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a b s t r a c t

Starting from the classical notion of an oriented congruence (i.e. a foliation by oriented
curves) in R3, we abstract the notion of an oriented congruence structure. This is a 3-
dimensional CR manifold (M,H, J) with a preferred splitting of the tangent space TM =
V ⊕ H . We find all local invariants of such structures using Cartan’s equivalence method
refining Cartan’s classification of 3-dimensional CR structures. We use these invariants
and perform Fefferman like constructions, to obtain interesting Lorentzian metrics in
four dimensions, which include explicit Ricci-flat and Einstein metrics, as well as not
conformally Einstein Bach-flat metrics.

© 2009 Published by Elsevier B.V.

1. Introduction

We study the local differential geometry of oriented congruences in 3-dimensional manifolds. This geometry turns out to
be very closely related to local 3-dimensional CR geometry. The latter can be traced back to Elie Cartan’s 1932 papers [3], in
which he used his equivalence method to determine the full set of local invariants of locally embedded 3-dimensional strictly
pseudoconvex CR manifolds.
This paper should be regarded as an extension and refinement of Cartan’s work. This is because a 3-dimensionalmanifold

with an oriented congruence on it is an abstract 3-dimensional CRmanifoldwith an additional structure: a preferred splitting
(see Section 3). This leads to a notion of local equivalence of such structures, which is more strict that than of Cartan. Hence
the (coarse) CR equivalence classes of Cartan split into a fine structure; as a result we produce many new local invariants,
corresponding to many more nonequivalent structures than in Cartan’s situation.
From this perspective, our paper may be also placed in the realm of special geometries, i.e. geometries with an additional

structure. These kind of geometries, such as, for example, special Riemannian geometries (hermitian, Kähler, G2, etc.),
find applications in mathematical physics (e.g. string theory). The starting point of this paper also comes from physics:
a congruence in R3 (i.e. a foliation of R3 by curves) is a notion that appears in hydrodynamics (velocity flow), Newtonian
gravity and electrodynamics (field strength lines). These branches of physics have distinguished the two main invariants of
such foliations, which are related to the classical notions of twist and shear. One of the byproducts of our analysis is also a
refinement of these physical concepts.
Contemporary physicists, because of the dimension of spacetime, have been much more interested in congruences in

four dimensions. Such congruences live in Lorentzianmanifolds and, as such, may be timelike, spacelike or null. It turns out
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that the null congruences in spacetimes, which are tangent to unparametrized geodesics without shear, locally define a 3-
manifold, which has a CR structure on it. One of the outcomes of this paper is that we found connections between properties
of four dimensional spacetimes admitting null and shearfree congruences, with their corresponding three dimensional CR
manifolds, and our new invariants of the classical congruences in three dimensions. In Sections 10 and 11, in particular, we
use these three dimensional invariants, to construct interesting families of Lorentzian metrics with shearfree congruences
in four dimensions (including metrics which are Ricci flat or Einstein, Bach flat but not conformal to Einstein, etc.).
Throughout the paper we will always have a nondegenerate (not necessarily Riemannian) metric gij and its inverse g ij.

This enables us to freely raise and lower indices at our convenience. We use the Einstein summation convention. We also
denote by ω1ω2 = 1

2 (ω1 ⊗ ω2 + ω2 ⊗ ω1) the symmetrized tensor product of two 1-forms ω1 and ω2. In this paper we
shall be working in the smooth category; i.e., everything will be assumed to be C∞, without mentioning it explicitly in what
follows.
A large part of the paper is based on lengthy calculations,which are required by ourmain tool, namely Cartan’s equivalence

method. These calculations were checked by the symbolic calculation program Mathematica. The structure of the paper is
reflected in the table of contents.
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2. Classical twist and shear

In a simply connected domain U of Euclidean space R3, equipped with the flat metric gij = δij, we consider a smooth
foliation by uniformly oriented curves. Let v be a vector field v = vi∇i tangent to the foliation, consistent with the
orientation.
We denote the total symmetrization by round brackets on the indices, the total antisymetrization by square brackets on

the indices, and use εijk = ε[ijk], ε123 = 1. We have the following classical decomposition

∇ivj = αij + σij +
1
3
θgij, (2.1)

where

αij = ∇[i vj] =
1
2
εijk(curl v)k,

θ = g ij∇ivj = div v,

σij = ∇(ivj) −
1
3
θgij.

The decomposition (2.1) defines three functions, depending on the choice of v, which can be used to characterize the
foliation. One of these functions is the divergence θ , also called the expansion of the vector field v. It merely characterizes
the vector field v, hence it is not interesting as far the properties of the foliations are concerned. The second function is

α = |αij| =

√
g ikg jlαijαkl,

the norm of the antisymmetric part αij, called the twist of the vector field v.
Vanishing of twist, the twist-free condition α = 0, is equivalent to curl v = 0. Although this condition is v-dependent,

it has a clear geometric meaning for the foliation. Indeed, a vector field v with vanishing twist may be represented by a
gradient: v = ∇f for some function f : U → R. In such a case the level surfaces of the function f define a foliation of U with
2-dimensional leaves orthogonal to v. This can be rephrased by saying that the distribution V⊥ of 2-planes, perpendicular
to v, is integrable.
The third function obtained from the decomposition (2.1) is

σ = |σij| =

√
g ikg jlσijσkl,

the norm of the trace-free symmetric part σij, called the shear of the vector field v.
Regardless of whether or not V⊥ is integrable, the condition of vanishing shear σ = 0 is equivalent to ∇[i vj] = 1

3θgij.
Recalling that the Lie derivative Lvgij = ∇[i vj], we see that the shearfree condition for v is the condition that this Lie
derivative be proportional to the metric. Thus σ = 0 if and only if Lvgij = hgij. This condition again is v dependent.
However, it implies the following geometric property of the foliation: the metric g|V⊥ induced by gij on the distribution
V⊥ is conformally preserved when Lie transported along v. To say it differently we introduce a complex structure J on
each 2-plane of V⊥. This is possible since each such plane is equipped with a metric g|V⊥ and the orientation induced by
the orientation of v. Knowing this, we define J on each 2-plane as a rotation by π

2 , using the right hand rule. Now we can
rephrase the statement about conformal preservation of the metric g|V⊥ during Lie transport along v, by saying that it is
equivalent to the constancy of J under the Lie transport along v.
The above notions of expansion, twist and shear are the classical notions of elasticity theory. Aswe have seen, they are not

invariants of the foliation by curves, because they depend on the choice of the vector field v. Nonetheless they do carry some
invariant information. One of the main purposes of this paper is to find all of the local invariants of the intrinsic geometry
associated with such foliations. With this classical motivation we now pass to the subject proper of this paper.

3. Oriented congruences

Consider a smooth oriented real 3-dimensional manifold M equipped with a Riemannian metric g . Assume that M is
smoothly foliated by uniformly oriented curves. Such a foliation is called an oriented congruence. Note that we are not
assuming that the curves in the congruence are geodesics for the metric g .
Our first observation is thatM has the structure of a smooth abstract CR manifold. To see this we introduce the oriented

line bundle V , a subbundle of TM , consisting of the tangent lines to the foliation. Using the metric we also have V⊥, the
2-plane subbundle of TM consisting of the planes orthogonal to the congruence. These 2-planes are oriented by the right
hand rule and are equipped with the induced metric g|V⊥ . Hence V⊥ is endowed with the complex structure operator J as
we explained in the previous section. The pair (V⊥, J), by the very definition, equipsM with the structure of an abstract 3-
dimensional CR manifold. This CR manifold has an additional structure consisting in the preferred splitting TM = V⊥ ⊕ V .
It also defines an equivalence class [g] of adapted Riemannian metrics g ′ in which g ′(V,V⊥) = 0 and such that g ′

|V⊥
is
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hermitian for J . Thus, an oriented congruence in (M, g) defines a whole class of Riemannian manifolds (M, [g]) which are
adapted to it.
Conversely, given an oriented abstract 3-dimensional CR manifold (M,H, J)with a distinguished line subbundle V such

that V ∩ H = {0}, we may reconstruct the oriented congruence. The curves of this congruence consist of the trajectories of
V . They are oriented by the right hand rule applied in such a way that it agrees with the orientation of H determined by J .
Here J : H → H and J2 = −id. Since TM = H ⊕V we recover also the equivalence class [g] of adapted Riemannian metrics
g ′ in which g(V,H) = 0 and such that g ′

|H is hermitian for J .
We summarize with: letM be an oriented 3-dimensional manifold, then

Proposition 3.1. There is a one to one correspondence between oriented congruences on M with a distinguished orthogonal
distribution V⊥, and CR structures (H, J) on M with a distinguished line subbundle V such that TM = H ⊕ V .

We now pass to the dual formulation. Given a CR structure (H, J) with a preferred splitting TM = H ⊕ V , we define
H0 to be the annihilator of H and V0 to be the annihilator of V . Note that H0 is a real line subbundle of T ∗M and V0 is a 2-
plane subbundle of T ∗M . This H0 is known as the characteristic bundle associated with the CR structure.V0 is equipped with
the complex structure J∗, the adjoint of J with respect to the natural duality pairing. The complexification CV0 splits into
CV0 = V0

+
⊕V0

−
, whereV0

±
are the∓i eigenspaces of J∗. Both spacesV0

±
are complex line subbundles of the complexification

CT ∗M of the cotangent bundle. V0
−
is the complex conjugate of V0

+
, V0
±
= V0

∓
.

The reason for passing to the dual formulation is that we want to apply Cartan’s method of equivalence to determine the
local invariants of an oriented congruence inM . For this we need a local nonzero section λ of H0 and a local nonzero section
µ of V0

+
. Then λ ∧ µ ∧ µ̄ 6= 0. Any other local section λ′ of H0 and any other local section µ′ of V0

+
are related to λ and µ

by λ′ = f λ and µ′ = hµ, for some real function f and some complex function h. This motivates the following definition:

Definition 3.2. A structure (M, [λ,µ]) of an oriented congruence on a 3-dimensional manifold M is an equivalence class of
pairs of 1-forms [λ,µ] onM satisfying the following conditions:

(i) λ is real, µ is complex
(ii) λ ∧ µ ∧ µ̄ 6= 0 at each point ofM
(iii) two pairs (λ, µ) and (λ′, µ′) are equivalent iff there exist nonvanishing functions f (real) and h (complex) on M such

that

λ′ = f λ, µ′ = hµ. (3.1)

We say that two such structures (M, [λ,µ]) and (M ′, [λ′, µ′]) are (locally) equivalent iff there exists a (local)
diffeomorphism φ : M → M ′ such that

φ∗(λ′) = f λ, φ∗(µ′) = hµ (3.2)

for some nonvanishing functions f (real) and h (complex) on M . If such a diffeomorphism is from M to M it is called an
automorphism of (M, [λ,µ]). The full set of automorphisms is called the group of automorphisms of (M, [λ,µ]). A vector
field X onM is called a symmetry of (M, [λ,µ]) iff

LXλ = f λ, LXµ = hµ.

Here the functions f (real) and h (complex) are not required to be nonvanishing; they may even vanish identically. Observe,
that if X and Y are two symmetries of (M, [λ,µ]) then their commutator [X, Y ] is also a symmetry. Thus, we may speak
about the Lie algebra of symmetries.

Remark 3.3. Note that Cartan [3] would define a 3-dimensional CR manifold as a structure (M, [λ,µ]) as above, with the
exception that condition (iii) is weakened to

(iii)CR two pairs (λ, µ) and (λ′, µ′) are equivalent iff there exist nonvanishing functions f (real) and h (complex) and a
complex function p onM such that

λ′ = f λ, µ′ = hµ+ pλ.

In this sense our structure of an oriented congruence (M, [λ,µ]) is a CR manifold on which there is an additional
structure. In particular the diffeomorphisms φ that provide an equivalence of our structures are special cases of CR
diffeomorphisms, which for CR structures defined a la Cartan by (iii)CR are φ : M → M ′ such that φ∗(λ′) = f λ,
φ∗(µ′) = hµ + pλ. In terms of the nowadays definition of a CR manifold as a triple (M,H, J), this last Cartan condition
is equivalent to the CR map requirement: dφ ◦ J = J ◦ dφ and similarly for φ−1.

Remark 3.4. Two CR structures which are not equivalent in the sense of Cartan [3] are also not equivalent, in our sense, as
oriented congruences; but not vice versa. On the other hand, every symmetry of an oriented congruence (M, [λ,µ]) is a CR
symmetry of the CR structure determined by [λ,µ] via (iii)CR; and not vice versa.
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We omit the proof of the following easy proposition.

Proposition 3.5. A given structure (M, [λ,µ]) determines a CR structure (M,H, J) with the preferred splitting TM = H ⊕ V ,
where H is the annihilator of SpanR(λ) and CV is the annihilator of SpanC(µ) ⊕ SpanC(µ̄). The class of adapted Riemannian
metrics [g] is parametrized by two arbitrary nonvanishing functions f (real) and h (complex) and given by

g = f 2λ2 + 2|h|2µµ̄.

4. Elements of Cartan’s equivalence method

Here we outline the procedure we will follow in applying Cartan’s method to our particular situation.

4.1. Cartan invariants

Consider two structures (M, [λ,µ]) and (M ′, [λ′, µ′]). Our aim is to determine whether they are equivalent or not,
according to Definition 3.2, Eq. (3.2). This question is not easy to answer, since it is equivalent to the problem of the existence
of a solutionφ for a system (3.2) of linear first order PDEs inwhich the right hand side is undetermined. Elie Cartan associates
with the forms (λ, µ, µ̄) and (λ′, µ′, µ̄′), representing the structures, two systems of ordered coframes {Ωi} and {Ω ′i } on
manifolds P and P ′ of the same dimension, say n ≥ 3, which are fiber bundles over M . Then he shows that equations like
(3.2) for φ have a solution if and only if a simpler system

Φ∗Ω ′i = Ωi, i = 1, 2, . . . , n (4.1)
of differential equations for a diffeomorphismΦ : P → P ′ has a solution. Note that derivatives ofΦ still occur in (4.1), since
Φ∗ is the pullback of forms from P ′ to P .
One famous example is his original solution to the equivalence problem for 3-dimensional strictly pseudoconvex CR

structures. There P and P ′ are 8-dimensional, and his procedure produces two systems of eight linearly independent 1-
forms {Ωi} and {Ω ′i }.
In our situation, provided n <∞, and if we are able to find nwell defined linearly independent 1-forms {Ωi} on P , then

(P, {Ωi}) provides the full system of local invariants for the original structure (M, [λ,µ]). In particular, using (P, {Ωi}) one
introduces the scalar invariants, which are the coefficients {KI} in the decomposition of {dΩi} with respect to the invariant
basis of 2-forms {Ωi ∧Ωj}.
Now in order to determine if two structures (M, [λ,µ]) and (M ′, [λ′, µ′]) are equivalent, it is enough to have n

functionally independent {KI}. Then the condition (4.1) becomes

Φ∗K ′I = KI , I = 1, 2, . . . , n. (4.2)
The advantage of this condition, as compared to (4.1), is that (4.2), being the pull back of functions, does not involve
derivatives ofΦ . In this case the existence ofΦ becomes a question involving the implicit function theorem, and the whole
problem reduces to checking whether a certain Jacobian is non-degenerate.
We remark that an immediate application of the invariants obtained by Cartan’s equivalence method is to use them

to find all the homogeneous examples of the particular structure under consideration. The procedure of enumerating
these examples is straightforward and algorithmic once the Cartan invariants have been determined. In our situation
the homogeneous examples will often have local symmetry groups of dimension three. The 3-dimensional Lie groups are
classified according to the Bianchi classification of 3-dimensional Lie algebras [1]. Since we will use this classification in
subsequent sections, we recall it below.

4.2. Bianchi classification of 3-dimensional Lie algebras

In this section X1, X2, X3 denote a basis of a 3-dimensional Lie algebra g with Lie bracket [·, ·]. All the nonequivalent Lie
algebras fall into Bianchi types I, II, VI0, VII0, VIII, IX, V, IV, VIh, VIIh. Apart from types VIh and VIIh, there is always precisely one
Lie algebra corresponding to a given type. For each value of the real parameter h < 0 there is also precisely one Lie algebra
of type VIh. Likewise for each value of the parameter h > 0 there is precisely one Lie algebra of type VIIh. The commutation
relations for each Bianchi type are given in the following table.

