ3), whih together with Ψ4 totallyenode the Weyl tensor of gc, are identially zero.Looking at the spin oe�ient Ψ4 we see that there is a distinguished metriin the lass gc. This orresponds to c = −1. In suh ase the Weyl tensor of gis just proportional to Ψ4 = 2iα and we have a Lorentz-geometri interpretationof the invariant α = α(u) of the orresponding struture of the oriented ongru-ene. Confronting these onsiderations with the results of Setion 8.2.2 we get thefollowing



INTRINSIC GEOMETRY OF ORIENTED CONGRUENCES IN THREE DIMENSIONS 41Theorem 10.1. Every struture of an oriented ongruene (M,λ, µ) with vanish-ing twist, a ≡ 0, nonvanishing shear s 6= 0, and having the urvature R of itsorresponding Cartan onnetion in h1, de�nes a Lorentzian metri
g−1 = 2ω1ω̄1 + 2ω(Ω − ω),whih is of Petrov type N or onformally �at. The nonequivalent metris orrespondto di�erent strutures of the oriented ongruene, and the metri is onformally �atif and only if R ≡ 0.Interestingly metris g−1 are onformal to Rii �at metris. The Rii �atmetri in the onformal lass of g−1 is given by

ĝ−1 =
2e4u

(t+ e2u)2

(

(

hdz−(h̄′+h̄−iαh̄)dz̄
)(

h̄dz̄−(h′+h+iαh)dz
)

+e−2rdu(dr−du)
)

,where t is a real onstant. For eah α = α(u) and for eah solution h = h(u) of(8.15), the orresponding Rii �at metri is the so alled linearly polarized pp-wavefrom General Relativity Theory (see [10℄, p. 385).10.2. Nonvanishing twist � vanishing shear ase and the Bah metris.Another example of 4-dimensional Lorentzian manifolds naturally assoiated withthe strutures of oriented ongruenes appears in the nonvanishing twist � vanishingshear ase, as we explained in Setion 7.3. Atually in Setion 7.3 we de�nedonformal Lorentzian 4-manifolds equipped with the onformal lass of Lorentzianmetris [gt], whih are naturally assoiated with a ongruene struture with twistand without shear. Here we study the onformal properties of these metris.10.2.1. The Cotton and Bah onditions for onformal metris. We reall [4℄ that aLorentzian metri g on a manifold M is alled onformal to Einstein i� there existsa real funtion Υ onM suh that the resaled metri ĝ = e2Υg satis�es the Einsteinequations Ric(ĝ) = Λĝ. In the ase of an orientedM with dimM = 4 there are twoneessary onditions [2, 8℄ for g to be onformal to Einstein (in algebraially generiases [4℄ these neessary onditions are su�ient). To desribe these onditions wedenote by F the urvature 2-form of the Cartan normal onformal onnetion ω[g]assoiated with a onformal lass [g] (see [7℄ for de�nitions). The urvature F ishorizontal. Thus, hoosing a representative g of the onformal lass [g], we analulate its Hodge dual ∗F and alulate the 6 × 6 matrix of 3-forms(10.3) D ∗ F = d ∗ F + ω[g] ∧ ∗F − ∗F ∧ ω[g]for the onnetion ω[g]. This matrix has a remarkably simple form
D ∗ F =





0 ∗jµ 0
0 0 ∗jµ
0 0 0



 ,where ∗jµ is a vetor-valued 3-form, the Hodge dual of the so alled Yang-Millsurrent jµ for the onformal onnetion ω[g]. Having said this we introdue thevauum Yang-Mills equation for the onformal onnetion ω[g](10.4) D ∗ F = 0i.e. the ondition that the Yang-Mills urrent jµ vanishes. It turns out that in
dimM = 4 equations (10.4) are onformally invariant. They are equivalent to therequirement that the Bah tensor of g identially vanishes [2, 4℄. This ondition is



42 C. DENSON HILL AND PAWE� NUROWSKIknown [9℄ to onstitute a �rst system of equations whih a 4-dimensional metri gmust satisfy to be onformal to Einstein.Another independent ondition an be obtained by deomposing F into F =
F+ ⊕ F−, where ∗F± = ±iF± are its selfdual and antiselfdual parts (note that iappears here as a onsequene of the assumed Lorentzian signature). Deomposingthe urvatures F± onto a basis of 2-forms {θi ∧ θj} assoiated with a oframe {θi}in whih g takes the form g = gijθ

iθj , we reall that the seond neessary onditionfor a 4-metri g to be onformal to Einstein is(10.5) [F+
ij , F

−
kl ] = 0 ∀i, j, k, l = 1, 2, 3, 4.Here [, ] is the ommutator of the 6 × 6 matries F+

ij and F−
kl . We term (10.4) theBah ondition and (10.5) the Cotton ondition [4℄.10.2.2. Conformal urvature of the assoiated metris. Now we alulate the Car-tan normal onformal onnetion and its urvature for the onformal metris (7.18).We reall the setting from Setions 7.2, 7.3. The struture of an oriented ongru-ene (M,λ, µ) with vanishing shear and nonvanishing twist de�nes a 5-dimensionalprinipal �ber bundle H2 → P →M , on whih the invariant forms (ω1, ω̄1, ω,Ω, Ω̄),satisfying the system (7.15) reside. There is another �ber bundle assoiated withsuh a situation. This is the bundle P → N with a 4-dimensional base N andwith 1-dimensional �bers. The manifold N is in addition �bered over M also with1-dimensional �bers. The forms