Bianchi type: I II VI0 VII0 VIII IX

[X1, X2] = 0 0 0 0 −X3 X3
[X3, X1] = 0 0 −X2 X2 X2 X2
[X2, X3] = 0 X1 X1 X1 X1 X1
Bianchi type: V IV VIh VIIh
[X1, X2] = 0 0 0 0
[X3, X1] = X1 X1 −X2+ hX1 X2 + hX1
[X2, X3] = −X2 X1 − X2 X1 − hX2 X1 − hX2
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Note that Bianchi type I corresponds to the abelian Lie group, type II corresponds to the Heisenberg group; types VIII and
IX correspond to the simple groups: SO(1, 2), SL(2,R) for type VIII, and SO(3), SU(2) for type IX.

5. Basic relative invariants of an oriented congruence

We make preparations to apply the Cartan method of equivalence for finding all local invariants of the structure of an
oriented congruence (M, [λ,µ]) on a 3-manifoldM .
Given a structure (M, [λ,µ])we take representativesλ andµ of 1-forms from the class [λ,µ]. Since (λ, µ, µ̄) is a basis of

1-forms onM we can express the differentials dλ and dµ in terms of the corresponding basis of 2-forms (µ∧µ̄, µ∧λ, µ̄∧λ).
We have

dλ = iaµ ∧ µ̄+ bµ ∧ λ+ b̄µ̄ ∧ λ
dµ = pµ ∧ µ̄+ qµ ∧ λ+ sµ̄ ∧ λ
dµ̄ = −p̄µ ∧ µ̄+ s̄µ ∧ λ+ q̄µ̄ ∧ λ,

(5.1)

where a is a real valued function and b, p, q, s are complex valued functions onM . Given any function u onM we define first
order linear partial differential operators acting on u by

du = uλλ+ uµµ+ uµ̄µ̄.

Note that uλ is a real vector field acting on u, uµ is a complex vector field of type (1, 0) acting on u and uµ̄ is a complex vector
field of type (0, 1) acting on u. The commutators of these operators, when acting on u are

uµ̄µ − uµµ̄ = −iauλ − puµ + p̄uµ̄
uλµ − uµλ = −buλ − quµ − s̄uµ̄
uλµ̄ − uµ̄λ = −b̄uλ − suµ − q̄uµ̄.

(5.2)

A function u on a CR manifold (M, [λ,µ]) is called a CR function if

du ∧ λ ∧ µ ≡ 0. (5.3)

In terms of the differential operators above this is the same as

uµ̄ ≡ 0. (5.4)

Thus uµ̄ is just the tangential Cauchy–Riemann operator acting on u. The Eq. (5.3) or (5.4) is called the tangential
Cauchy–Riemann equation.
It is easy to see that each of the following two conditions

dλ ∧ λ = 0, dµ ∧ µ = 0, (5.5)

is independent of the choice of the representatives (λ, µ) from the class [λ,µ]. Thus the identical vanishing or not of either
the coefficient a, or the coefficient s, is an invariant property of the structure (M, [λ,µ]). Using Cartan’s terminology the
functions a and s are the basic relative invariants of (M, [λ,µ]). By definition they correspond to the identical vanishing or
not of the twist (the function a) and of the shear (the function s) of the oriented congruence represented by (M, [λ,µ]).
They are invariant versions of the classical v-dependent notions of twist α and shear σ we considered in Section 2. Given

an oriented congruence with vanishing twist a in M = R3 we can always find a vector field v tangent to the congruence
such that the twist α for this vector field is zero. We also have an analogous statement for s and σ . Conversely, every vector
field v in R3 which has vanishing twist α (or shear σ ) defines an oriented congruence with vanishing twist a (or shear s).
We note that the twist a is just the Levi form of the CR structure and that the shear s is now complex; its meaning will be

explained further in Section 8.
In what follows we will often use the following (see e.g. [12])

Lemma 5.1. Let µ be a smooth complex valued 1-form defined locally in R3 such that µ ∧ µ̄ 6= 0. Then

dµ ∧ µ ≡ 0 if and only if µ = hdζ

where ζ is a smooth complex function such that dζ ∧ dζ̄ 6= 0, and h is a smooth nonvanishing complex function.

Proof. Consider an open set U ∈ R3 in which we have µ such that dµ ∧ µ = 0 and µ ∧ µ̄ 6= 0. We define real 1-
forms θ1 = Re(µ) and θ2 = Im(µ). They satisfy θ1 ∧ θ2 6= 0 in U . Since U ⊂ R3 we trivially have dθ1 ∧ θ1 ∧ θ2 ≡ 0
and dθ2 ∧ θ1 ∧ θ2 ≡ 0. Now the real Fröbenius theorem implies that there exists a coordinate chart (x, y, u) in U such
that θ1 = t11dx + t12dy and θ2 = t21dx + t22dy, with some real functions tij in U such that t11t22 − t12t21 6= 0. Thus
in the coordinates (x, y, u) the form µ = θ1 + iθ2 can be written as µ = c1dx + c2dy, where now c1, c2 are complex
functions such that c1c̄2 − c̄1c2 6= 0 on U , so neither c1 nor c2 can be zero. The dµ ∧ µ ≡ 0 condition for µ written
in this representation is simply c22d(

c1
c2
) ∧ dx ∧ dy ≡ 0. Thus the partial derivative ( c1c2 )u ≡ 0, which means that the
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ratio c1c2 does not depend on u. This ratio defines a nonvanishing complex function F(x, y) =
c1
c2
of only two real variables

x and y. Returning to µ we see that it is of the form µ = c2 (dy+ F(x, y)dx). Consider the real bilinear symmetric form
G = 2µµ̄ = |c2|2

(
dy2 + 2

(
F(x, y)+ F̄(x, y)

)
dxdy+ |F(x, y)|2dx2

)
. Invoking the classical theorem on the existence of

isothermal coordinates we are able to find an open set U ′ ⊂ U with new coordinates (ξ , η, u) in which G = h2(dξ 2 + dη2),
where h = h(ξ , η, u) is a real function in U ′. This means that in these coordinates µ = hd(ξ + iη) = hdζ . The proof in the
other direction is obvious. �

6. Vanishing twist and shear

Let us assume that the structure (M, [λ,µ]) satisfies both conditions (5.5); i.e., that a ≡ 0 and s ≡ 0. It is easy to see that
all such structures have no local invariants, meaning that all of them are locally equivalent. Indeed, if dλ ∧ λ ≡ 0 then the
real Fröbenius theorem guarantees that locally λ = f du. Similarly, if dµ∧µ ≡ 0, then the Lemma 5.1 assures thatµ = hdζ .
Since dζ ∧ λ ∧ µ ≡ 0, we see that the function ζ is a holomorphic coordinate. Recalling the fact that λ ∧ µ ∧ µ̄ 6= 0, we
conclude that if a ≡ 0 and s ≡ 0 then the CRmanifoldM with the preferred splitting is locally equivalent toR×C, with local
coordinates (u, ζ ), such that u is real. In these coordinates the structure may be represented by λ = du and µ = dζ . The
local group of automorphisms for such structures is infinite dimensional and given in terms of two functions U = U(u) and
Z = Z(ζ ) such that U is real, Uu 6= 0, Z is holomorphic and Zζ 6= 0. The automorphism transformations are then ũ = U(u),
ζ̃ = Z(ζ ). Note that from the point of view of Cartan’s method this is the involutive case in which n = ∞. There are no local
invariants in this situation.

7. Nonvanishing twist and vanishing shear

7.1. The relative invariants K1 and K2

Next let us assume that the structure (M, [λ,µ]) has some twist, a 6= 0, but has identically vanishing shear, s ≡ 0. Let
us interpret this in terms of the corresponding CR structure with the preferred splitting. The nonvanishing twist condition
dλ ∧ λ 6= 0 is the condition that the CR structure has nonvanishing Levi form. This means that the CR manifold is strictly
pseudoconvex and hence is not locally equivalent to R× C. The no shear condition, dµ ∧ µ ≡ 0, by the Lemma 5.1, means
that the class [µ] may be represented by a 1-form µ = dζ with a complex function ζ on M satisfying dζ ∧ dζ̄ 6= 0.
Note that this function trivially satisfies the tangential Cauchy–Riemann equation dζ ∧ λ ∧ µ = 0 for this CR structure, and
hence is a CR function. If Z is any holomorphic function with nonvanishing derivative, then Z = Z(ζ ) is again a CR function
with dZ ∧ dZ̄ 6= 0. This gives us a distinguished class of genuinely complex CR functions Z = Z(ζ ), which we denote by
[ζ ]. Conversely if we have a strictly pseudoconvex 3-dimensional CR structure (M,H, J) with a distinguished class [ζ ] of CR
functions Z = Z(ζ ), such that dζ ∧ dζ̄ 6= 0 and Z ′ 6= 0, then this CR structure defines a representative (λ, µ = dZ), with
λ being a nonvanishing section of the characteristic bundle H0. This in turn defines a structure (M, [λ,µ]) of an oriented
congruence which has a 6= 0 and s ≡ 0.
Summarizing we have

Proposition 7.1. All local structures of an oriented congruence (M, [λ,µ])with nonvanishing twist, a 6= 0, and vanishing shear,
s ≡ 0, are in a one to one correspondence with local CR structures (M,H, J) having nonvanishing Levi form and possessing a
distinguished class [ζ ] of genuinely complex CR functions on M.

Note that the proposition remains true if we drop the nonvanishing twist condition on the left and drop the nonvanishing
Levi form condition on the right.
We now pass to the determination of the local invariants of (M, [λ,µ]) with nonvanishing twist and vanishing shear.

We take a representative (λ, µ). Because of our assumptions the formulae (5.1) become

dλ = iaµ ∧ µ̄+ bµ ∧ λ+ b̄µ̄ ∧ λ
dµ = pµ ∧ µ̄+ qµ ∧ λ
dµ̄ = −p̄µ ∧ µ̄+ q̄µ̄ ∧ λ.

(7.1)

For example if we were to choose µ as µ = dζ , where ζ is a particular representative of the distinguished class [ζ ] of CR
functions, then dµ would identically vanish, so p ≡ 0 and q ≡ 0. Although this choice of µ is very convenient and quite
simplifies the determination of the invariants, we will work in the most general representation (7.1) of [λ,µ] to get the
formulae for the invariants in their full generality.
Given a choice (λ, µ) as in (7.1) we take the most general representatives

ω = f λ, ω1 = hµ, ω̄1 = h̄µ̄, (7.2)
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of the class [λ,µ]. Here f 6= 0 (real) and h 6= 0 (complex) are arbitrary functions. Then we reexpress the differentials dω,
dω1 and dω̄1 in terms of the general basis (ω, ω1, ω̄1). We have:

dω = i
fa
|h|2

ω1 ∧ ω̄1 +

[
d log f +

b
h
ω1 +

b̄
h̄
ω̄1

]
∧ ω (7.3)

dω1 =
[
d log h−

p
h̄
ω̄1 −

q
f
ω

]
∧ ω1 (7.4)

dω̄1 =
[
d log h̄−

p̄
h
ω1 −

q̄
f
ω

]
∧ ω̄1. (7.5)

Since a 6= 0 we can easily achieve

dω ∧ ω = iω1 ∧ ω̄1 ∧ ω (7.6)

by taking

f =
|h|2

a
. (7.7)

Thus condition (7.6) ‘fixes the gauge’ in the choice of f .
Introducing the real functions ρ > 0 and φ via h = ρeiφ and maintaining the condition (7.6) we may rewrite Eq. (7.3) in

the form

dω = iω1 ∧ ω̄1 + (Ω + Ω̄) ∧ ω,

where the real valued 1-formΩ + Ω̄ is

Ω + Ω̄ = 2d log ρ + (b− (log a)µ)µ+ (b̄− (log a)µ̄)µ̄+ tλ. (7.8)

The real function t appearing inΩ + Ω̄ can be determined algebraically from the condition that

(dω1 + dω̄1) ∧ (ω1 − ω̄1) = −ω1 ∧ ω̄1 ∧ (Ω + Ω̄). (7.9)

If this condition is imposed then

t = −q− q̄. (7.10)

Now, if t is as in (7.10) and f is as in (7.7) we defineΩ − Ω̄ to be an imaginary 1-form such that

(dω1 + dω̄1) ∧ (ω1 + ω̄1) = ω1 ∧ ω̄1 ∧ (Ω − Ω̄). (7.11)

This determinesΩ − Ω̄ to be

Ω − Ω̄ = 2idφ + (q̄− q)λ+ zµ− z̄µ̄,

where z is a still undetermined function. The condition that fixes z in an algebraic fashion is the requirement that

dω1 = Ω ∧ ω1, dω̄1 = Ω̄ ∧ ω̄1. (7.12)

If this is imposed we have

z = 2p̄+ b− (log a)µ, z̄ = 2p+ b̄− (log a)µ̄. (7.13)

Thus given a structure (M, [λ,µ]) with nonvanishing twist and vanishing shear, the four normalization conditions (7.6),
(7.9), (7.11) and (7.12) uniquely specify a 5-dimensional manifold P , which is locally M × C, and a well defined coframe
(ω, ω1, ω̄1,Ω, Ω̄) on it such that

ω =
ρ2

a
λ

ω1 = ρeiφµ

ω̄1 = ρe−iφµ̄
Ω = d log ρ + idφ + (p̄+ b− (log a)µ)µ− pµ̄− qλ

Ω̄ = d log ρ − idφ − p̄µ+ (p+ b̄− (log a)µ̄)µ̄− q̄λ.

(7.14)
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Here the complex coordinate along the factor C inM × C is h = ρeiφ . The coframe (ω, ω1, ω̄1,Ω, Ω̄) satisfies

dω = iω1 ∧ ω̄1 + (Ω + Ω̄) ∧ ω
dω1 = Ω ∧ ω1
dω̄1 = Ω̄ ∧ ω̄1
dΩ = K1ω1 ∧ ω̄1 + K2ω1 ∧ ω

dΩ̄ = −K1ω1 ∧ ω̄1 + K 2ω̄1 ∧ ω,

(7.15)

where

K1 =
1
ρ2
k1, K2 =

e−iφ

ρ3
k2, (7.16)

are functions on P with k1 and k2 given by

k1 = Re
(
(log a)µµ̄ − (log a)µp− iqa− bµ̄ + bp− 2p̄µ̄ + 2|p|2

)
k2 = aµλ − abλ + i(log a)µ(bµ̄ − b̄µ − bp+ b̄p̄)− 2aµq− aqµ − (aq̄)µ − abq̄.

Note that the functions k1 and k2 are actually defined on M . Note also that k1 is real as a consequence of the commutation
relations (5.2). The functions K1 and K2 are the relative invariants of the structure (M, [λ,µ]), and (7.15) are the structural
equations for (M, [λ,µ]).

Theorem 7.2. A given structure (M, [λ,µ]) of an oriented congruence with nonvanishing twist, a 6= 0, and vanishing shear,
s ≡ 0, uniquely defines a 5-dimensional manifold P, 1-forms ω,ω1, ω̄1,Ω, Ω̄ and functions K1, K2, K 2 on P such that

- ω,ω1, ω̄1 are as in (7.2),
- ω ∧ ω1 ∧ ω̄1 ∧Ω ∧ Ω̄ 6= 0 at each point of P,
- the forms and functions K1 (real), K2 (complex) are uniquely determined by the requirement that on P they satisfy equations
(7.15).

In particular the identical vanishing, or not, of either k1 or k2 are invariant conditions. Also the sign of k1 is an invariant, if
k1 6= 0.