{θ1, θ2, θ3, θ4} = {ω1, ω̄1, ω, ti(Ω̄ − Ω)}on P are used to de�ne a bilinear form Gt = 2(θ1θ2 + θ3θ4) on P . Although thisis degenerate on P , it projets to a well de�ned onformal lass [gt] of Lorentzianmetris(10.6) gt = 2(θ1θ2 + θ3θ4)on N , see (7.18).One an try to alulate the Cartan normal onformal onnetion for the metris
gt on N itself, but we prefer to do this on the 5-dimensional bundle P instead.This is more onvenient, sine in suh an approah we an diretly use the oframederivatives (7.15) of the forms (ω1, ω̄1, ω,Ω, Ω̄) on P , without the neessity ofprojeting them from P to N .Thus, in the following, we assoiate the dual set of vetor �elds (E1, Ē1, E0, E2, Ē2)to (ω1, ω̄1, ω,Ω, Ω̄), and we will use them to denote the derivatives of the funtions,suh as the invariants K1, K2 and K̄2. The onventions will be as follows: thesymbols K11 = E1(K1) and K11̄ = Ē1(K1) will denote the diretional derivativesof K1 in the respetive diretions of the vetor �elds E1 and Ē1. In partiular K21̄0will denote E0(Ē1(K2)).



INTRINSIC GEOMETRY OF ORIENTED CONGRUENCES IN THREE DIMENSIONS 43A (rather tedious) alulation gives the following expressions for the Cartannormal onformal onnetion ωt for the metris gt on P :
(10.7) ωt =





































1
2 (Ω + Ω̄) τ1 τ2 τ3 τ4 0

θ1 −iΩ1 0 −Ω2
i
2θ

1 τ2

θ2 0 iΩ1 −Ω̄2 − i
2θ

2 τ1

θ3 i
2θ

2 − i
2θ

1 − 1
2 (Ω + Ω̄) 0 τ4

θ4 Ω̄2 Ω2 0 1
2 (Ω + Ω̄) τ3

0 θ2 θ1 θ4 θ3 − 1
2 (Ω + Ω̄)





































.

Here the 1-forms Ω1 (real) and Ω2 (omplex) are
Ω1 = tK1θ

3 + 1−t
2t θ

4, Ω2 = itK1θ
1 + itK̄2θ

3, Ω̄2 = −itK1θ
2 − itK2θ

3and the 1-forms {τ1, τ2, τ3, τ4} are:
τ1 = − 1

6 (5t− 2)K1θ
2 + 1

4 (2itK11 +K2(1 − t))θ3

τ2 = τ̄1 = − 1
6 (5t− 2)K1θ

1 + 1
4 (−2itK11̄ + K̄2(1 − t))θ3

τ3 = 1
4 (2itK11 −K2(t+ 1))θ1 − 1

4 (2itK̄11̄ + K̄2(t+ 1))θ2 − t2K2
1θ

3 + 1
6 (4t− 1)K1θ

4

τ4 = 1
6 (4t− 1)K1θ

3 − 1
4θ

4.The next step, namely the alulation of the urvature Ft = dωt + ωt ∧ ωt of
ωt, is really tedious, but ahievable with the help of symboli alulation programssuh as, e.g. Mathematia. The resulting formulae are too ompliated to displayhere, but the so(1, 3)-part of the urvature, whih is just the Weyl tensor of gt, isworth quoting. We present it in terms of the (lifted to P ) Weyl spinors Ψ0, Ψ1,
Ψ2, Ψ3 and Ψ4. These read:

Ψ0 = 0, Ψ1 = 0,

Ψ2 = 1
6 (1 − 4t)K1,

Ψ3 = 1
4

(

2itK11̄ + (3t− 1)K̄2

)

,(10.8)
Ψ4 = −itK̄21̄.We have the followingProposition 10.2. Every metri gt with K1 ≡ 0 or t = 1

4 is of Petrov type IIIor its speializations. If t = 1
3 and K1 ≡ 0, then the onformal lass [g1/3] of themetri g1/3 is of Petrov type N .Calulation of the Yang-Mills urrent j = jµθ

µ for ωt is also possible. Sine theovariant derivative of the Hodge dual of the urvature Ft is horizontal with repetto the bundle P → N , the urrent omponents jµ, as viewed on P or on N , di�eronly by nonvanishing sales. The result of our alulation on P reads:
j1 = j̄2 = 1

3 (1 − 4t)[K111θ
1 − 2iK11θ

4] + 1
6j

1
2θ

2 − 1
6j

1
3θ

3

j3 = − 1
6 j

1
3θ

1 − 1
6 j̄

1
3θ

2 − 1
6j

3
3θ

3 − 1
6j

1
2θ

4

j4 = 2
3 (4t− 1)[K1θ

4 + iK11θ
1 − iK11̄θ

2] − 1
6j

1
2θ

3,



44 C. DENSON HILL AND PAWE� NUROWSKIwhere
j12 = (1 − 4t)(1 − 12t)K2

1 + (7t− 1)(K111̄ +K11̄1)

j13 = 16it(4t− 1)K1K11 − 2(1 − 2t)(1 − 4t)K1K2 + (1 − 4t)K21̄1 +

3it(K111̄1 +K11̄11)

j33 = 16t2(1 − 4t)K3
1 − 36t2K11K11̄ + 3(1 − t)(1 + 3t)|K2|2 + 2(t+ 2)K21̄3 −

24t2K1(K111̄ +K11̄1) + 2it(4 − 7t)(K11̄K2 −K11K̄2).We have also alulated the Cotton matries [F+
tij , F

−
tij ] for eah value of thereal parameter t. We obtained formulae whih are too ompliated to write here.However we observed, that among all the parameter values for t, there are a fewpreferred ones for whih the formulae simplify signi�antly. These speial parametervalues are:

t = ±1

3
, t =

1

4
, t = 1.Here we fous on t = − 1

3 and t = 1, for whih we have the following theorem.Theorem 10.3. If t = − 1
3 or t = 1 and the relative invariant K1 ≡ 0, thenthe onformal metris [gt] satisfy the Bah ondition. If in addition the relativeinvariant K2 6= 0, the metris are not onformally �at and do not satisfy the Cottonondition. If K1 ≡ K2 ≡ 0 the onformal metris g−1/3 and g1 have Ft ≡ 0, i.e.they are onformally �at.The theorem an be veri�ed by using the expliit formulae for the Yang-Millsurrent jµ, the matries [F+
tij , F

−
tij ], and the integrability onditions for the system(7.15) with K1 = 0. These integrability onditions, in partiular, imply that K21̄ =

0. We shall return to the other two interesting values t = 1/4 and t = 1/3 for gtbelow, where we onsider examples.10.2.3. Examples. As noted above a partiularly interesting lass of strutures
(M,λ, µ) orresponds to K1 ≡ 0 and K2 6= 0. Looking at the list of our examplespresented in Setion 7 we �nd suh a struture in Setion 7.6. This orresponds toa speial value of the parameter βK = −3

1
3 in the family of strutures desribed bythe invariant system (7.35), and is loally represented by forms λ, µ as in (7.37) with

βK = −3
1
3 . Atually it is worthwhile to write the metris gt for all the struturesovered by (7.37). These metris read:

gt = gt(β) = 2dzdz̄ +

t
(

du+
2βe−iβu + iz̄

β(zz̄ − 2β2(2 + β3))
dz +

2βeiβu − iz

β(zz̄ − 2β2(2 + β3))
dz̄

)

×

(zz̄ − 2β2(2 + β3))2

2β4

(

2dr +
2(βe−iβu − iz̄)

zz̄ − 2β2(2 + β3)
dz +

2(βeiβu + iz)

zz̄ − 2β2(2 + β3)
dz̄

)

,and in addition to the real parameter t, they are parametrized by the real parameter
β 6= 0 whih enumerates nonequivalent strutures (M,λ, µ).These are quite interesting onformal Lorentzian metris for the following rea-sons.First, if

β = βK = −3
1
3 ,
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g−1/3(−3

1
3 ) = 2dzdz̄ −

(

du+
2·3 1

3 e3
1
3 iu − iz̄

3
1
3 (zz̄ + 2·3 2

3 )
dz +

2·3 1
3 e−3

1
3 iu + iz

3
1
3 (zz̄ + 2·3 2

3 )
dz̄

)

×

(zz̄ + 2·3 2
3 )2

18·3 1
3

(

2dr − 2(3
1
3 e3

1
3 iu + iz̄)

zz̄ + 2·3 2
3

dz − 2(3
1
3 e−3

1
3 iu − iz)

zz̄ + 2·3 2
3

dz̄
)

,and
g1(−3

1
3 ) = 2dzdz̄ +

(

du+
2·3 1

3 e3
1
3 iu − iz̄

3
1
3 (zz̄ + 2·3 2

3 )
dz +

2·3 1
3 e−3

1
3 iu + iz

3
1
3 (zz̄ + 2·3 2

3 )
dz̄

)

×

(zz̄ + 2·3 2
3 )2

6·3 1
3

(

2dr − 2(3
1
3 e3

1
3 iu + iz̄)

zz̄ + 2·3 2
3

dz − 2(3
1
3 e−3

1
3 iu − iz)

zz̄ + 2·3 2
3

dz̄
)

,are Bah �at. Sine the invariant K2 of the orresponding strutures (M,λ, µ)is nonvanishing, they are also not onformal to any Einstein metri. Note that,again beause of K1 ≡ 0 and K2 6= 0, both metris g1(−3
1
3 ) and g−1/3(−3

1
3 ) areof general Petrov type III (see Proposition 10.2). As far as we know, they bothprovide the �rst expliit examples of onformally non Einstein Bah metris whihare of this Petrov type (ompare e.g. with [16℄).Seond, note also that, sine K1 ≡ 0 for βK = −3

1
3 , the metri g1/3(βK), withnow t = +1/3, is also quite interesting. Aording to Proposition 10.2 this metri isof Petrov type N. In gravitation theory it would be also termed twisting type N (see[10℄). It is not onformal to any Einstein metri, sine for all metris gt(βK) theBah tensor Bt(βk), when expressed in terms of the oframe (θ1, θ2, θ3, θ4), reads

Bt(−3
1
3 ) = 25·34 (t− 1)(1 + 3t)

(zz̄ + 2·3 2
3 )6

θ3 ⊙ θ3.This obviously does not vanish, when t = 1/3, hene the metris g1/3(βK) areexamples of twisting type N metris, whih are not onformally Einstein.Third, suggested by the struture of the Weyl tensor (10.8) for all the metris
gt we speialize the metris gt(β) to the ase when t = 1

4 . The Yang-Mills urrentfor this speial ase may be read o� from the general formulae from the previoussetion. Here however we prefer to give the expliit formulae for the Bah tensorfor g1/4(β). Here again the Bah tensor B1/4(β) for these metris has a very simpleform
B1/4(β) = 6

β6(β6 + 36β3 + 36)

(zz̄ − 2β2(2 + β3))6
θ3 ⊙ θ3.As is readily seen this vanishes for the following two real values of β:

βS1 = −
(

6(3 + 2
√

2)
)

1
3 , βS2 = −

(

6(3 − 2
√

2
)

1
3 .Thus the two orresponding metris g1/4(βS1), and g1/4(βS2) are further examplesof Bah Lorentzian metris, whih are again of Petrov type III. One an hek bydiret alulation that they are also not onformal to any Einstein metri.