7.2. Description in terms of the Cartan connection

The above theorem, stated in modern language, means the following. The manifold P is a Cartan bundle H2 → P → M ,
with H2 a 2-dimensional abelian subgroup of a certain 5-dimensional Lie group G5. The group G5 is a subgroup of SU(2, 1);
i.e., the 8-dimensional Lie group which preserves the (2, 1)-signature hermitian form

h(Z, Z) =
(
Z1, Z2, Z3

)
ĥ

Z̄1Z̄2
Z̄3

 , ĥ =

( 0 0 2i
0 1 0
−2i 0 0

)
.

The forms ω,ω1, ω̄1,Ω, Ω̄ in the theorem can be collected into a matrix of 1-forms

ω̃ =


1
3
(2Ω + Ω̄) 0 0

ω1
1
3
(Ω̄ −Ω) 0

2ω 2iω̄1 −
1
3
(2Ω̄ +Ω)

 ,
satisfying

ω̃ĥ+ ĥω̃Ď
= 0.

The Lie algebra g5 of the group G5 is then

g5 =




1
3
(2z2 + z̄2) 0 0

z1
1
3
(z̄2 − z2) 0

2x 2iz̄1 −
1
3
(2z̄2 + z2)

 , x ∈ R, z1, z2 ∈ C

 ,
and as such is a real 5-dimensional Lie algebra parametrized by the parameters x, Re(z1), Im(z1), Re(z2), Im(z2). It is
naturally contained in su(2, 1). The subgroup H2 corresponds to the subalgebra h2 ⊂ g5 given by x = 0, z1 = 0. Now,
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ω̃ can be interpreted as a Cartan connection on P [7] having values in the Lie algebra g5 ⊂ su(2, 1). It follows from Eq. (7.15)
that the curvature R of this connection is

R = dω̃ + ω̃ ∧ ω̃ =

(R1 0 0
0 R2 0
0 0 −R1 − R2

)
,

where

R1 = −
2
3
K2ω ∧ ω1 −

1
3
K 2ω ∧ ω̄1 +

1
3
K1ω1 ∧ ω̄1

R2 =
1
3
K2ω ∧ ω1 −

1
3
K 2ω ∧ ω̄1 −

2
3
K1ω1 ∧ ω̄1.

It yields all the invariant information about the corresponding structure (M, [λ,µ]), very much in the same way as the
Riemann curvature yields all the information about a Riemannian structure.

7.3. Conformal Lorentzian metrics

Using the matrix elements ω̃ij of the Cartan connection ω̃ it is convenient to consider the bilinear form

G = −iω̃3j ω̃
j
1.

This form, when written explicitly in terms of ω,ω1, ω̄1,Ω, Ω̄ , is given by

G = 2ω1ω̄1 +
2
3i
ω(Ω − Ω̄).

Introducing the basis of vector fields X, X1, X̄1, Y , Ȳ , the respective duals of ω,ω1, ω̄1, Ω, Ω̄ , one sees that G is a form of
signature (+ + + − 0) with the degenerate direction tangent to the vector field Y + Ȳ = ρ∂ρ . We may think of the
Cartan bundle P as being foliated by 1-dimensional leaves tangent to this vector field. Now Eqs. (7.15) guarantee that the
Lie derivative

L(Y+Ȳ )G = 2G,

so that the bilinear form G is preserved up to a scale when Lie transported along the leaves of the foliation. Therefore the
4-dimensional leaf space N = P/∼ of the foliation is naturally equipped with a conformal class of Lorentzian metrics [g],
the class to which the bilinear form G naturally descends. The Lorentzian metrics

g = 2ω1ω̄1 +
2
3i
ω(Ω − Ω̄) (7.17)

on N are the analogs of the Fefferman metrics [5] known in CR manifold theory.
We note that N is a circle bundle aboveM with the fiber coordinate φ.
Interestingly metrics (7.17) belong to a larger conformal family, which is also well defined on N . It turns out that if we

start with a bilinear form

Gt = 2ω1ω̄1 + 2tiω(Ω̄ −Ω)

where t is any function on P constant along the Y + Ȳ direction, then it also projects well to a conformal Lorentzian class
[gt ] on N with representatives

gt = 2ω1ω̄1 + 2tiω(Ω̄ −Ω) (7.18)

parametrized by t . To see this, it is enough to look at the explicit expressions for the forms (ω1, ω̄1, ω,Ω, Ω̄) in (7.14) and
to note that Gt is of the form Gt = ρ2(...), where the dotted terms do not depend on the coordinate ρ which is aligned with
Y + Ȳ on P .
Although t may be an arbitrary function on N , in what follows we will only be interested in the case when t is a constant

parameter.
We return to metrics gt in Section 10.2, where we discuss their conformal curvature Ft and provide some example of the

Lorentzian metrics satisfying the so called Bach condition.
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7.4. Basic examples

Example 7.3. Note that the assumption that K1 and K2 are constant on P is compatible with (7.15) iff K1 = K2 = 0. In such
case the curvature R of the Cartan connection ω̃ vanishes, and it follows that there is only one, modulo local equivalence,
[λ,µ] structure with this property. It coincides with the CR structure of the Heisenberg group

M = {(z, w) ∈ C2 : Im(w) = |z|2}

with the preferred splitting V generated by the vector field v = ∂u, u = Re(w). We call this the standard splitting on
the Heisenberg group. The resulting oriented congruence has the maximal possible group of symmetries isomorphic to the
group G5.

Example 7.4. We recall that a 3-dimensional CR manifoldM embedded in C2 via

M =
{
(z, w = u+ iv) ∈ C2 : v =

1
2
H(z)

}
,

where H is a real-valued function of the variable z ∈ C, is called rigid. It can be given a structure of an oriented congruence
by choosing the splitting to be spanned by the vector field ∂u. As in the above special case of the Heisenberg group we call
this preferred splitting onM the standard splitting on a rigid CR structure. Intrinsically this CR-manifold with the preferred
splitting may be described in terms of the forms λ and µ given by

λ = du+
i
2
(Hz̄dz̄ − Hzdz), µ = dz. (7.19)

Via (3.1), these forms define a structure (M, [λ,µ]) of an oriented congruence onM . In the following we assume that

Hzz̄ 6= 0

at every point ofM . It means thatM is strictly pseudoconvex.

Definition 7.5. A structure (M, [λ,µ]) of an oriented congruence with vanishing shear and nonvanishing twist on a
manifold M is called (locally) flat iff (locally) it has vanishing curvature R for its Cartan connection ω̃. The necessary and
sufficient conditions for that are K1 ≡ 0 and K2 ≡ 0.

A short calculation leads to the following proposition.

Proposition 7.6. Let (M, [λ,µ]) be a structure of an oriented congruence associated with the rigid CR-manifold M via the forms
λ and µ of (7.19). Then for any real-valued function H = H(z) such that Hzz̄ 6= 0 this structure has vanishing shear and non-
vanishing twist. Its relative invariant K2 is identically vanishing, K2 ≡ 0; the relative invariant K1 is given by K1 = 1

ρ2
[log(Hzz̄)]zz̄ .

When it vanishes the structure is flat.

Example 7.7. We remark that the Heisenberg group CR structure may have various splittings that endow M with
nonequivalent structures of an oriented congruence. To see this we perturb the standard splitting on the Heisenberg group
given by the vector field ∂u. This is accomplished by choosing a 2-parameter family of CR-functions onM given by

ζε1ε2 = ε1z + ε2(u+ i|z|
2), (7.20)

and defining the structure of an oriented congruence onM via (3.1) with the forms

λ = du+ i(zdz̄ − z̄dz), µε1ε2 = dζε1ε2 .

Note that sinceλ is a section of the characteristic bundleH0 of theHeisenberg groupCR-structure, andµε1ε2 is the differential
of a CR-function, the structure (M, [λ,µε1ε2 ]) is twisting and without shear for all values of the real parameters ε1 and ε2.
The real vector field vwhich gives the splitting onM is given by

v = ∂u +
ε2

ε1

[
iε1 + 2ε2z

−iε1 + ε2(z̄ − z)
∂z +

−iε1 + 2ε2z̄
iε1 + ε2(z − z̄)

∂z̄

]
,

if ε1 6= 0, and

v = i(z∂z − z̄∂z̄)

otherwise. A short calculation shows that the relative invariants K1ε1ε2 and K2ε1ε2 for this 2-parameter family of structures
are

K1ε1ε2 =
8ε22

ρ2|2ε2z + iε1|4
, K2ε1ε2 ≡ 0.
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This proves that the structures with ε2 = 0 and ε2 6= 0 are not locally equivalent. To analyse if the structures with ε2 6= 0
are equivalent or not we need to apply further the Cartan equivalence method. We will perform it in a more general setting
than this example.

7.5. The case K1 6= 0, K2 ≡ 0

Let (M, [λ,µ]) be an arbitrary structure of an oriented congruence which has nonvanishing twist, vanishing shear, and
in addition has the relative invariants K1 and K2 such that

K1 6= 0 and K2 ≡ 0.

Given such a structure, using the system (7.15) and the assumption K2 ≡ 0, we observe that the corresponding structural
formΩ has closed real part,

d(Ω + Ω̄) ≡ 0. (7.21)

The assumption that K1 6= 0 enables us to make a further reduction of the Cartan system (7.15) defining the invariants.
Indeed since K1 = 1

ρ2
k1 6= 0, we may restrict ourselves to a (possibly double-sheeted) hypersurface N0 in P on which

K1 = ±1,

where the sign is determined by the sign of the function k1. Recall that this sign is an invariant of the structure.
Locally N0 is a circle bundle overM defined by the condition

ρ2 = |k1|.

Now the system (7.15) when pulled back to N0 locally reduces to

dω = iω1 ∧ ω̄1 + 2dA ∧ ω
dω1 = dA ∧ ω1 + iΣ ∧ ω1
dω̄1 = dA ∧ ω̄1 − iΣ ∧ ω̄1
dΣ = ∓iω1 ∧ ω̄1.

(7.22)

Here the real 1-formΣ is the pullback of the form 1
2i (Ω − Ω̄) from P to N0. According to our choice ofΣ , theminus sign in

(7.22) corresponds to K1 = +1. The differential dA of the real function A on N0 is determined by the condition that 2dA is
locally equal to the pullback of theΩ + Ω̄ from P to N0. Note that this pullback must be closed due to (7.21). Looking at the
explicit expression forΩ + Ω̄ in (7.8) and (7.10) and the integrability conditions for (7.22) we find that locally we have

2dA = A1ω1 + Ā1ω̄1, (7.23)

with

A1 =
e−iφ
√
|k1|

((
log
|k1|
a

)
µ

+ b

)
. (7.24)

The function A1 gives a new relative invariant for the structures (M, [λ,µ]) with K1 6= 0 and K2 ≡ 0. It follows from
the construction that two such structures (M, [λ,µ]) and (M ′, [λ′, µ′]) are (locally) equivalent if there exists a (local)
diffeomorphism of the corresponding manifolds N0 and N0′ which transforms the corresponding forms (ω, ω1, ω̄1,Σ) to
(ω′, ω′1, ω̄

′

1,Σ
′). This in turn implies that the relative invariant A1 must be transformed to A′1.

Remark 7.8. We note that among all the structures with K1 6= 0 and K2 ≡ 0 the simplest have A1 ≡ 0. Modulo local
equivalence there are only two such structures, corresponding to the∓ sign in (7.22) with A1 ≡ 0. These are the ‘flat cases’
for the subtree in which K1 6= 0 and K2 ≡ 0.

The function A defining the relative invariant A1 is defined only up to the addition of a constant, A → A + t . Given a
family of functions A(t) = A+ t we consider the family of bilinear forms GA(t) on N0 defined by

GA(t) = e−2(A+t)ω1ω̄1.

The forms GA(t) are clearly degenerate on N0. Denoting by (X, X1, X̄1, Y ) the dual vector fields to the basis of 1-forms
(ω, ω1, ω̄1,Σ) on N0, we see that the signature of GA(t) is (+,+, 0, 0) with the degenerate directions aligned with the
real vector fields X and Y . Next we observe that the system (7.22) implies that [X, Y ] ≡ 0, hence the distribution spanned
by X and Y is integrable. Thus N0 is foliated by real 2-dimensional leaves. Locally the leaf space S of this foliation is a 2-
dimensional real manifold, which is a Riemann surface, since the pullback to S of the 1-form ω1 gives a basis for the (1, 0)
forms. Now the formula (7.23) implies that X(A) = Y (A) ≡ 0. Using this and the system (7.22), a calculation shows that

LXGA(t) ≡ 0, LYGA(t) ≡ 0.

This means that the bilinear forms GA(t) descend to Riemannian homothetic metrics gA(t) on the Riemann surface S. We have
the following theorem.
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Theorem 7.9. The Riemann surface S naturally associated with the structure of an oriented congruence having K1 6= 0, K2 ≡ 0
possesses Riemannian homothetic metrics gA(t) whose Gaussian curvatures κ(t) are related to the relative invariant A1 via:

κ(t) = ∓e2(A+t), i.e. 2dA = d log κ.

Example 7.7 (Continued). Calculating A1 for the structures (M, [λ,µε1ε2 ]) of Example 7.7, assuming that ε2 6= 0, we easily
find that for all ε1, and ε2 6= 0, we have A1 ≡ 0. Thus for all nonzero values of ε2, and all values of ε1, the structures are locally
equivalent. Hence the apparent 2-parameter family of the structures (M, [λ,µε1ε2 ]) includes only two nonequivalent cases;
isomorphic to those with (ε1, ε2) = (1, 0), and e.g. to those with (ε1, ε2) = (0, 1). The first case is the flat case K1 ≡ 0,
K2 ≡ 0, corresponding to the Heisenberg group with the standard splitting. The second case is considerably different, being
one of the ‘flat cases’ for the subtree K1 6= 0 and K2 ≡ 0, corresponding to A1 ≡ 0 and theminus sign in (7.22). In particular
the (0, 1) case has only a 4-dimensional symmetry group, as opposed to the 5-dimensional symmetry group of the (1, 0)
case.
Wewould like to point out that if wewere to choose amore complicated CR function than the ζε1ε2 of (7.20), for example

ζ = ε1z + ε2(u+ i|z|2)m,

withm 6= 0 andm 6= 1, we would produce an oriented congruence (M, [du+ i(zdz̄ − z̄dz), dζ ]), still twisting and without
shear, again based on the Heisenberg group, but not equivalent to either of the two structures above. The reason for this is
that the conditionm 6= 0,m 6= 1 makes (M, [du+ i(zdz̄ − z̄dz), dζ ]) have the relative invariant K2 nonvanishing.

We now give a local representation for an arbitrary structure (M, [λ,µ])with vanishing shear, nonvanishing twist, and
with K1 6= 0, K2 ≡ 0. This can be done by integration of the system (7.22). Interestingly this integration can be performed
explicitly, leading to the following theorem.

Theorem 7.10. If (M, [λ,µ]) is a structure of an oriented congruence with vanishing shear, nonvanishing twist, and with the
relative invariants K1 6= 0, K2 ≡ 0 then there exists a coordinate system (u, z, z̄) on M such that the forms λ and µ representing
the structure can be chosen to be

λ = du+
i
2
(Hz̄dz̄ − Hzdz), µ = dz,

where the real functions A = A(z) and H = H(z) satisfy the system of PDEs

hzz̄ = ∓e2Ae−h (7.25)

Hzz̄ = e−h (7.26)

with a real function h = h(z). The structure corresponding to such λ and µ satisfies the system

dω = iω1 ∧ ω̄1 + 2dA ∧ ω
dω1 = dA ∧ ω1 + iΣ ∧ ω1
dω̄1 = dA ∧ ω̄1 − iΣ ∧ ω̄1
dΣ = ∓iω1 ∧ ω̄1

with forms

ω = e2Aλ, ω1 = eAe−h/2eiφµ, ω̄1 = eAe−h/2e−iφµ̄

Σ = dφ +
i
2
(hz̄dz̄ − hzdz).

The relative invariant A1 of this structure is given by

A1 = 2e−Aeh/2e−iφAz .