46 C. DENSON HILL AND PAWE� NUROWSKIMotivated by this last example we alulated the Bah tensor for all the metris
g1/4 (not neessarily those assoiated with the β-parametrized-strutures (7.37)).This alulation leads to the followingTheorem 10.4. If t = 1

4 and a struture (M,λ, µ) with nonvanishing twist andvanishing shear has the relative invariant K1 satisfying
K111̄ +K11̄1 ≡ 0,then the Bah tensor Bt of the metris gt orresponding to the struture (M,λ, µ),as de�ned in (10.6), has a very simple form

B1/4 =
3

32

(

4K11K11̄ + 2i(K11K̄2 −K11̄K2) − 7K2K̄2 − 4(K21̄0 + K̄210)
)

θ3 ⊙ θ3,in whih nine out of the apriori ten omponents, identially vanish.Apart from the strutures with βS1 and βS2 we do not know examples of stru-tures satisfying ondition K111̄ +K11̄1 ≡ 0.11. Appliation 2: Algebraially speial spaetimesAll the metris disussed in Setion 10 are examples of algebraially speial spae-times. These are 4-dimensional Lorentzian metris, whose Weyl tensor is degeneratein an open region of the spaetime. The algebraially speial vauum (or in otherwords: Rii �at) metris have the interesting property that they de�ne a ongru-ene of shearfree and null geodesis in the underlying spaetime. At this stage wemust emphasize that the ongruene assoiated with suh metris lives in four di-mensions and the vanishing shear and the geodesi ondition is a four dimensionalnotion here. Nevertheless we observe that the 3-dimensional oriented ongruenesin our sense are related, at least at the level of the Lorentzian metris disussed sofar, to an analogous notion in 3+1 dimensions, where the metri is of Lorentziansignature. In this setion we disuss this relationship more losely. Note that inall the examples of Setion 10 the four -dimensional ongruene of shearfree nullgeodesis was always tangent to the vetor �eld k = ∂r.Before passing to the subjet proper of this setion we remark that the alge-braially speial Lorentzian metris are very important in physis. To be morespei� we onsider the metri(11.1) g = 2
(

P2µµ̄+ λ(dr + Wµ+ W̄µ+ Hλ)
)

,where
λ = du+

i
(

2M + (a+M)zz̄
)

z(1 + K
2 zz̄)

2
dz − i

(

2M + (a+M)zz̄
)

z̄(1 + K
2 zz̄)

2
dz̄, µ = dz,

P2 =
r2

(1 + K
2 zz̄)

2
+

(

KM − a+ (KM + a)K2 zz̄
)2

(1 + K
2 zz̄)

4
,(11.2) W =

iKaz̄

(1 + K
2 zz̄)

2
,

H = −K
2

+

mr +KM2 − aM
1−K2 zz̄

1+
K
2 zz̄

r2 +

(

KM−a+(KM+a)
K
2 zz̄

)2

(1+
K
2 zz̄)

2

,



INTRINSIC GEOMETRY OF ORIENTED CONGRUENCES IN THREE DIMENSIONS 47and m, a,M,K are real onstants.This sary-looking metri has very interesting properties. First, it admits a 4-dimensional ongruene of null and shearfree geodesis, whih is tangent to thevetor �eld k = ∂r. Seond, if K = 1, it is algebraially speial, atually of PetrovtypeD, and more importantly, it is Rii �at. The parameter valuesK−1 = M = 0,orrespond to the elebrated Kerr metri, desribing a gravitational �eld outside arotating blak hole, with mass m and angular momentum parameter a. In this asethe angular momentum parameter a measures the twist of the ongruene tangentto k. If in addition a = 0, the twist of the ongruene vanishes, and the metribeomes the Shwarzshild metri. Third, in theK−1 = a = m = 0 ase the metriis the Taub-NUT vauum metri, whih is important in Relativity Theory beauseits serves as a `ounterexample for almost everything' [13℄. Fourth, it should bealso noted that if M = 0 and the other parameters, inluding K, are arbitrary, themetri is again type D and Rii �at. Finally, we should mention that for generalvalues of K 6= 1 and M 6= 0 the metri is algebraially general and neither Rii�at nor Einstein.From the point of view of our paper the relevane of the metri (11.1)-(11.2) isself evident. The four dimensional spaetime M on whih the metri is de�ned,loally parametrized by (u, z, z̄, r), is loally a produt M = M × R, with Mbeing parametrized by (u, z, z̄). The 3-dimensional manifold M is then naturallyequipped with the oriented ongruene struture (M,λ, µ), de�ned in terms of the1-forms λ, µ from (11.2). Note that these forms, although de�ned on M, do notdepend on the r oordinate, and as suh projet to M . Note also that the orientedongruene struture de�ned by these forms has always vanishing shear s ≡ 0. Ithas nonvanishing twist, with the exeption of the Shwarzshild metri a = M = 0,or the ase when K = 0 and M + a = 0. In this last ase the metri is of Petrovtype D, but is neither Rii �at nor Einstein.Sine in the ase of Rii �at metris (11.1)-(11.2) only the Shwarzshild metrihas the orresponding struture of an oriented ongruene with vanishing twist, inthe next setions we deided to make a systemati study of the Lorentzian metris(11.1) (not neessarily of the form (11.2)), with forms λ, µ de�ning an orientedongruene struture in three dimensions whih have vanishing shear, but nonvan-ishing twist, only. Atually, for the sake of brevity, we only disuss the ase whenthe strutural invariants K1 and K2 of the ongruene strutures, as de�ned inSetion 7.1, satisfy K1 6= 0, K2 ≡ 0.11.1. Redution of the Einstein equations. As we know from Setion 7.5 everystruture (M, [λ, µ]) having K1 6= 0, K2 ≡ 0 de�nes an invariant oframe (ω, ω1, ω̄1)on M whih satis�es the system (7.29), (7.31). Given suh a struture we onsidera 4-manifold M = R ×M with a distinguished lass of Lorentzian metris. Thesemetris an be written using any representative of a lass [λ, µ]. Sine the invariantforms (ω, ω1) provide us with suh a representative it is natural to use them, ratherthan a randomly hosen pair (λ, µ). Thus, given a struture (M, [λ, µ]) having
K1 6= 0, K2 ≡ 0, we write a metri on(11.3) M = R ×Mas(11.4) g = P 2 [ 2ω1ω̄1 + 2ω(dr +Wω1 + W̄ ω̄1 +Hω) ].



48 C. DENSON HILL AND PAWE� NUROWSKIHere the forms (ω, ω1, ω̄1) satisfy the system (7.29), (7.31), r is a oordinate alongthe R fator in M, and P 6= 0, H (real) and W (omplex) are arbitrary funtionson M.The null vetor �eld k = ∂r is tangent to a ongruene of twisting and shear-freenull geodesis in M. This is a distinguished geometri struture on M.Now we pass to the question if the metris (11.4) may be Einstein. To disussthis we need to speify what is the interesting energy momentum tensor that willonstitute the r.h.s. of the Einstein equations. Sine the only geometrially dis-tinguished struture on M is the shear-free ongruene generated by k = ∂r it isnatural to onsider the Einstein equations in the form(11.5) Ric(g) = Φk ⊙ k.If the real funtion Φ satis�es Φ > 0 the above equations have the physial inter-pretation of a gravitational �eld of `pure radiation' type in whih the gravitationalenergy is propagated with the speed of light along the ongruene k. If Φ ≡ 0 wehave just Rii-�at metris, whih orrespond to vauum gravitational �elds. Thislast possibility is not exluded by our Einstein equations. In the following analysiswe will not insist on the ondition Φ ≡ 0.At this point it is worthwhile to mentioned that a similar problem was studiedby one of us some years ago in [14℄; see also the more modern treatment in [6℄.Using the results of [6, 14℄ and the symboli alulation program Mathematia, weredued the Einstein equations (11.5) to the following form:First, it turns out that the Einstein equations (11.5) an be fully integrated along
k, so that the r dependene of the funtions P , H , W is expliitly determined.Atually we have:

P =
p

cos r2

W = iαe−ir + β(11.6)
H = − m̄

p4
e2ir − m

p4
e−2ir + 1

2 φ̄eir + 1
2φe−ir + 1

2χ,where the funtions p, χ (real) and α, β,m (omplex) do not depend on the r o-ordinate. Thus, using some of the Einstein equations (11.5), one quikly reduesthe problem from M to a system of equations on the CR-manifold with preferredsplitting (M, [λ, µ]).Now we introdue a preferred set of vetor �elds (∂0, ∂, ∂̄) on M de�ned asthe respetive duals of the preferred forms (ω, ω1, ω̄1). Note that this notationis in agreement with the notation of CR-struture theory. In partiular ∂̄ is thetangential CR-operator on M , so that the equation for a CR-funtion ξ on M is
∂̄ξ = 0.With this notation the remaining Einstein equations (11.5) for ds2 give �rst:

α = 2(∂ log p− c)

β = 2i(∂ log p− 2c− A1)(11.7)
φ = (∂̄ +A1 + iB̄1 + iβ̄)α− 4

m

p4

χ = 3αᾱ+ 2i(∂ +A1 − iB1)β̄ − 2i(∂̄ +A1 + iB̄1)β ∓ 1,where we have introdued a new unknown omplex funtion c on M and used theCartan invariants A1 > 0, B1 and ±1 of the system (7.29), (7.31).



INTRINSIC GEOMETRY OF ORIENTED CONGRUENCES IN THREE DIMENSIONS 49Finally the di�erential equations for the unknown funtions c,m and p equivalentto the Einstein equations (11.5) are:
(∂ − 3A1 + iB1)c− 2c2 + a11 −A2

1 + i
2A1(3B1 + B̄1) = 0(11.8)

(∂̄ − 6c̄)m = 0(11.9)
(∂ + 3A1 − iB1)∂̄p+ (∂̄ + 3A1 + iB̄1)∂p+

−3[(∂ + 3A1 − iB1)c̄+ (∂̄ + 3A1 + iB̄1)c+ 2cc̄+
8
3A

2
1 + 4

3a11 + 2i
3 A1(B̄1 −B1) ± 1

6 ]p =(11.10)
−m+ m̄

p3
.We thus have the following theorem.Theorem 11.1. Let (M, [λ, µ]) be a struture of an oriented ongruene havingvanishing shear, nonvanishing twist and the invariants K1 6= 0, K2 ≡ 0. Then aLorentzian metri assoiated with (M, [λ, µ]) via (11.3)-(11.4) satsi�es the Einsteinequations (11.5) if and only if the metri funtions are given by means of (11.6)-(11.7) with the unknown funtions c,m (omplex), p (real) on M satsifying thedi�erential equations (11.8)-(11.10).Remark 11.2. Note that ontrary to the invariants (ω, ω1, ω̄1) the oordinate r,and in turn the di�erential dr, has no geometri meaning. Atually the oordinatefreedom in hoosing r is r → r + f , where f is any real funtion f on M . Thisindues some gauge transformations on the variables β and χ. Nevertherless theequations (11.8)-(11.10) are not a�eted by these transformations.Remark 11.3. Equations (11.8)-(11.10) should be understood in the following way.Start with a struture of an oriented ongruene (M, [λ, µ]) having vanishing shear,nonvanishing twist and the invariants K1 6= 0, K2 ≡ 0. Calulate its invariants