Note that the system of PDEs (7.25) and (7.26) is underdetermined. To see that it always has solutions, choose a real function
H = H(z) on the complex plane. Define the real function h = h(z) via Eq. (7.26), insert it into Eq. (7.25) and solve this real
PDE for a real function A = A(z). Since the function H can be chosen arbitrarily, returning to Example 7.4, we see that this
theorem characterizes the oriented congruences which are locally equivalent to those defined on rigid CR manifolds with
the standard splitting.

Corollary 7.11. Every structure (M, [λ,µ]) of an oriented congruence with vanishing shear, nonvanishing twist, and with the
relative invariants K1 6= 0, K2 ≡ 0 admits one symmetry.

Proof. To prove this it is enough to check that in the local representation (7.25) and (7.26) the symmetry is generated by
X0 = ∂u. �
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Starting with a structure (M, [λ,µ]) having K1 6= 0 and K2 ≡ 0 we constructed its associated circle bundle S1 → N0 →
M equipped with the invariant forms (ω, ω1, ω̄1,Σ). Using the dual basis (X, X1, X̄1, Y ) and the system (7.22) we see that
the symmetry X0 lifts to a vector field X̃ = e2AX with the property that

LX̃Σ = 0, LX̃ω1 = 2X̃(A)ω1.

We now introduce a quotient 3-dimensional manifoldMΣ whose points are the integral curves of X̃ . Then the formsΣ and
ω1 descend from N0 to a class of forms [Σ, ω1] onMΣ given up to the transformationsΣ → Σ , ω1 → hω1. Thus they can
be used to define a structure of an oriented congruence (MΣ , [Σ, ω1]). This structure naturally associated with (M, [λ,µ])
may be locally represented by the coordinates (φ, z, z̄) of Theorem 7.10 with the representativesΣ and ω1 given by

Σ = dφ +
i
2
(hz̄dz̄ − hzdz), ω1 = dz.

Here the real function h = h(z) is related to the original structure (M, [λ,µ]) via Eqs. (7.25) and (7.26). In particular
(MΣ , [Σ, ω1]) is again based on a rigid CR structure with the standard splitting.
Now we use Theorem 7.10 to describe all the structures with K1 6= 0 and K2 ≡ 0 which have a 4-dimensional transitive

symmetry group. It turns out that they must be equivalent to those with dA ≡ 0. This is because the existence of a 4-
dimensional transitive symmetry group implies that A1must be a constant. But since A and h depend only on z and z̄, and A1
has nontrivial eiφ dependence, it is possible iff Az ≡ 0; hence A1 ≡ 0. Thus according to Remark 7.8 there are only two such
structures. One of them, the one with the upper sign in (7.22), is equivalent to the structure (ε1, ε2) = (0, 1) of Example 7.7.
To find the second one we use Theorem 7.10 and integrate Eqs. (7.25) and (7.26) for A = 0. Modulo equivalence we get two
solutions

h∓ = 2 log
(
1∓

1
2
zz̄
)
, H∓ = ∓2 log

(
1∓

1
2
zz̄
)
, A = 0

which lead to the two nonequivalent ‘flat models’ with K1 = ±1, A1 ≡ 0. These are generated by the forms

λ∓ = du+
i
2
zdz̄ − z̄dz
1∓ 1

2 zz̄
, µ = dz. (7.27)

Obviously the structure corresponding to the upper sign is isomorphic to the structure (ε1, ε2) = (0, 1) of Example 7.7.
Interestingly, in either of the two nonequivalent cases the forms (λ, µ) can be used to intrinsically define a flat CR structure
(in the sense of Cartan’s paper [3]) onM parametrized by (u, z, z̄). Another feature of these two nonequivalent structures is
that their Riemann surface S∓ described by Theorem 7.9 is equipped with metrics gA(t) which may be represented by

g∓ =
2dzdz̄

(1∓ 1
2 zz̄)

2
.

Thus these Riemann surfaces are either locally homothetic to the Poincaré disc (in the upper sign case) or to the 2-
dimensional sphere S2 (in the lower sign case). This leads to the following definition.

Definition 7.12. The two structures of an oriented congruence (M, [λ∓, µ]) generated by the forms λ∓, µ of (7.27) are
called the Poincaré disc structure (in the upper sign case) and the spherical structure (in the lower sign case).

We further note that the natural structures (MΣ , [Σ∓, ω1]) associated with the structures (7.27) are locally isomorphic
to the original structures (M, [λ∓, µ]). Finally we note that the forms λ+, µ are identical with the forms which appear in
the celebrated vacuum Taub-NUT solution of the Lorentzian Einstein field equations (see formulae (11.1) and (11.2) with
K − 1 = m = a = 0 and with the coordinate z replaced by 2/z). We summarize the considerations of this paragraph in the
following theorem.

Theorem 7.13. All structures (M, [λ,µ]) of an oriented congruencewith vanishing shear, nonvanishing twist, having the relative
invariants K1 6= 0, K2 ≡ 0 and possessing a 4-dimensional transitive symmetry group are locally isomorphic to either the Poincaré
disc structure (M, [λ−, µ]) or the spherical structure (M, [λ+, µ]), i.e. they are isomorphic to one of the ‘flatmodels’ for the K1 6= 0
and K2 ≡ 0 case.

Wenowpass to the determination of all local invariants for the structureswith A1 6= 0. Let (M, [λ,µ]) be such a structure
with the corresponding circle bundleN0 and the system of invariants (7.22). Looking at the explicit form (7.24) of the relative
invariant A1, we see that we may always choose a section of the bundle N0 such that A1 is real and positive. Locally this
corresponds to the choice of φ as a function on the manifoldM such that

e−iφ
√
|k1|

((
log
|k1|
a

)
µ

+ b

)
=

eiφ
√
|k1|

((
log
|k1|
a

)
µ̄

+ b̄

)
> 0. (7.28)
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If φ satisfies (7.28) then

A1 > 0,

and all the structural objects defined by the system (7.22) may be uniquely pulled back toM . As the result of this pullback
the real 1-formΣ becomes dependent on the pulled back forms (ω, ω1, ω̄1). Since these three 1-forms constitute a coframe
onM we may writeΣ = B0ω+ B1ω1 + B̄1ω̄1 where B0 (real) and B1 (complex) are functions onM . Now using the fact that
these structures admit a symmetry (Corollary 7.11), we get B0 ≡ 0. Hence

Σ = B1ω1 + B̄1ω̄1.

With this notation the pulled back system (7.22) becomes

dω = iω1 ∧ ω̄1 + 2A1(ω1 + ω̄1) ∧ ω

dω1 = −(A1 + iB̄1)ω1 ∧ ω̄1
dω̄1 = (A1 − iB1)ω1 ∧ ω̄1,

(7.29)

with the fourth equation given by

d(B1ω1 + B̄1ω̄1) = ∓iω1 ∧ ω̄1. (7.30)

Remark 7.14. Note that since onN0 the complex function A1 was constrained by d(A1ω1+ Ā1ω̄1) = 0, because of (7.23), the
Eqs. (7.29) and (7.30) should be supplemented by the equation d[A1(ω1 + ω̄1)] = 0 for A1 > 0. This however is equivalent
to

dA1 ∧ (ω1 + ω̄1) = [iA1(B1 + B̄1)]ω1 ∧ ω̄1,

and turns out to follow from the integrability conditions for (7.29) and (7.30).

Writing these integrability conditions explicitly we have:

dA1 =
[
a11 +

i
2
A1(B1 + B̄1)

]
ω1 +

[
a11 −

i
2
A1(B1 + B̄1)

]
ω̄1

dB1 = B11ω1 +
[
b12 +

1
2
A1(B̄1 − B1)+ i

(
±
1
2
− |B1|2

)]
ω̄1

dB̄1 =
[
b12 −

1
2
A1(B̄1 − B1)− i

(
±
1
2
− |B1|2

)]
ω1 + B̄11ω̄1,

(7.31)

where the real functions a11, b12 are the scalar invariants of the next higher order than A1 and B1.

Theorem 7.15. The functions A1 > 0 and B1 (complex) constitute the full system of basic scalar invariants for the structures
(M, [λ,µ]) with K1 6= 0, K2 ≡ 0 and A1 6= 0. It follows from the construction that two such structures (M, [λ,µ])
and (M ′, [λ′, µ′]) are (locally) equivalent iff there exists a (local) diffeomorphism between M and M ′ which transforms the
corresponding forms (ω, ω1, ω̄1) to (ω′, ω′1, ω̄

′

1). This in particular implies that the invariants A1 and B1 must be transformed
to A′1 and B

′

1.

The system (7.29)–(7.31) and the above theorem can be used to find all structures with K1 6= 0 and K2 ≡ 0 having
a strictly 3-dimensional transitive symmetry group. These are the structures described by the system (7.29)–(7.31) with
constant basic invariants A1 > 0, B1. It follows that it is possible only if B1 = iτ , A1 = ±1−2τ2

2τ > 0 and τ 6= 0 is a real
parameter. This leads to only two quite different cases, which are described by Propositions 7.16 and 7.17.

Proposition 7.16. (i) All locally nonequivalent structures (M, [λ,µ]) of oriented congruences having vanishing shear,
nonvanishing twist, K1 6= 0, K2 ≡ 0, and possessing a strictly 3-dimensional transitive group Gh of symmetries of Bianchi typeVIh,
h ≤ 0, may be locally represented by

λ = ybdu− y−1dx, µ = y−1(dx+ idy).

Here (u, z, z̄) with z = x+ iy are coordinates on M and

b = −2(1∓ 2τ 2).

The real parameter τ is related to the invariants B1 and A1 via

B1 = iτ , A1 = −
∓1+ 2τ 2

2τ
> 0,

and as such enumerates nonequivalent structures.
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(ii) Regardless of the values of τ the structures corresponding to the upper and lower signs in the expressions above are
nonequivalent. In the case of the lower signs the real parameter τ < 0. In the case of the upper signs τ < − 1

√
2
or 0 < τ < 1

2 or
1
2 < τ < 1

√
2
.

(iii) The structures are locally CR equivalent to the Heisenberg group CR structure only in the case of the upper signs with
τ =

√
3

2
√
2
.

(iv) The symmetry group is of Bianchi type VIh, with the parameter h ≤ 0 related to τ via

h = −
(
3∓ 4τ 2

1∓ 4τ 2

)2
.

In the lower sign case the possible values of h are−9 < h < −1, and for each value of h we always have one structure with the
symmetry group Gh. In the upper sign case h may assume all values h ≤ 0, h 6= −1. In this case, we always have

- two nonequivalent structures with symmetry group Gh with h < −9;
- one structure with symmetry group Gh with−9 ≤ h < −1; if the parameter τ is τ =

√
3

2
√
2
then h = −9 and the structure is

based on the Heisenberg group with a particular nonstandard splitting;
- two nonequivalent structures with symmetry group Gh with−1 < h < 0;
- one structure with symmetry group of Bianchi type VI0.

Proposition 7.17. Modulo local equivalence there exists only one structure (M, [λ,µ]) of an oriented congruence having
vanishing shear, nonvanishing twist, K1 6= 0, K2 ≡ 0, and possessing a strictly 3-dimensional transitive group of symmetries
of Bianchi type IV . Locally it may be represented by the forms

λ = y−1(du+ log ydx), µ = y−1(dx+ idy).

Here (u, z, z̄) with z = x+ iy are coordinates on M. The structure has the basic local invariants A1 = 1
2 and B1 =

i
2 .

Summarizing we have the following theorem.

Theorem 7.18. All locally nonequivalent structures (M, [λ,µ]) of oriented congruences having vanishing shear, nonvanishing
twist, K1 6= 0, K2 ≡ 0, and possessing a strictly 3-dimensional transitive group of symmetries are locally equivalent to one of the
structures defined in Propositions 7.16 and 7.17.

Remark 7.19. Example 7.3, Theorems7.13 and7.18describe all locally nonequivalenthomogeneous structures of an oriented
congruence having vanishing shear, nonvanishing twist and with the invariant K2 ≡ 0. They may have

- Maximal symmetry group of dimension 5, and then they are locally isomorphic to theHeisenberg groupwith the standard
splitting.
- Symmetry group of exact dimension 4, and then they are locally isomorphic to one of the two nonequivalent structures
of Theorem 7.13.
- Symmetry group of exact dimension 3 which must be of either Bianchi type VIh or IV; in this case they are given by
Propositions 7.16 and 7.17.

7.6. The case K2 6= 0

Looking at the explicit expression for K2 in (7.16) we see that in this case we may fix both ρ and φ by the requirement
that

K2 = 1. (7.32)

Indeed this normalization forces ρ and φ to be

ρ = |k2|
1
3 , φ = Arg(k2).

This provides an embedding ofM into P . Using it (technically speaking, by insertingρ andφ in the definitions of the invariant
coframe (7.14)) we pullback the forms (ω1, ω̄1, ω,Ω, Ω̄) on P toM . Also K1 is pulled back toM , so that

K1 =
k1

|k2|
2
3
.

SinceM is 3-dimensional the pulled back forms are no longer linearly independent, and the pullback of the derived formΩ
decomposes onto the invariant coframe (ω1, ω̄1, ω) on M . We denote the coefficients of this decomposition by (Z1, Z2, Z0)
so that:

Ω = Z1ω1 + Z2ω̄1 + Z0ω
Ω̄ = Z̄2ω1 + Z̄1ω̄1 + Z̄0ω.
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These coefficients constitute the basic scalar invariants of the structures under consideration. They satisfy the following
differential system:

dω = iω1 ∧ ω̄1 + (Z1 + Z̄2)ω1 ∧ ω + (Z2 + Z̄1)ω̄1 ∧ ω
dω1 = −Z2ω1 ∧ ω̄1 − Z0ω1 ∧ ω

dω̄1 = Z̄2ω1 ∧ ω̄1 − Z̄0ω̄1 ∧ ω

(7.33)

with

d[Z1ω1 + Z2ω̄1 + Z0ω] = K1ω1 ∧ ω̄1 + ω1 ∧ ω
d[Z̄2ω1 + Z̄1ω̄1 + Z̄0ω] = −K1ω1 ∧ ω̄1 + ω̄1 ∧ ω.

Instead of considering the last two equations above, it is convenient to replace them by the integrability conditions for the
system (7.33). These are:

dZ1 = Z11ω1 + (−K1 + iZ0 − Z1Z2 + Z2Z̄2 + Z21)ω̄1 + (Z0Z̄2 + Z01 − 1)ω

dZ̄1 = (−K1 − iZ̄0 − Z̄1Z̄2 + Z2Z̄2 + Z̄21)ω1 + Z̄11ω̄1 + (Z̄0Z2 + Z̄01 − 1)ω

dZ2 = Z21ω1 + Z22ω̄1 + (Z02 + Z0Z̄1 + Z0Z2 − Z̄0Z2)ω

dZ̄2 = Z̄22ω1 + Z̄21ω̄1 + (Z̄02 + Z̄0Z1 + Z̄0Z̄2 − Z0Z̄2)ω
dZ0 = Z01ω1 + Z02ω̄1 + Z00ω

dZ̄0 = Z̄02ω1 + Z̄01ω̄1 + Z̄00ω

dK1 = K11ω1 + K̄11ω̄1 + K10ω,

(7.34)

where, in addition to the basic scalar invariants Z0, Z1, Z2, K1, we have introduced the scalar invariants of the next higher
order: Z00, Z01, Z02, Z11, Z21, Z22 (complex) and K10 (real). Note that if the basic scalar invariants Z0, Z1, Z2, K1were constants,
all the higher order invariants such as Z00, Z01, Z02, Z11, Z21, Z22, K10 would be identically vanishing.

Theorem 7.20. All locally nonequivalent structures (M, [λ,µ]) of oriented congruences having vanishing shear, nonvanishing
twist, and with K2 6= 0 are described by the invariant system (7.33) with the integrabilty conditions (7.34).

Now we pass to the determination of all nonequivalent structures with K2 6= 0 which have a strictly 3-dimensional
transitive group of symmetries. They correspond to the structures of Theorem 7.20 with all the scalar invariants being
constants. It turns out that there are two families of such structures. The first family is described by the following invariant
system:

dω1 = eiα[−(2 sinα)−1/3ω1 ∧ ω̄1 − (2 sinα)1/3ω1 ∧ ω],
dω̄1 = e−iα[(2 sinα)−1/3ω1 ∧ ω̄1 − (2 sinα)1/3ω̄1 ∧ ω],
dω = iω1 ∧ ω̄1 + (2 sinα)−1/3(eiαω1 ∧ ω + e−iαω̄1 ∧ ω).