(ω, ω1, ω̄1), (∂0, ∂, ∂̄), A1, B1, a11 of (7.29), (7.31). Having this data write downequations (11.8)-(11.10) for the unknowns c,m, p. As a hint for solving these equa-tions observe that the equation (11.8) involves only the unknown c. Thus solve it�rst. One having the general solution for c insert it to the equation (11.9). Thenthis equation beomes an equation for the unknown m. In partiular m = 0 isalways a solution of (11.9). One this equation for m is solved, insert c and mto the equation (11.10), whih beomes a real, seond order equation for the realunknown p. In partiular, if it happens that you are only interested in solutions forwhih m+ m̄ = 0, this equation is a linear seond order PDE on M . For partiularhoies of (M, [λ, µ]) it an be redued to well known equations of mathematialphysis, suh as for example the hypergeometri equation [14℄.Remark 11.4. The unknown variable m is related to a notion known to physiistsas omplex mass. For physially interesting solutions, suh as for example the Kerrblak hole, the imaginary part of m is related to the mass of the gravitationalsoure. The real part of m is related to the so alled NUT parameter. Moreover
m is responsible for algebraial speialization of the Weyl tensor of the metri. If
m ≡ 0 the metri is of type III, or its speializations, in the Cartan-Petrov-Penrosealgebrai lassi�ation of gravitational �elds.



50 C. DENSON HILL AND PAWE� NUROWSKI11.2. Examples of solutions. Here we give examples of metris (11.4) satisfyingthe Einstein equations (11.5). In all these examples the strutures of orientedongruenes (M, [λ, µ]) will be isomorphi to the strutures with a 3-dimensionalgroup of symmetries desribed by Proposition 7.16. The invariant forms (ω, ω1, ω̄1)for these strutures are:
ω =

2τ2

1 ∓ 4τ2
(y−2(1∓2τ2)du − y−1dx),

ω1 = ±iτy−1(dx + idy),(11.11)
ω̄1 = ∓iτy−1(dx − idy).We reall that the real parameter τ is related to the invariants A1, B1 of thestrutures (11.11) via:
A1 = −∓1 + 2τ2

2τ
, B1 = iτ.Sine these invariants are onstant, all the higher order invariants for these stru-tures, suh as for example the a11 in (7.31), are identially vanishing. AlthoughPropsition 7.16 exludes the values τ2 = 1
2 in the upper sign ase, we inlude itin the disussion below. This value orresponds to A1 = 0 and therefore mustdesribe one of the two nonequivalent strutures (M, [λ, µ]) of Example 7.7. Fromthe two strutures of this example, the one orresponding to τ2 = 1

2 is de�ned by
(ǫ1, ǫ2) = (0, 1). In partiular, it has a stritly 4-dimensional symmetry group.First we assume that the metri (11.4) has the same onformal symmetries asthe strutures (11.11). This assumption, together with Einstein's equations (11.5),whih are equivalent to the equations (11.6)-(11.7), (11.8)-(11.10), implies thatall the metri funtions p,m, c must be onstant. Then the system (11.8)-(11.10)redues to the following algebrai equations for m, p, c:

(−3A1 + iB1)c− 2c2 −A2
1 + i

2A1(3B1 + B̄1) = 0(11.12)
c̄m = 0(11.13)
3[(3A1 − iB1)c̄+ (3A1 + iB̄1)c+ 2cc̄+(11.14)
8
3A

2
1 + 2i

3 A1(B̄1 −B1) ± 1
6 ]p =

m+ m̄

p3
.Thus we have two ases.

• Either c = 0
• or m = 0.Strangely enough in both ases equations (11.12)-(11.14) admit solutions only forthe upper sign in (11.14).If c = 0 then we have only one solution orresponding to τ = ± 1√

2
with arbitraryonstant p 6= 0 and m = p4

4 + iM , where M is real onstant. The orrespondingmetri
ds2 =

p2

cos2 r
2

[
dx2 + dy2

y2
+ 2(

dx

y
− du)(dr − 2 cos2 r

2 (cos r + 4M sin r)(
dx

y
− du)]is vauum i.e. it satis�es equations (11.5) with Φ ≡ 0.If m = 0 then p 6= 0 is an arbitrary onstant, and we have the following solutions:
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• τ = ǫ1

4

√

5 + ǫ2
√

17, c = − ǫ1√
5+ǫ2

√
17
,

• τ = ǫ1
2

√

1
2 (7 + ǫ2

√
17), c = ǫ1

4

√

1
2 (7 + ǫ2

√
17)(3 + ǫ2

√
17).Here ǫ21 = ǫ22 = 1. Sadly, irrespetively of the signs of ǫ1, ǫ2, all these solutions have

Φ = const < 0, and as suh do not orrespond to physially meaningful soures.As the next example we still onsider strutures (M, [λ, µ]) with the invariants(11.11), and assume that the metris have only two onformal symmetries ∂u and
∂x. For simpliity we onsider only solutions with m = 0 in (11.9). Under theseassumptions we �nd that the general solution of (11.8)-(11.10) inludes a free realparameter t and is given by(11.15) c =

−2 + 4τ2

4τ
+

1 − 4τ2

4τ

1

1 − ty(4τ2−1)
,with the real funtion p = p(y) satisfying a linear 2nd order ODE:

4y(y − ty4τ2

)2 [ yp′′ + (4τ2 − 2)p′ ] +

[(−32τ4 + 20τ2 − 1)y2 + 4t2(4τ4 − 7τ2 + 2)y8τ2 −(11.16)
16t(8τ4 − 5τ2 + 1)y(4τ2+1)]p = 0.If this equation is satis�ed, the only a'priori nonvanishing omponent of the Riitensor is

R33 = − 1
8

( cos( r2 )

τ(y − ty4τ2)p

)4

×
(

(

(8τ2 − 3)(128τ6 − 160τ4 + 92τ2 − 21)y4 +

8t4τ2(32τ6 + 8τ4 − 28τ2 + 9)y16τ2

+

4t(8τ2 − 3)(256τ6 − 248τ4 + 58τ2 + 3)y3+4τ2

+

36t2(4τ4 + τ2 − 1)(32τ4 − 12τ2 − 1)y2+8τ2

+

16t3τ2(128τ6 − 184τ4 + 122τ2 − 27)y1+12τ2)

p2 −
4y(y − ty4τ2

)
(

(8τ2 − 3)(16τ4 − 3)y3 + 4t3τ2(16τ4 − 3)y12τ2

+

6t(8τ2 − 3)y2+4τ2

+ 96t2τ2(1 − 2τ2)2y1+8τ2)

pp′ +

4y2(y − ty4τ2

)2
(

(8τ2 − 3)y + 4tτ2y4τ2)2
p′

2
)

.It follows that this R33, with p satisfying (11.16), may identially vanish for somevalues of parameter τ . This happens only when the parameter t = 0. If
t = 0the values of τ for whih R33 may be identially zero and for whih the funtion

p = p(y) satis�es (11.16) are:
τ = ± 1

2

√
2, τ = ± 1

2

√

3

2
, τ = ± 1

2

√

5

3
, τ = ± 1

2

√
3,

τ− = ± 1
2

√

1
6 (11 −

√
13), τ+ = ± 1

2

√

1
6 (11 +

√
13).Of these distinguished values the most interesting (modulo sign) are the last two,

τ− and τ+, sine for them the orresponding metris (11.4) may be vauum and



52 C. DENSON HILL AND PAWE� NUROWSKInot onformally �at. Atually, restriting our attention to the plus signs above andassuming t = 0, we have the following possibilities:
• τε = 1

2

√

1
6 (11 + ε

√
13), ε = ±1; for these two values of τ the generalsolution of (11.16) is
pε = y

1
12 (1−ε

√
13)(s2 + s1y),and the only potentially nonvanishing omponent of the Rii tensor is

R33 = − 4
9 (7 + ε

√
13) s22 y

−1
6 (1−ε

√
13)

( cos r2
s2 + s1y

)4

.This vanishes when s2 = 0. If s2 = 0 the orresponding metris gε, asde�ned in (11.4), read
gε = 2P 2

(

ω1ω̄1 + ω
(

dr +Wω1 + W̄ ω̄1 +
3+(9−20τ2

ε ) cos r
12τ2

ε
ω
)

)

,with
P = s1y

2(1−τ2
ε )

cos
r
2

, W = i
2(20τ2

ε −9)+(8τ2
ε−9)e−ir

24τ3
ε

,and ω, ω1, ω̄1 given by (11.11). For both values of ε = ±1 the metri isRii �at and of Petrov type III. In partiular it is neither �at, nor oftype N .In all other ases of the distinguished τs the orresponding vauum metris are the�at Minkowski metris. In fat,
• if τ = 1

2

√

3
2 , the general solution to (11.16) is

p = s1
√
y + s2y,and the orresponding metri (11.4) is �at.

• if τ = 1
2

√

5
3 , the general solution to (11.16) is

p = y
2
3 (s1 + s2 log y),and the potentially nonvanishing Rii omponent R33 is

R33 = − 8
25s2(2s1 + s2 + 2s2 log y)

( cos r2

(s1 + s2 log y)y
1
3

)4

.This vanishes when s2 = 0. In suh ase the metri is �at.
• if τ = 1

2

√
2, the general solution of (11.16) is

p =
√
y(s1 + s2 log y),and

R33 = −2s22
y

( cos r2
s1 + s2 log y

)4

;this vanishes when s2 = 0; in suh ase the metri is �at.
• if τ = 1

2

√
3, the general solution of (11.16) is

p = s1y + s2y
−1,and

R33 = −32s22y
2

( cos r2
s2 + s1y2

)4

;



INTRINSIC GEOMETRY OF ORIENTED CONGRUENCES IN THREE DIMENSIONS 53this vanishes when s2 = 0; in suh ase the metri is the �at Minkowskimetri.We lose this setion with an example of a metri that goes a bit beyond theformulation of the Einstein equations presented here. Remaining with the struturesof an oriented ongruene with the upper sign in (11.11), we take c as in (11.15)with t = 0, and onsider the metri (11.4), (11.6), (11.7) with a onstant funtion
p given by

p =

√
3

4sτ

√

ε(−1 + 20τ2 − 32τ4).Here the ε is ±1, and is hosen to be suh that the value ε(−1 + 20τ2 − 32τ4) ispositive; s is a nonzero onstant. A short alulation shows that the Rii tensorfor this metri has the following form
Ric = (τ2 − 1)(8τ2 − 5)

16Λ(4τ2 + 1) cos4 r
2

3τ2(1 − 20τ2 + 32τ4)
k ⊙ k + Λg.Thus, this metri is Einstein, with osmologial onstant equal to Λ = εs2, providedthat