All the nonvanishing scalar invariants here are:

K1 = (2 sinα)−2/3

and

Z1 = i(2 sinα)2/3, Z2 = eiα(2 sinα)−1/3, Z0 = eiα(2 sinα)1/3.

Two different values α and α′ of the parameter yield different respective quadruples (K1, Z0, Z1, Z2) and (K ′1, Z
′

0, Z
′

1, Z
′

2),
and hence correspond to nonequivalent structures.
The second family of nonequivalent structures with a strictly 3-dimensional group of symmetries corresponds to the

following invariant system:

dω = iω1 ∧ ω̄1 + iβ−1ω ∧ (ω1 − ω̄1)

dω1 = −i(βω + β−1ω̄1) ∧ ω1
dω̄1 = i(βω + β−1ω1) ∧ ω̄1.

(7.35)

The nonvanishing scalar invariants here are:

K1 = (β3 + 3)β−2, Z1 = −2iβ−1, Z2 = −iβ−1, Z0 = −iβ. (7.36)

The corresponding structures of an oriented congruence are parametrized by a real parameter β 6= 0. This means that each
β 6= 0 defines a distinct structure.
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A further analysis of this system shows that the congruence structures described by it have a transitive symmetry group
of Bianchi type VII0 (iff β = −2

1
3 ), Bianchi type VIII (iff β > −2

1
3 ), and of Bianchi type IX (iff β < −2

1
3 ).

If we parametrize the 3-dimensional manifoldM by (u, z, z̄), the structures (M, λ, µ) corresponding to the system (7.35)
may be locally represented by:

λ = du+
2βe−iβu + iz̄

β(zz̄ − 2β2(2+ β3))
dz +

2βeiβu − iz
β(zz̄ − 2β2(2+ β3))

dz̄

µ = −
2β2e−iβu

zz̄ − 2β2(2+ β3)
dz, µ̄ = −

2β2eiβu

zz̄ − 2β2(2+ β3)
dz̄.

(7.37)

Note that the above (λ, µ) can be also used to define a CR structure onM , and that different β 6= 0 correspond to different
CR structures in the sense of Cartan.
Three particular values of β 6= 0 in (7.37) are worthy of mention. These are:

β = βB = −2
1
3 ,

when the local symmetry group (both the CR and the oriented congruence symmetry) changes the structure from Bianchi
type IX, with β < βB; through Bianchi type VII0, with β = βB; to Bianchi type VIII, with β > βB.
Next is:

β = βH = −1,

when the lowest order Cartan invariant of the CR structure associated with λβH andµβH is identically vanishing [15]; in this
case the CR structure becomes locally equivalent to the Heisenberg group CR structure, and the 3-dimensional transitive CR
symmetry group of Bianchi type IX is extendable, from the local SO(3) group, to the 8-dimensional local CR symmetry group
SU(2, 1).
The third distinguished β is:

β = βK = −3
1
3 .

Note that for β = βK our invariant K1 of the congruence structure (λβ , µβ) vanishes, K1 ≡ 0, as in (7.36). This case is of
some importance, since it will be shown in Section 10.2 that the congruence structures with K1 ≡ 0 and K2 6= 0 have very
nice properties.

8. Vanishing twist and nonvanishing shear

Now we assume the opposite of Section 7, namely that (M, [λ,µ]) has some shear, s 6= 0, but has identically vanishing
twist, a ≡ 0. As in Section 6 the no twist condition dλ ∧ λ ≡ 0 yields λ = f dt for some real function t on M . Thus in
this case we again have a foliation of M by the level surfaces t = const. Each leaf C of this foliation is a 2-dimensional
real submanifold which is equipped with a complex structure J determined by the requirement that its holomorphic vector
bundle H1,0 = {X − iJX, X ∈ Γ (TC)} coincides with the anihilator of SpanC(λ)⊕ SpanC(µ̄). But the simple situation ofM
being locally equivalent toR×C is no longer true. If s 6= 0 themanifoldM gets equippedwith the structure of a fiber bundle
C → M → V , with fibersC being 1-dimensional complexmanifolds—the leaves of the foliation given by t = const, andwith
the base V being 1-dimensional, and parametrized by t . This can be rephrased by saying that we have a 1-parameter family
of complex curves C(t), with complex structure tensors JC(t), which are not invariant under Lie transport along the vector
field ∂t . Recall that having a complex structure in a real 2-dimensional vector space is equivalent to having a conformal
metric and an orientation in the space. Thus the condition of having s 6= 0 means that, under Lie transport along ∂t , the
metrics on the 2-planes tangent to the surfaces t = const change in a fashion more general than conformal. This means
that small circles on these two planes do not go to small circles when Lie transported along ∂t . They may, for example, be
distorted into small ellipses, which intuitively means that the congruence generated by ∂t has shear. This explains the name
of the complex parameter s, as was promised in Section 5.
Wenowpass to amore explicit description of this situation.We startwith an arbitrary structure (M, [λ,µ])with dλ∧λ =

0. This guarantees that the 2-dimensional distribution annihilating λ defines a foliation inM , andM is additionally equipped
with a transversal congruence of curves. Note that a foliation of a 3-space by 2-surfaces equipped with a congruence locally
can either be described in terms of coordinates (t, x, y) such that the tangent vector to the congruence is ∂t (in such case
the surfaces are in general curved for each value of the parameter t), or in terms of coordinates (u, z, z̄) such that locally
the surfaces are 2-planes (in such case the congruence is tangent to a vector field with a more complicated representation
X = ∂u + S∂z + S̄∂z̄ . Regardless of the descriptions, the leaves of the foliation are given by the level surfaces of the real
parameters t = const (in the first case, as in the beginning of this Section) or u = const (as it will be used in this Section
from now on). Having this in mind and recalling the allowed transformations (3.1) we conclude that our (M, [λ,µ]) with
dλ ∧ λ = 0 may be represented by a pair of 1-forms

λ = du, µ = dz + Hdz̄ + Gdu,
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where H = H(u, z, z̄) and G = G(u, z, z̄) are complex-valued functions onM , with coordinates (u, z, z̄), such that |H| < 1.
The foliation has leaves tangent to the vector fields ∂z , ∂z̄ . Each leaf is equipped with a complex structure, which may be
described by saying that its T (1,0) space is spanned by the vector field

Z = ∂z − H̄∂z̄; (8.1)

consequently the T (0,1) space is spanned by the complex conjugate vector field

Z̄ = ∂z̄ − H∂z .

The congruence onM which gives the preferred splitting is tangent to the real vector field

X = ∂u +
ḠH − G
1− HH̄

∂z +
GH̄ − Ḡ
1− HH̄

∂z̄ . (8.2)

Thus we have the following proposition.

Proposition 8.1. All structures (M, [λ,µ]) with vanishing twist, a ≡ 0, may be locally represented by

λ = du, µ = dz + Hdz̄ + Gdu, (8.3)

where H = H(u, z, z̄) and G = G(u, z, z̄) are complex-valued functions on M, with coordinates (u, z, z̄), such that |H| < 1.
They have nonvanishing shear s 6= 0 iff

Hu − GHz + HGz − Gz̄ 6= 0.

The following two cases are of particular interest:

• H ≡ 0. In this case all surfaces u = const are equipped with the standard complex structure. The coordinate z is the
holomorphic coordinate for it, but the congruence is tangent to a complicated real vector field X = ∂u − G∂z − Ḡ∂z̄ .
• G ≡ 0. Here each surface u = const has its own complex structure J , for which z is not a holomorphic coordinate; J is
determined by specifying a complex function H . A nice feature of this case is that the congruence is now tangent to the
very simple vector field X = ∂u, which enables us to identify coordinates t and u.

Note that in Proposition 8.1 we made an assumption about the modulus of the function H . The modulus equal to one is
excluded because it violates the condition that the forms λ, µ, µ̄ are independent. We excluded also the H > 1 case, since
because of the coordinate transformation z → z̄ followed by H → 1/H , such structures are in one to one equivalence with
those having |H| < 1.We now turn to the question about nonequivalent structures among those covered by Proposition 8.1.

8.1. The invariant T0 and the relative invariants T1, K0, K1

To answer this we have to go back to the beginning of Section 5 and again perform the Cartan analysis on the system
(5.1), but now with a ≡ 0, s 6= 0. In this case the formulae (5.1) become

dλ = bµ ∧ λ+ b̄µ̄ ∧ λ
dµ = pµ ∧ µ̄+ qµ ∧ λ+ sµ̄ ∧ λ
dµ̄ = −p̄µ ∧ µ̄+ s̄µ ∧ λ+ q̄µ̄ ∧ λ.

(8.4)

It is convenient to write the complex shear function s as

s = |s|eiψ .

Now for a chosen pair (λ, µ) representing the structure, using (8.4), we find that the differentials of the Cartan frame

(ω, ω1, ω̄1) = (f λ, ρeiφµ, ρe−iφµ̄) (8.5)

are:

dω = d log f ∧ ω +
b
ρ
e−iφω1 ∧ ω +

b̄
ρ
eiφω̄1 ∧ ω

dω1 = idφ ∧ ω1 + d log ρ ∧ ω1 +
p
ρ
eiφω1 ∧ ω̄1 +

q
f
ω1 ∧ ω +

|s|
f
ei(2φ+ψ)ω̄1 ∧ ω

dω̄1 = −idφ ∧ ω̄1 + d log ρ ∧ ω̄1 −
p̄
ρ
e−iφω1 ∧ ω̄1 +

|s|
f
e−i(2φ+ψ)ω1 ∧ ω +

q̄
f
ω̄1 ∧ ω.

Because of s 6= 0, we can gauge the structure so that

dω1 ∧ ω1 = ω1 ∧ ω̄1 ∧ ω. (8.6)
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This requirement defines f modulo sign to be f = ±|s|. Writing f as

f = eiεπ |s|,

where ε = 0, 1, and still requiring the normalization (8.6), we get

φ = −
1
2
ψ + ε

π

2
.

Thus the functions f and φ are fixed modulo ε.
After this normalization we introduce a real 1-formΩ such that

(dω1 − dω̄1) ∧ (ω1 + ω̄1) = 2Ω ∧ ω1 ∧ ω̄1. (8.7)

This equation definesΩ to be

Ω = d log ρ + zω1 + z̄ω̄1 +
(
1− eiεπ

q+ q̄
2|s|

)
ω,

where z is an auxiliary complex parameter. The condition that fixes z in an algebraic fashion is:

dω1 ∧ ω = Ω ∧ ω1 ∧ ω, dω̄1 ∧ ω = Ω ∧ ω̄1 ∧ ω. (8.8)

It uniquely specifies z to be

z =
(iψµ − 2p̄)
2ρ

e
i
2 (ψ−επ), z̄ =

(−iψµ̄ − 2p)
2ρ

e−
i
2 (ψ−επ).

Thus given a structure (M, [λ,µ]) with vanishing twist and nonvanishing shear, the three normalization conditions (8.6)–
(8.8) uniquely specify a 4-dimensional manifold P , which is locallyM × R+, and a well defined coframe (ω, ω1, ω̄1,Ω) on
it such that

ω = eiεπ |s|λ

ω1 = ρe−
i
2 (ψ−επ)µ

ω̄1 = ρe
i
2 (ψ−επ)µ̄

Ω = d log ρ +
(iψµ − 2p̄)
2ρ

e
i
2 (ψ−επ)ω1 +

(−iψµ̄ − 2p)
2ρ

e−
i
2 (ψ−επ)ω̄1 +

(
1− eiεπ

q+ q̄
2|s|

)
ω.

(8.9)

Here the positive coordinate along the factor R+ in the fibration R+ → P → M is ρ. The coframe (ω, ω1, ω̄1,Ω) satisfies

dω = T1ω1 ∧ ω + T̄1ω̄1 ∧ ω
dω1 = Ω ∧ ω1 + (ω1 + ω̄1) ∧ ω + iT0ω1 ∧ ω
dω̄1 = Ω ∧ ω̄1 + (ω1 + ω̄1) ∧ ω − iT0ω̄1 ∧ ω

dΩ = iK0ω1 ∧ ω̄1 + K1ω1 ∧ ω + K̄1ω̄1 ∧ ω

(8.10)

where

T0 =
ψλ + i(q̄− q)

2|s|
eiεπ , T1 =

t1
ρ
, K0 =

k0
2ρ2

, K1 =
k1
2ρ

(8.11)

and

t1 = (b|s| + |s|µ)
e
i
2 (ψ−επ)

|s|
k0 = −ψµµ̄ − ψµ̄µ + pψµ + p̄ψµ̄ + 2i(pµ − p̄µ̄)

k1 = 2(t1 − t̄1)+ e
i
2 επ [(bq̄− bq− qµ + q̄µ + iqψµ − iψµλ)e

i
2ψ + iψµ̄|s|e−

i
2ψ ]|s|−1.

(8.12)

Note that functions T0, T1, K0 and K1 are invariants of the structure on the bundle R+ → P → M , with the fiber coordinate
ρ. They are defined modulo the parameter ε = 0, 1. Thus two structures which differ only by the value of ε are equivalent.
If we want to look for the invariants on the original manifold M we must examine the fiber coordinate dependence of

the structural functions T0, T1, K0 and K1. Since the last three functions T1, K0, K1 have a nontrivial ρ dependence they do
not project to invariant functions on M . However, since in all these cases this dependence is just scaling by ρ we conclude
that they lead to the relative invariants on M . Thus the vanishing or not of any of the functions t1, k1 (complex), k0 (real)
is an invariant property of the structure on M . The situation is quite different for the real function T0. Although originally
defined on P it is constant along the fibers. Thus it projects to a well defined invariant on the original manifoldM . Thus T0 is
an invariant of the structure onM . We summarize the above discussion in the following theorem.
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Theorem 8.2. A given structure (M, [λ,µ]) of an oriented congruence with vanishing twist, a ≡ 0, and nonvanishing shear,
s 6= 0, uniquely defines a 4-dimensional manifold P, 1-forms ω,ω1, ω̄1,Ω and functions T0, K0 (real) T1, K1 (complex) on P such
that

- ω,ω1, ω̄1,Ω are as in (8.9),
- ω ∧ ω1 ∧ ω̄1 ∧Ω 6= 0 at each point of P,
- the forms and functions T0, T1, K0, K1 are uniquely determined by the requirement that on P they satisfy Eqs. (8.10).

In particular T0 is an invariant of the structure on M; the identical vanishing, or not, of either of the functions t1, k0 or k1
defined in (8.12) is an invariant condition on M.

The structures coveredby Theorem8.2 admit symmetry groups of atmost four dimensions. Those forwhich the symmetry
group is strictly 4-dimensional have all the relative invariants t1, k0, k1 equal to zero and constant invariant T0. When finding
such structures it is enough to consider T0 = α = const ≥ 0 since, due to the fact that T0 is definedmodulo sign (eiεπ = ±1),
each structure with T0 = α < 0 is equivalent to the one with T0 = |α|. Inspecting all the possibilities we get the following
theorem.

Theorem 8.3. All locally nonequivalent structures (M, [λ,µ]) of oriented congruences having vanishing twist, nonvanishing
shear, and possessing a strictly 4-dimensional transitive group of symmetries are parametrized by a real constant α ≥ 0 as
follows.

• if 0 ≤ α < 1 they can be locally represented by

λ = du, µ = dx+ e2u
√
1−α2(α + i

√
1− α2)dy

• if α = 1 they can be locally represented by

λ = du, µ = dx+ (i+ 2u)dy

• if α > 1 they can be locally represented by

λ = du,

µ = [(i+ α) cos(u
√
α2 − 1)− i

√
α2 − 1 sin(u

√
α2 − 1)]dx

+ [(i+ α) sin(u
√
α2 − 1)+ i

√
α2 − 1 cos(u

√
α2 − 1)]dy.

Here (u, x, y) are coordinates on M. The real parameter α ≥ 0 is just the invariant T0 = α and as such enumerates
nonequivalent structures.

8.2. Description in terms of the Cartan connection

Eq. (8.10) can be better understood in terms of the matrix ω̃ of 1-forms defined by

ω̃ =


2(Ω − ω) 0 0

ω1 Ω − ω ω

ω̄1 ω Ω − ω,


where the 1-forms (ω1, ω̄1, ω,Ω) are as in (8.10) or as in (8.9).
This matrix has values in the 4-dimensional Lie algebra g4 which is a semidirect product of two 2-dimensional Abelian

Lie algebras

h0 =



2x 0 0

0 x y

0 y x

 | x, y ∈ R


and

h1 =




0 0 0

u+ iv 0 0

u− iv 0 0

 | u, v ∈ R

 ,
for which the commutator is the usual commutator of 3× 3 matrices. Thus

g4 = h0 ⊕ h1, (8.13)
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as the direct sum of vector spaces h0 and h1, with the commutator between h0 and h1 given by

[h0, h1] ⊂ h1.

It turns out that due to the relations (8.10), ω̃ is a Cartan connection on the principal fibre bundle R+ → P → M , which
has as its structure group a 1-parameter Lie group generated by the vector field ρ∂ρ dual toΩ .

Remark 8.4. It is worthwhile to note that the fiber bundle R+ → P → M has some additional structure. Indeed, Eq. (8.10)
guarantee that P is foliated by 2-dimensional leaves of the integrable 2-dimensional real distributionD annihilating forms
ω1 and ω̄1. Thus, locally, P has also the structure of a fiber bundle over the leaf space P/D . This is actually a principal fiber
bundle H0 → P → P/D , with the structure group H0 having h0 as its Lie algebra.

Eqs. (8.10) imply that the curvature R of the Cartan connection ω̃ is

R = dω̃ + ω̃ ∧ ω̃ =

2R1 0 0
R3 R1 R2
R̄3 R2 R1

 ,
where

R1 = iK0ω1 ∧ ω̄1 + (K1 − T1)ω1 ∧ ω + (K̄1 − T̄1)ω̄1 ∧ ω
R2 = T1ω1 ∧ ω + T̄1ω̄1 ∧ ω
R3 = iT0ω1 ∧ ω.

In particular the absence of vertical Ω∧ terms in the curvature confirms our interpretation of ω̃ as a g4-valued Cartan
connection on P overM .
The Cartan connection ω̃ yields all the invariant information about the corresponding structures (M, [λ,µ]) and can be

used in an invariant description of various examples of such structures. In particular, the invariant decomposition (8.13)
may be used to distinguish two large classes (M, [λ,µ])0 and (M, [λ,µ])1 of nonequivalent structures (M, [λ,µ]). These
are defined by the requirement that the curvature R of their Cartan connection ω̃ has values in the respective parts h0 for
(M, [λ,µ])0, and h1 for (M, [λ,µ])1.

8.2.1. Curvature R ∈ h0
The curvature R of the Cartan connection ω̃ resides in h0 iff it is of the form

R =

(2R1 0 0
0 R1 R2
0 R2 R1

)
.

An example of a structure (M, [λ,µ])with such R is given by the following forms (ω1, ω̄1, ω,Ω):

ω1 = er(dx+ ie2(u+f )dy),
ω̄1 = er(dx− ie2(u+f )dy),
ω = du,
Ω = dr + 2du+ 2fxdx,

with a real function f = f (x, y) of real variables x and y. These two variables, supplemented with the real u and r , constitute
a coordinate system (u, x, y, r) on R+ → P → M . The triple (u, x, y) parametrizes M , and r is related to the positive fiber
coordinate ρ via ρ = er .
For each choice of a twice differentiable function f = f (x, y) the forms (ω1, ω̄1, ω,Ω) satisfy the differential system

(8.10) with

K1 ≡ 0, T1 ≡ 0, T0 ≡ 0,

and the relative invariant K0 being

K0 = −e−2(r+u+f )fxy.

A special case here is fxy ≡ 0, in particular f ≡ 0. If this happens the corresponding structures (M, [λ,µ]) are all equivalent
to the structure with 4-dimensional transitive symmetry group having α = 0 in Theorem 8.3. If fxy 6= 0, then K0 6= 0, and
the corresponding structures have the curvature of the Cartan connection ω̃ in the form

R = −e−2(r+u+f )
(2iω1 ∧ ω̄1 0 0

0 iω1 ∧ ω̄1 0
0 0 iω1 ∧ ω̄1

)
fxy.

As such they are special cases of structures with R ∈ h0. We will return to them in Section 8.3.1, where we further analyze
the case K0 6= 0, T1 = 0 and K1 = 0.
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8.2.2. Curvature R ∈ h1
The case of R ∈ h1 is entirely characterized by the requirement that all the relative invariants t1, k0, k1 identically vanish.

Examples of such structures are structures with a 4-dimensional transitive group of symmetries given in Theorem 8.3.
However these examples do not exhaust the list of nonequivalent structures having R ∈ h1. To find them allwe proceed as
follows.
We want to find all structures with

R =

 0 0 0
R3 0 0
R̄3 0 0

 ,
i.e. those for which all the relative invariants T1, K1, K0, as in (8.10), vanish:

T1 ≡ 0, K0 ≡ 0, K1 ≡ 0. (8.14)

Assuming (8.14), Eqs. (8.10) guarantee that real coordinates u and r may be introduced on P such that

ω = du, Ω = dr.

Then, taking the exterior derivatives of both sides of Eqs. (8.10), we see that (8.14) forces T0 to be a real function of u only.
Denoting this function by α = α(u)we have

T0 = α(u).

Integrating the system for such T0, and denoting the u-derivatives by primes, we get the following theorem.

Theorem 8.5. A structure (M, [λ,µ]) of an oriented congruence with vanishing twist, a ≡ 0, nonvanishing shear, s 6= 0, and
having the curvature of its corresponding Cartan connection ω̃ of the pure h1 type, R ∈ h1, can be locally represented by

λ = du, µ = dz −
(
h̄′

h
+
h̄
h
− iα

h̄
h

)
dz̄,

where the complex function h = h(u) 6= 0 satisfies a second order ODE:

h′′ + 2h′ + (α2 + iα′)h = 0. (8.15)

Here the nonequivalent structures are distinguished by the real invariant T0 = α(u).

Note that if α(u) = const we recover the structures from Theorem 8.3.

8.3. The case T1 ≡ 0

Now we pass to the general case T1 ≡ 0. To proceed we have to distinguish two subcases:

• K1 ≡ 0
• K1 6= 0.

8.3.1. The case K1 ≡ 0
In this situation we have

dΩ = iK0ω1 ∧ ω̄1,

with K0 given by (8.11) and (8.12). Since K0 is not identically equal to zero, because this corresponds to the case t1 ≡ 0,
k0 ≡ 0, k1 ≡ 0 already studied, we use it to fix ρ by the requirement

K0 = sign(k0) = ±1. (8.16)

We note that this sign is an invariant of the structures under consideration. This implies that the structures with different
signs are nonequivalent.
After the normalization (8.16) the forms (ω1, ω̄1, ω,Ω) are defined as forms on M . Performing the standard Cartan

analysis on the system (8.10), we verified that after pullback toM it reads:

dω = 0,
dω1 = (iB− A)ω1 ∧ ω̄1 + iT0ω1 ∧ ω + ω̄1 ∧ ω,
dω̄1 = (iB+ A)ω1 ∧ ω̄1 + ω1 ∧ ω − iT0ω̄1 ∧ ω,
d[(A+ iB)ω1 + (A− iB)ω̄1 + ω] = ±iω1 ∧ ω̄1.

(8.17)
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Here the real functions A, B, T0 are the scalar invariants onM . They satisfy the following integrability conditions

dA =
[
A1 +

i
2
(B1 + B̄1 ± 1)

]
ω1 +

[
A1 −

i
2
(B1 + B̄1 ± 1)

]
ω̄1 + (A− BT0)ω

dB = B1ω1 + B̄1ω̄1 + (AT0 − B)ω
dT0 ∧ ω = 0,

(8.18)

with the functions A1 (real) and B1 (complex) being the scalar invariants of the next higher order. In principle, we could have
written the explicit formulae for all these scalar invariants in terms of the defining variables b, q, p and s of (8.4). We refrain
from doing this, because the formulae are quite complicated, and not enlightening.
We summarize these considerations in the following theorem.

Theorem 8.6. All locally nonequivalent structures (M, [λ,µ]) of oriented congruences having vanishing twist, nonvanishing
shear, with T1 ≡ 0 and K1 ≡ 0, are described by the invariant forms (ω, ω1, ω̄1) satisfying the system (8.17) and (8.18) on M.

Thus having a representative (λ, µ) of a structure with vanishing twist, nonvanishing shear and with T1 ≡ 0, we can
always gauge it to the invariant forms satisfying system (8.17) and (8.18). Conversely, given two 1-formsω andω1 satisfying
the system (8.17) and (8.18), we may consider them as a representative pair (λ = ω,µ = ω1) of a certain structure with
vanishing twist, nonvanishing shear and with T1 ≡ 0.
The immediate consequence of the integrability conditions (8.18) is the nonexistence of structures (8.17) with a strictly 3-

dimensional transitive group of symmetries. This is because, if such structures existed, they would have constant invariants
A, B and T0. Thus, for such structures the right hand sides of all the equations (8.18) would be zero. But this is impossible,
since in such a situation the second equation (8.18) implies B1 ≡ 0 which, when compared with equating to zero the r.h.s
of the first equation (8.18), gives contradiction.
A family of nonequivalent structures (M, [λ,µ]) from this branch of the classification is given in Section 8.2.1. Indeed,

consider the examples of this section for which

fxy 6= 0.

Since this guarantees that K1 6= 0, and since we have T1 = 0 and K1 = 0 (and, what is less important for us here T0 = 0)
for them, we may perform the above described normalization procedure on the invariant forms (ω1, ω̄1, ω,Ω) defined in
Section 8.2.1. A simple calculation, based on the normalization

− e−2(r+u+f )fxy = ±1, (8.19)

leads to the reduction toM , where the invariant forms read:

ω = du,

ω1 = e−(u+f )
(
∓fxy

) 1
2 (dx+ ie2(u+f )dy),

ω̄1 = e−(u+f )
(
∓fxy

) 1
2 (dx− ie2(u+f )dy).

They satisfy the system (8.17) and (8.18) with the functions A and B given by:

A =
1
4

(
∓fxy

)− 32 (2fxfxy + fxxy) eu+f
B =

1
4

(
∓fxy

)− 32 (2fyfxy − fxyy) e−u−f .
These structures can thus be represented onM by

λ = du, µ = dx+ ie2(u+f (x,y))dy.

The only scalar invariants for them are the functions A and B as above since, as we already noticed, the scalar invariant T0
identically vanishes, T0 ≡ 0.
Note in particular that, given a function f = f (x, y), two structures (M, [λ,µ])with λ,µ as above, corresponding to two

different signs of fxy are nonequivalent. This is because the sign± in (8.19) is an invariant of such structures.

Remark 8.7. The structures described above belong to a subclass of structures for which the curvature R is much more
restricted than to h0. Since, in addition to T0 ≡ 0, we have here T1 ≡ 0, the curvature R is actually contained in the diagonal
1-dimensional subalgebra of h0. Moreover, since also K1 ≡ 0, the curvature R does not involveω∧ terms. This means that in
this example, similarly as in all examples with T0 ≡ T1 ≡ K1 ≡ 0, the curvature of the Cartan connection ω̃ is horizontal from
the point of view of the principal fiber bundle H0 → P → P/D discussed in Remark 8.4. Thus here, the Cartan connection ω̃
can be reinterpreted as a g4-valued Cartan connection on the bundle H0 → P → P/D .
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8.3.2. The case K1 6= 0
If K1 6= 0 we can use definition (8.11) to scale it in such a way that it has values on the unit circle

K1 = eiγ .

This fixes ρ uniquely, and the system (8.10) is again reduced to an invariant system onM . This reads (with new A and B):

dω = 0,
dω1 = (iB− A)ω1 ∧ ω̄1 + (1− C + iT0)ω1 ∧ ω + ω̄1 ∧ ω,
dω̄1 = (iB+ A)ω1 ∧ ω̄1 + ω1 ∧ ω + (1− C − iT0)ω̄1 ∧ ω,

d[(A+ iB)ω1 + (A− iB)ω̄1 + Cω] = iK0ω1 ∧ ω̄1 + eiγω1 ∧ ω + e−iγ ω̄1 ∧ ω.

(8.20)

Here, all the real invariants are T0, A, B, C , γ and K0 are well defined functions on M . They are expressible in terms of the
original variables defining the structure and the functions k0, k1 of (8.12). In particular,

K0 = 2
k0
|k1|2

.

To discuss the integrability conditions for the system (8.20) we have to distinguish two cases:

• either K1 = eiγ 6= ±1,
• or K1 = eiγ ≡ ±1.

In the first case:

dT0 = i(eiγω1 − e−iγ ω̄2)+ T00ω

dA =
1
2

[
i
(
K0
2
+ A1

)
+ A2

]
ω1 +

1
2

[
−i
(
K0
2
+ A1

)
+ A2

]
ω̄1 + A0ω

dB =
1
2

[
−
K0
2
+ A1 + iB1

]
ω1 +

1
2

[
−
K0
2
+ A1 − iB1

]
ω̄1 + B0ω

dC = [−2A+ AC + A0 + BT0 + i(BC − AT0 + B0)+ eiγ ]ω1
+ [−2A+ AC + A0 + BT0 − i(BC − AT0 + B0)+ e−iγ ]ω̄1 + C0ω

dγ = [B+ (A+ γ1) cot γ + iγ1]ω1 + [B+ (A+ γ1) cot γ − iγ1]ω̄1 + γ0ω

dK0 = K01ω1 + K̄01ω̄1 + 2[(A+ γ1) csc γ + (1− C)K0]ω,

(8.21)

and in addition to the the basic scalar invariants K0, γ , A, B, C , we have higher order scalar invariants
A0, A1, A2, B0, B1, C0, γ0, γ1 (all real) and K01 (complex).
In the second case, when eiγ ≡ ±1, one of the integrability conditions is the vanishing of the scalar invariant A of (8.20),

A ≡ 0.

The rest of the integrability conditions are

dT0 = ±i(ω1 − ω̄2)+ T00ω

dB =
[
−
K0
2
+ iB1

]
ω1 +

[
−
K0
2
− iB1

]
ω̄1 + B0ω

dC = [BT0 + i(BC + B0)± 1]ω1 + [BT0 − i(BC + B0)± 1]ω̄1 + C0ω

dK0 = K01ω1 + K̄01ω̄1 + 2[∓B+ (1− C)K0]ω,

(8.22)

with the new higher order scalar invariants B0, B1, C0 (all real) and K01 (complex).

Theorem 8.8. All locally nonequivalent structures (M, [λ,µ]) of oriented congruences, having vanishing twist, nonvanishing
shear, with T1 ≡ 0 and K1 6= 0, are described by the invariant forms (ω, ω1, ω̄1) satisfying

• either the system (8.20) and (8.21) on M, in which case K1 = eiγ 6= ±1,
• or the system (8.20) and (8.22) on M, in which case K1 ≡ ±1 and A ≡ 0.

As it is readily seen from the integrability conditions (8.21) and (8.22) neither of these cases admits structures with
a strictly 3-dimensional transitive symmetry group (look at the equations for dT0 in (8.21) and (8.22), and observe that
T0 = const, which implies dT0 = 0, is forbidden!).
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8.4. The case T1 6= 0

To analyze this case we again start with the basic system (8.10) and we assume that t1 6= 0. This assumption enables us
to normalize T1 so that its modulus is equal to one. Thus now we require

|T1| = 1,
which uniquely fixes ρ to be

ρ = |t1|.
After such normalization all the forms become forms onM and, depending on the location of T1 on the unit circle, we have
to consider two cases:
• either T1 = eiδ 6= ±1,
• or T1 = ±1.