τ = ±1, or τ = ± 1
2

√

5

2
.It is remarkable that the Einstein metri

g = − 3

5Λ cos2 r
2

(

ω1ω̄1 + ω
(

dr + i(2e−ir+5)√
10

ω1 − i(2eir+5)√
10

ω̄1 + 7
10 (3 + 2 cos r)ω

)

)

,orresponding to τ = ± 1
2

√

5
2 , is of Petrov type N with the quadruple prinipal nulldiretion of the Weyl tensor being twisting. It was �rst obtained by Leroy [11℄ andreently disussed in [17℄. The Einstein metri

g = − 39

8Λ cos2 r
2

(

ω1ω̄1 + ω
(

dr + i(e−ir+4)
2 ω1 − i(eir+4)

2 ω̄1 + 5
8 (3 + 2 cos r)ω

)

)

,orresponding to τ = ±1 is of Petrov type III.11.3. Disussion of the redued equations. Here we disuss the integrationproedures for equations (11.8)-(11.10) along the lines indiated in Remark 11.3.We start with equation (11.8). This is an equation for the unknown c. Remarkably,the existene of a funtion c satisfying this equation is equivalent to an existeneof a ertain CR funtion η on M . To see this we proeed as follows. We onsider a1-form Π on M given by(11.17) Π = ω1 + 2i(A1 + c̄)ω,where c is an arbitrary omplex funtion on M . Of ourse(11.18) Π ∧ Π̄ 6= 0,sine otherwise the forms ω1 and ω̄1 would not be independent. Now using thedi�erentials dω, dω1, dA1 given in (7.29), (7.31), we easily �nd that
dΠ ∧ Π = 2i [ (∂̄ − 3A1 − iB̄1)c̄− 2c̄2 + a11 −A2

1 − i
2A1(3B̄1 +B1) ]ω1 ∧ ω̄1 ∧ ω.Thus our equation (11.8) is satis�ed for c if and only if dΠ ∧ Π = 0. Due to ourLemma 5.1, Π satisfying dΠ ∧ Π = 0 de�nes a omplex valued funtion η on Msuh that Π = hdη. Beause of (11.18) we have hh̄dη ∧ dη̄ 6= 0. Furthermore, sine
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Π is given by (11.17) then Π ∧ ω ∧ ω1 = 0, whih after fatoring out by h gives
dη ∧ ω ∧ ω1 = 0. Thus η is a CR-funtion on M .Conversely, suppose that we have a CR-funtion η on M suh that(11.19) dη ∧ dη̄ 6= 0.Then the three one forms ω1, ω and dη are linearly dependent at eah point. Thusthere exist omplex funtions x, y on M suh that(11.20) dη = xω1 + yω.Due to the nondegenary ondition (11.19) we must have xx̄ω1 ∧ ω̄1 + xȳω1 ∧ ω −
x̄yω̄1 ∧ ω 6= 0, so that the omplex funtion x must be nonvanishing. In suh asewe may rewrite (11.20) in the more onvenient form hdη = ω1 + z̄ω, where h = 1/xand z̄ = y/x. Now, de�ning c to be c = iz

2 − A1, we see that the trivially satis�edequation (hdη)∧d(hdη) = 0 implies that the funtion cmust satisfy equation (11.8).Summarizing we have the following proposition.Proposition 11.5. Every solution η of the tangential CR equation ∂̄η = 0 satis-fying dη ∧ dη̄ 6= 0 de�nes a solution c of equation (11.8). Given η, the funtion csatisfying equation (11.8) is de�ned by(11.21) c =
i

2

ȳ

x̄
−A1,where dη = xω1 +yω. Also the onverse is true: every solution c of equation (11.8)de�nes a CR funtion η suh that dη ∧ dη̄ 6= 0.Remark 11.6. Reall that the strutures (M, [λ, µ]) satisfying the system (7.29),(7.31) admit at least one CR-funtion ζ, sine they have zero shear s ≡ 0. Asso-iated to ζ, by the above Proposition, there should be a solution c of the Einsteinequation (11.8). One heks by diret alulation that

c = −A1automatially satis�es (11.8). And this is the solution c asoiated with ζ. This isonsistent with formula (11.21), sine y ≡ 0 means that dη ∧dζ ≡ 0 (ompare with(11.20)).We now pass to the disussion of the seond Einstein equation (11.9). Equa-tion (11.9), the equation for the funtion m, has a prinipal part resembling thetangential CR-equation. Remarkably its solutions m are also expressible in termsof CR-funtions. To see this onsider an arbitrary omplex valued funtion ξ andde�ne m to be(11.22) m = [ ∂0ξ − 2i(A1 + c̄)∂ξ + 2i(A1 + c)∂̄ξ ]3.Here c is supposed to be a solution to the �rst Einstein equation (11.8). Observe,that sine the vetor �eld ∂0 − 2i(A1 + c̄)∂ + 2i(A1 + c)∂̄ is real, then given m onean always loally solve for ξ. Our goal now is to show that if ξ is a CR-funtionon M , then m given by (11.22) satis�es equation (11.9). To prove this one inserts(11.22) into equation (11.9) and ommutes the operators ∂̄∂0 and ∂̄∂. After this isperformed the equation (11.9) for m beomes the following equation for ξ:
(∂0 + 2i∂̄(A1 + c) + 2i(A1 + c)∂̄ − 2i(A1 + c̄)∂ − 4ic̄(A1 + c) +A1 − iB1)∂̄ξ = 0.This, in partiular, means that if ξ is a CR-funtion then this equation is satis�edautomatially. Thus given a CR-funtion ξ, via (11.22), we onstruted m whih
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