We analyze the T1 6= ±1 case first. Here we easily reduce the system (8.10) to the following system onM:

dω = (eiδω1 + e−iδω̄1) ∧ ω,
dω1 = (iB− A)ω1 ∧ ω̄1 + (1− C + iT0)ω1 ∧ ω + ω̄1 ∧ ω,
dω̄1 = (iB+ A)ω1 ∧ ω̄1 + ω1 ∧ ω + (1− C − iT0)ω̄1 ∧ ω.

(8.23)

It has the following integrability conditions:

dδ = [δ1 + i((B− δ1) cot δ − A)]ω1 + [δ1 − i((B− δ1) cot δ − A)]ω̄1 + δ0ω

dT0 ∧ ω = {[B0 + BC − AT0 + 2 sin δ + i(2A− AC − BT0 − A0 + C1)− eiβ(T0 − iC)]ω1
+ [B0 + BC − AT0 + 2 sin δ − i(2A− AC − BT0 − A0 + C̄1)− e−iβ(T0 + iC)]ω̄1} ∧ ω.

(8.24)

Here, the new scalar invariants are: T0, δ, A, B, C (real), and the higher order scalar invariants are: δ0, δ1, B0 (real) and C1
(complex).
In the T1 ≡ ±1 case the Eqs. (8.23) are still valid, provided that we put
B ≡ 0.

This condition is implied by T1 ≡ ±1. Thus in this case the invariant forms satisfy

dω = ±(ω1 + ω̄1) ∧ ω,
dω1 = −Aω1 ∧ ω̄1 + (1− C + iT0)ω1 ∧ ω + ω̄1 ∧ ω,
dω̄1 = Aω1 ∧ ω̄1 + ω1 ∧ ω + (1− C − iT0)ω̄1 ∧ ω.

(8.25)

The integrability conditions for this system are:

dT0 = T00ω + ((∓1− A)T0 + i(2A− AC − A0 + C1 ± C))ω1 + ((∓1− A)T0 − i(2A− AC − A0 + C̄1 ± C))ω̄1, (8.26)
with the invariant sign equal to ±1, the new scalar invariants being: T0, A, C (real), and the higher order scalar invariants
being: B0, T00 (real) and C1 (complex).
We summarize with the following theorem.

Theorem 8.9. All locally nonequivalent structures (M, [λ,µ]) of oriented congruences having vanishing twist, nonvanishing
shear, with T1 6= 0, are described by the invariant forms (ω, ω1, ω̄1) satisfying
• either the system (8.23) and (8.24) on M, in which case T1 = eiδ 6= ±1,
• or the system (8.25) and (8.26) on M, in which case T1 ≡ ±1.

We pass to the determination of the structures with strictly 3-dimensional transitive group of symmetries.
Using the system (8.23) and (8.24) we easily establish that in the case T1 6= ±1 the structures are governed by the

following system of invariant forms:

dω = (eiδω1 + e−iδω̄1) ∧ ω,

dω1 = −
1− C − cos 2δ
1− C + cos 2δ

e−iδω1 ∧ ω̄1 + (1− C + i sin 2δ)ω1 ∧ ω + ω̄1 ∧ ω,

dω̄1 =
1− C − cos 2δ
1− C + cos 2δ

eiδω1 ∧ ω̄1 + ω1 ∧ ω + (1− C − i sin 2δ)ω̄1 ∧ ω.

(8.27)

In a similar way, if T1 ≡ ±1, using the system (8.25) and (8.26), we see that the structures with 3-dimensional symmetry
groups are governed by the following system:

dω = ±(ω1 + ω̄1) ∧ ω,
dω1 = ±ω1 ∧ ω̄1 + iT0ω1 ∧ ω + ω̄1 ∧ ω,
dω̄1 = ∓ω1 ∧ ω̄1 + ω1 ∧ ω − iT0ω̄1 ∧ ω.

(8.28)
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9. Nonvanishing twist and nonvanishing shear

The Cartan procedure applied to this case is very similar to the one in Section 8 concerned with a ≡ 0 and s 6= 0. There,
before the final reduction to three dimensions, the procedure stopped at the intermediate 4-dimensional manifoldM ×R+
parametrized by the points ofM and the positive coordinate ρ. In the present case, in addition to s 6= 0, we also have a 6= 0,
which enables us to make an immediate reduction to three dimensions and thus to produce invariants onM . Explicitly this
reduction is achieved as follows.
We start with the general system (5.1) of Section 5. We have

a 6= 0, s 6= 0

and we again write the complex shear function s as

s = |s|eiψ .

Now, for a chosen pair (λ, µ) representing the structure, we impose the conditions

dω ∧ ω = iω1 ∧ ω̄1 ∧ ω (9.1)
dω1 ∧ ω1 = ω1 ∧ ω̄1 ∧ ω (9.2)

on the Cartan frame

ω = f λ, ω1 = ρeiφµ, ω̄1 = ρe−iφµ̄.

Note that (9.1) is possible because of a 6= 0 and (9.2) is possible because of s 6= 0. It is amatter of straightforward calculation
to show that these two conditions uniquely specify the choice of f , ρ and φ. To write the relevant formulae for f , ρ and φ
we denote the sign of a by eiεπ , where ε = 0 or 1. Then having eiεπ = sign(a), these formualae are:

f = eiεπ |s|, ρeiφ =
√
|a|
√
|s|e−

i
2 (ψ−επ)

and the forms (ω, ω1, ω̄1) satisfy

dω = iω1 ∧ ω̄1 + k1ω1 ∧ ω + k̄1ω̄1 ∧ ω
dω1 = k2ω1 ∧ ω̄1 + k3ω1 ∧ ω + ω̄1 ∧ ω

dω̄1 = −k̄2ω1 ∧ ω̄1 + ω1 ∧ ω + k̄3ω̄1 ∧ ω.

(9.3)

Here the complex functions k1, k2, k3 are defined onM and:

k1 =
(b|s| + |s|µ)
√
|a|
√
|s|3

e
i
2 (ψ−επ)

k2 =
−(log |a|)µ̄ + 2p− (log |s|)µ̄ + iψµ̄

2
√
|a|
√
|s|

e−
i
2 (ψ−επ)

k3 =
ibµ̄ − ib̄µ − ibp+ ib̄p̄+ e−iεπ |a|(q− q̄− (log |s|)λ + iψλ)

2|a||s|
.

These functions constitute the full system of invariants of (M, [λ,µ]) for a 6= 0, s 6= 0.

Theorem 9.1. A given structure (M, [λ,µ]) of an oriented congruence with nonvanishing twist, a 6= 0, and nonvanishing shear,
s 6= 0, uniquely defines the frame of invariant 1-forms ω,ω1, ω̄1 and invariant complex functions k1, k2, k3 on M. The forms
and the functions are determined by the requirement that they satisfy the system (9.3). Starting with an arbitrary representative
(λ, µ) of the structure [λ,µ], the forms are given by

ω = eiεπ |s|λ, ω1 =
√
|a|
√
|s|e−

i
2 (ψ−επ)µ, ω̄1 =

√
|a|
√
|s|e

i
2 (ψ−επ)µ̄,

where the shear function is s = |s|eiψ . Here eiεπ , ε = 0, 1, denotes the sign of the twist function a. The system (9.3) encodes all
the invariant information of the structure (M, [λ,µ]).

We pass to the determination of all homogeneous examples with a 6= 0, s 6= 0. Now the maximal dimension of a group
of transitive symmetries is three. The structures with 3-dimensional groups of symmetries correspond to those satisfying
system (9.3) with all the functions k1, k2, k3 being constants. Applying the exterior differential to the system (9.3) with
k1, k2, k3 constants we arrive at the following theorem.

Theorem 9.2. All homogeneous structures (M, [λ,µ]) with nonvanishing twist, a 6= 0, and nonvanishing shear, s 6= 0, have a
strictly 3-dimensional symmetry group and fall into four main types characterized by:
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I: k3 = 1. In this case there is a 2-real parameter family of nonequivalent structures distinguished by real constants x and y
related to the invariants k1 and k2 via:

k1 = x, k2 = iy.

II: k3 = eiφ , 0 < φ < 2π . In this case there is a 2-real parameter family of nonequivalent structures distinguished by real
constants x, y which together with the parameter φ are constrained by the equation

cosφ(1− 2xy+ cosφ) = 0.

The invariants k1, k2, k3 are then given by

k1 = x
(
cot

φ

2
+ i
)
, k2 = −iy

(
cot

φ

2
+ i
)
, k3 = cosφ + i sinφ.

III: k3 + k̄3 = 0, k3 6= ±i. In this case there is a 3-real parameter family of nonequivalent structures distinguished by real
constants y′ 6= ±1, x, y related to the invariants k1, k2, k3 via:

k1 = x+ iy, k2 = k̄1 = x− iy, k3 = iy′.

IV: |k3| 6= 1, k3 + k̄3 6= 0. In this case there is a 3-real parameter family of nonequivalent structures distinguished by real
constants x′ 6= 0, y′, x, y constrained by the equation

x′2 + y′2 + 2y′(x2 + y2)− 4xy = 1.

The invariants k1, k2, k3 are then given by

k1 = x+ iy, k3 = x′ + iy′, k2 =
k̄1(1+ k23)− k1(k3 + k̄3)

1− |k3|2
.

Among all the structures covered by the above theorem, the simplest have k1 = k2 = k3 ≡ 0. This unique structure
belongs to the case III above and is the flat case for the branch a 6= 0, s 6= 0. We describe it in the following proposition.

Proposition 9.3. A structure of an oriented congruence (M, [λ,µ]) with nonvanishing twist, a 6= 0, nonvanishing shear s 6= 0
and having k1 = k2 = k3 ≡ 0, may be locally represented by forms

λ = du+

√
2eiu − iz̄
zz̄ − 1

dz +

√
2e−iu + iz
zz̄ − 1

dz̄, µ =
2eiu

zz̄ − 1
dz −
√
2λ, (9.4)

where (u, z, z̄) are coordinates on M. This structure has the local symmetry group of Bianchi type VIII, locally isomorphic to the
group SL(2,R).

Remark 9.4. There are more structures with a 6= 0, s 6= 0, which have a 3-dimensional transitive symmetry group of
Bianchi type VIII. It is quite complicated to write them all here. For example, among them, there is a 1-parameter family of
nonequivalent structures with k1 = k2 ≡ 0. They may be represented by

λ = du+
κeiu − iz̄
zz̄ − 1

dz +
κe−iu + iz
zz̄ − 1

dz̄, µ = (κ2 − 1)
2eiu

zz̄ − 1
dz − κλ, (9.5)

where κ > 0, κ 6= 1. The only nonvanishing invariant for this 1-parameter family is k3 = −i(1− 2
κ2
). It may be considered

as a deformation of the flat case above, which corresponds to κ =
√
2.

Remark 9.5. In a similar way, among all the structures with a 6= 0, s 6= 0, which have a 3-dimensional transitive symmetry
group of Bianchi type IX, we may easily characterize those with k1 = k2 ≡ 0. They may be represented by

λ = du+
κeiu − iz̄
zz̄ + 1

dz +
κe−iu + iz
zz̄ + 1

dz̄, µ = (κ2 + 1)
2eiu

zz̄ + 1
dz − κλ, (9.6)

where κ > 0. Here the only nonvanishing invariant is k3 = −i(1+ 2
κ2
).

Remark 9.6. It is interesting to remark which of the structures (9.5) and (9.6) correspond to the flat CR-structure in the
sense of Cartan. According to [15], they correspond to κ = 0,

√
2 in the (9.5) case, and κ = 0 in the (9.6) case. Thus in these

cases the corresponding structures of an oriented congruence are locally CR-equivalent to the hyperquadric CR structure of
Example 7.3, with a nonstandard splitting, which causes the shear s 6= 0.
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It is a rather complicated matter to describe which Bianchi types having a 3-dimensional transitive symmetry group
correspond to a given homogeneous structure with a 6= 0, s 6= 0. We remark that the groups of Bianchi types I and V
are excluded for such structures. We also fully describe the situation for Bianchi types II and IV. This is summarized in the
following theorem.

Theorem 9.7. There are only two nonequivalent structures of an oriented congruence (M, [λ,µ])with a 6= 0, s 6= 0, which have
a local transitive symmetry group of Bianchi type II. They may be locally represented by

λ = du+
i
2
(zdz̄ − z̄dz), µ = dz ±

√
2(1− i)λ,

where (u, z, z̄) are coordinates on M. The constant invariants are

k1 = ±
1− i
√
2
, k2 = ±

1+ i
√
2
, k3 = −i,

and the sign±1 distinguishes between the nonequivalent structures.
There are also only two 2-parameter families of nonequivalent structures of an oriented congruence (M, [λ,µ]) with a 6= 0,

s 6= 0, which have a local transitive symmetry group of Bianchi type IV. They may be locally represented by

λ = y−1(du− log ydx), µ = y−1d(x+ iy)±
√
2(1− i)wλ,

where (u, x, y) are coordinates on M andw = Re(w)+ i Im(w) 6= 0 is a complex parameter. The constant invariants are

k1 = ±
1− i
√
2
+
i
2w̄
, k2 = ±

1+ i
√
2
+
i
2w̄
, k3 = −i±

(
1+ i
w̄
+
1− i
w

)
,

and the two real parameters Re(w) and Im(w), together with the sign±1 distinguish between the nonequivalent structures.

Remark 9.8. We remark that the structures with a symmetry group of Bianchi type II are in a sense the limiting case of the
two families of structures with Bianchi type IV. They correspond to the limit |w| → ∞.

10. Application 1: Lorentzian metrics in four dimensions

In this section we use our results about oriented congruence structures to construct Lorentzian metrics in 4-dimensions.

10.1. Vanishing twist—Nonvanishing shear case and pp-waves

Since our oriented congruence structures are 3-dimensional objects, we concentrate only on those structures, which
in some natural manner define an associated 4-dimensional manifold. As we noted in the sections devoted to the Cartan
analysis of the oriented congruence structures, in some cases, such as those described in Section 8, the Cartan bundle P
encoding the basic invariants of the structures is 4-dimensional. So in this case, i.e. when the twist a ≡ 0 and the shear
s 6= 0, we have a 4-dimensional manifold naturally associated with the oriented congruence structure. Moreover, in such
case the Cartan procedure provides us also with a rigid coframe of invariant forms (ω1, ω̄1, ω,Ω) on P . Using these forms
we may define

g = 2ω1ω̄1 + 2ωΩ, (10.1)

or, as suggested by the form of the associated Cartan connection,

g = 2ω1ω̄1 + 2ω(Ω − ω). (10.2)

These both are well defined Lorentzian metrics on P , which are built only from the objects naturally and invariantly
associated with the oriented congruence structure.
To be more specific, let us consider the structures with the curvature of the Cartan connection R ∈ h1, as described in

Theorem 8.5. In this case the bundle P is parametrized by (z, z̄, u, r) and the invariant forms are:

Ω = dr, ω = du
ω1 = er

(
hdz − (h̄′ + h̄− iαh̄)dz̄

)
ω̄1 = er

(
h̄dz̄ − (h′ + h+ iαh)dz

)
,

with functions α = α(u) (real) and h = h(u) (complex) satisfying the ordinary differential equation (8.15). Inserting these
forms in the formulae (10.1) and (10.2), we get the respective 4-dimensional Lorentzian metrics

g0 = 2e2r
(
hdz − (h̄′ + h̄− iαh̄)dz̄

) (
h̄dz̄ − (h′ + h+ iαh)dz

)
+ 2dudr,
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and

g−1 = 2e2r
(
hdz − (h̄′ + h̄− iαh̄)dz̄

) (
h̄dz̄ − (h′ + h+ iαh)dz

)
+ 2du(dr − du).

It turns out that both these metrics have quite nice properties.
Actually, introducing a still bigger class of metrics

gc = 2e2r
(
hdz − (h̄′ + h̄− iαh̄)dz̄

) (
h̄dz̄ − (h′ + h+ iαh)dz

)
+ 2du(dr − cdu),

with c = const ∈ R, one checks that they all are of type N in the Petrov classification of 4-dimensional Lorentzian metrics.
This means that theirWeyl tensor is expressed in terms of only one nonvanishing complex functionΨ4, called theWeyl spin
coefficient, which reads

Ψ4 = 2(iα − c − 1).

All the otherWeyl coefficients (Ψ0,Ψ1,Ψ2,Ψ3), which together withΨ4 totally encode theWeyl tensor of gc , are identically
zero.
Looking at the spin coefficient Ψ4 we see that there is a distinguished metric in the class gc . This corresponds to c = −1.

In such case the Weyl tensor of g is just proportional to Ψ4 = 2iα and we have a Lorentz-geometric interpretation of the
invariant α = α(u) of the corresponding structure of the oriented congruence. Confronting these considerations with the
results of Section 8.2.2 we get the following

Theorem 10.1. Every structure of an oriented congruence (M, λ, µ)with vanishing twist, a ≡ 0, nonvanishing shear s 6= 0, and
having the curvature R of its corresponding Cartan connection in h1, defines a Lorentzian metric

g−1 = 2ω1ω̄1 + 2ω(Ω − ω),

which is of Petrov type N or conformally flat. The nonequivalent metrics correspond to different structures of the oriented
congruence, and the metric is conformally flat if and only if R ≡ 0.

Interestingly metrics g−1 are conformal to Ricci flat metrics. The Ricci flat metric in the conformal class of g−1 is given by

ĝ−1 =
2e4u

(t + e2u)2
((
hdz − (h̄′ + h̄− iαh̄)dz̄

) (
h̄dz̄ − (h′ + h+ iαh)dz

)
+ e−2rdu(dr − du)

)
,

where t is a real constant. For each α = α(u) and for each solution h = h(u) of (8.15), the corresponding Ricci flat metric is
the so called linearly polarized pp-wave from General Relativity Theory (see [10], p. 385).

10.2. Nonvanishing twist—Vanishing shear case and the Bach metrics

Another example of 4-dimensional Lorentzianmanifolds naturally associatedwith the structures of oriented congruences
appears in the nonvanishing twist—vanishing shear case, as we explained in Section 7.3. Actually in Section 7.3 we
defined conformal Lorentzian 4-manifolds equipped with the conformal class of Lorentzian metrics [gt ], which are naturally
associated with a congruence structure with twist and without shear. Here we study the conformal properties of these
metrics.

10.2.1. The Cotton and Bach conditions for conformal metrics
We recall [4] that a Lorentzian metric g on a manifold M is called conformal to Einstein iff there exists a real function Υ

onM such that the rescaled metric ĝ = e2Υ g satisfies the Einstein equations Ric(ĝ) = Λĝ . In the case of an orientedM with
dimM = 4 there are two necessary conditions [2,8] for g to be conformal to Einstein (in algebraically generic cases [4] these
necessary conditions are sufficient). To describe these conditions we denote by F the curvature 2-form of the Cartan normal
conformal connectionω[g] associated with a conformal class [g] (see [7] for definitions). The curvature F is horizontal. Thus,
choosing a representative g of the conformal class [g], we can calculate its Hodge dual ∗F and calculate the 6× 6 matrix of
3-forms

D ∗ F = d ∗ F + ω[g] ∧ ∗F − ∗F ∧ ω[g] (10.3)

for the connection ω[g]. This matrix has a remarkably simple form

D ∗ F =

(0 ∗jµ 0
0 0 ∗jµ
0 0 0

)
,

where ∗jµ is a vector-valued 3-form, the Hodge dual of the so called Yang–Mills current jµ for the conformal connectionω[g].
Having said this we introduce the vacuum Yang–Mills equation for the conformal connection ω[g]

D ∗ F = 0 (10.4)
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i.e. the condition that the Yang–Mills current jµ vanishes. It turns out that in dimM = 4 Eq. (10.4) are conformally invariant.
They are equivalent to the requirement that the Bach tensor of g identically vanishes [2,4]. This condition is known [9] to
constitute a first system of equations which a 4-dimensional metric g must satisfy to be conformal to Einstein.
Another independent condition can be obtained by decomposing F into F = F+ ⊕ F−, where ∗F± = ±iF± are its self-

dual and anti-self-dual parts (note that i appears here as a consequence of the assumed Lorentzian signature). Decomposing
the curvatures F± onto a basis of 2-forms {θ i ∧ θ j} associated with a coframe {θ i} in which g takes the form g = gijθ iθ j, we
recall that the second necessary condition for a 4-metric g to be conformal to Einstein is

[F+ij , F
−

kl ] = 0 ∀i, j, k, l = 1, 2, 3, 4. (10.5)

Here [, ] is the commutator of the 6 × 6 matrices F+ij and F
−

kl . We term (10.4) the Bach condition and (10.5) the Cotton
condition [4].

10.2.2. Conformal curvature of the associated metrics
Now we calculate the Cartan normal conformal connection and its curvature for the conformal metrics (7.18). We

recall the setting from Sections 7.2 and 7.3. The structure of an oriented congruence (M, λ, µ) with vanishing shear
and nonvanishing twist defines a 5-dimensional principal fiber bundle H2 → P → M , on which the invariant forms
(ω1, ω̄1, ω,Ω, Ω̄), satisfying the system (7.15) reside. There is another fiber bundle associated with such a situation. This is
the bundle P → N with a 4-dimensional base N and with 1-dimensional fibers. The manifold N is in addition fibered over
M also with 1-dimensional fibers. The forms

{θ1, θ2, θ3, θ4} = {ω1, ω̄1, ω, ti(Ω̄ −Ω)}
on P are used to define a bilinear form Gt = 2(θ1θ2 + θ3θ4) on P . Although this is degenerate on P , it projects to a well
defined conformal class [gt ] of Lorentzianmetrics

gt = 2(θ1θ2 + θ3θ4) (10.6)
on N , see (7.18).
One can try to calculate the Cartan normal conformal connection for the metrics gt on N itself, but we prefer to do this

on the 5-dimensional bundle P instead. This is more convenient, since in such an approach we can directly use the coframe
derivatives (7.15) of the forms (ω1, ω̄1, ω,Ω, Ω̄) on P , without the necessity of projecting them from P to N .
Thus, in the following, we associate the dual set of vector fields (E1, Ē1, E0, E2, Ē2) to (ω1, ω̄1, ω,Ω, Ω̄), and we will use

them to denote the derivatives of the functions, such as the invariants K1, K2 and K̄2. The conventions will be as follows:
the symbols K11 = E1(K1) and K11̄ = Ē1(K1) will denote the directional derivatives of K1 in the respective directions of the
vector fields E1 and Ē1. In particular K21̄0 will denote E0(Ē1(K2)).
A (rather tedious) calculation gives the following expressions for the Cartan normal conformal connection ωt for the

metrics gt on P:

ωt =



1
2
(Ω + Ω̄) τ 1 τ 2 τ 3 τ 4 0

θ1 −iΩ1 0 −Ω2
i
2
θ1 τ 2

θ2 0 iΩ1 −Ω̄2 −
i
2
θ2 τ 1

θ3
i
2
θ2 −

i
2
θ1 −

1
2
(Ω + Ω̄) 0 τ 4

θ4 Ω̄2 Ω2 0
1
2
(Ω + Ω̄) τ 3

0 θ2 θ1 θ4 θ3 −
1
2
(Ω + Ω̄)


. (10.7)

Here the 1-formsΩ1 (real) andΩ2 (complex) are

Ω1 = tK1θ3 +
1− t
2t

θ4, Ω2 = itK1θ1 + itK̄2θ3, Ω̄2 = −itK1θ2 − itK2θ3

and the 1-forms {τ 1, τ 2, τ 3, τ 4} are:

τ 1 = −
1
6
(5t − 2)K1θ2 +

1
4
(2itK11 + K2(1− t))θ3

τ 2 = τ̄ 1 = −
1
6
(5t − 2)K1θ1 +

1
4
(−2itK11̄ + K̄2(1− t))θ

3

τ 3 =
1
4
(2itK11 − K2(t + 1))θ1 −

1
4
(2itK̄11̄ + K̄2(t + 1))θ

2
− t2K 21 θ

3
+
1
6
(4t − 1)K1θ4

τ 4 =
1
6
(4t − 1)K1θ3 −

1
4
θ4.
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The next step, namely the calculation of the curvature Ft = dωt + ωt ∧ ωt of ωt , is really tedious, but achievable with
the help of symbolic calculation programs such as, e.g. Mathematica. The resulting formulae are too complicated to display
here, but the so(1, 3)-part of the curvature, which is just the Weyl tensor of gt , is worth quoting. We present it in terms of
the (lifted to P) Weyl spinors Ψ0, Ψ1, Ψ2, Ψ3 and Ψ4. These read:

Ψ0 = 0, Ψ1 = 0,

Ψ2 =
1
6
(1− 4t)K1,

Ψ3 =
1
4

(
2itK11̄ + (3t − 1)K̄2

)
,

Ψ4 = −itK̄21̄.

(10.8)

We have the following

Proposition 10.2. Every metric gt with K1 ≡ 0 or t = 1
4 is of Petrov type III or its specializations. If t =

1
3 and K1 ≡ 0, then the

conformal class [g1/3] of the metric g1/3 is of Petrov type N.

Calculation of the Yang–Mills current j = jµθµ for ωt is also possible. Since the covariant derivative of the Hodge dual of
the curvature Ft is horizontal with respect to the bundle P → N , the current components jµ, as viewed on P or on N , differ
only by nonvanishing scales. The result of our calculation on P reads:

j1 = j̄
2
=
1
3
(1− 4t)[K111θ1 − 2iK11θ4] +

1
6
j12θ
2
−
1
6
j13θ
3

j3 = −
1
6
j13θ
1
−
1
6
j̄13θ
2
−
1
6
j33θ
3
−
1
6
j12θ
4

j4 =
2
3
(4t − 1)[K1θ4 + iK11θ1 − iK11̄θ

2
] −
1
6
j12θ
3,

where

j12 = (1− 4t)(1− 12t)K
2
1 + (7t − 1)(K111̄ + K11̄1)

j13 = 16it(4t − 1)K1K11 − 2(1− 2t)(1− 4t)K1K2 + (1− 4t)K21̄1 + 3it(K111̄1 + K11̄11)

j33 = 16t
2(1− 4t)K 31 − 36t

2K11K11̄ + 3(1− t)(1+ 3t)|K2|
2
+ 2(t + 2)K21̄3

− 24t2K1(K111̄ + K11̄1)+ 2it(4− 7t)(K11̄K2 − K11K̄2).

Wehave also calculated the Cottonmatrices [F+tij , F
−

tij ] for each value of the real parameter t . We obtained formulaewhich
are too complicated towrite here. Howeverwe observed, that among all the parameter values for t , there are a few preferred
ones for which the formulae simplify significantly. These special parameter values are:

t = ±
1
3
, t =

1
4
, t = 1.

Here we focus on t = − 13 and t = 1, for which we have the following theorem.

Theorem 10.3. If t = − 13 or t = 1 and the relative invariant K1 ≡ 0, then the conformal metrics [gt ] satisfy the Bach
condition. If in addition the relative invariant K2 6= 0, the metrics are not conformally flat and do not satisfy the Cotton condition.
If K1 ≡ K2 ≡ 0 the conformal metrics g−1/3 and g1 have Ft ≡ 0, i.e. they are conformally flat.

The theorem can be verified by using the explicit formulae for the Yang–Mills current jµ, the matrices [F+tij , F
−

tij ], and the
integrability conditions for the system (7.15) with K1 = 0. These integrability conditions, in particular, imply that K21̄ = 0.
We shall return to the other two interesting values t = 1/4 and t = 1/3 for gt below, where we consider examples.

10.2.3. Examples
As noted above a particularly interesting class of structures (M, λ, µ) corresponds to K1 ≡ 0 and K2 6= 0. Looking at the

list of our examples presented in Section 7 we find such a structure in Section 7.6. This corresponds to a special value of
the parameter βK = −3

1
3 in the family of structures described by the invariant system (7.35), and is locally represented by

forms λ, µ as in (7.37) with βK = −3
1
3 . Actually it is worthwhile to write the metrics gt for all the structures covered by

(7.37). These metrics read:

gt = gt(β) = 2dzdz̄ + t
(
du+

2βe−iβu + iz̄
β(zz̄ − 2β2(2+ β3))

dz +
2βeiβu − iz

β(zz̄ − 2β2(2+ β3))
dz̄
)

×
(zz̄ − 2β2(2+ β3))2

2β4

(
2dr +

2(βe−iβu − iz̄)
zz̄ − 2β2(2+ β3)

dz +
2(βeiβu + iz)

zz̄ − 2β2(2+ β3)
dz̄
)
,
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and in addition to the real parameter t , they are parametrized by the real parameterβ 6= 0which enumerates nonequivalent
structures (M, λ, µ).
These are quite interesting conformal Lorentzian metrics for the following reasons.
First, if

β = βK = −3
1
3 ,

we have K1 ≡ 0, and according to Theorem 10.3, the metrics

g−1/3(−3
1
3 ) = 2dzdz̄ −

du+ 2 · 3 13 e3 13 iu − iz̄
3
1
3 (zz̄ + 2 · 3

2
3 )
dz +

2 · 3
1
3 e−3

1
3 iu
+ iz

3
1
3 (zz̄ + 2 · 3

2
3 )
dz̄


×
(zz̄ + 2 · 3

2
3 )2

18 · 3
1
3

2dr − 2(3 13 e3 13 iu + iz̄)
zz̄ + 2 · 3

2
3
dz −

2(3
1
3 e−3

1
3 iu
− iz)

zz̄ + 2 · 3
2
3

dz̄

 ,
and

g1(−3
1
3 ) = 2dzdz̄ +

du+ 2 · 3 13 e3 13 iu − iz̄
3
1
3 (zz̄ + 2 · 3

2
3 )
dz +

2 · 3
1
3 e−3

1
3 iu
+ iz

3
1
3 (zz̄ + 2 · 3

2
3 )
dz̄


×
(zz̄ + 2 · 3

2
3 )2

6 · 3
1
3

2dr − 2(3 13 e3 13 iu + iz̄)
zz̄ + 2 · 3

2
3
dz −

2(3
1
3 e−3

1
3 iu
− iz)

zz̄ + 2 · 3
2
3

dz̄

 ,
are Bach flat. Since the invariant K2 of the corresponding structures (M, λ, µ) is nonvanishing, they are also not conformal
to any Einstein metric. Note that, again because of K1 ≡ 0 and K2 6= 0, both metrics g1(−3

1
3 ) and g−1/3(−3

1
3 ) are of general

Petrov type III (see Proposition 10.2). As far as we know, they both provide the first explicit examples of conformally non
Einstein Bach metrics which are of this Petrov type (compare e.g. with [16]).
Second, note also that, since K1 ≡ 0 for βK = −3

1
3 , the metric g1/3(βK ), with now t = +1/3, is also quite interesting.

According to Proposition 10.2 this metric is of Petrov type N . In gravitation theory it would be also termed twisting type N
(see [10]). It is not conformal to any Einstein metric, since for all metrics gt(βK ) the Bach tensor Bt(βk), when expressed in
terms of the coframe (θ1, θ2, θ3, θ4), reads

Bt(−3
1
3 ) = 25 · 34

(t − 1)(1+ 3t)

(zz̄ + 2 · 3
2
3 )6

θ3 � θ3.

This obviously does not vanish, when t = 1/3, hence the metrics g1/3(βK ) are examples of twisting type N metrics, which
are not conformally Einstein.
Third, suggested by the structure of the Weyl tensor (10.8) for all the metrics gt we specialize the metrics gt(β) to the

case when t = 1
4 . The Yang–Mills current for this special case may be read off from the general formulae from the previous

section. Here however we prefer to give the explicit formulae for the Bach tensor for g1/4(β). Here again the Bach tensor
B1/4(β) for these metrics has a very simple form

B1/4(β) = 6
β6(β6 + 36β3 + 36)
(zz̄ − 2β2(2+ β3))6

θ3 � θ3.

As is readily seen this vanishes for the following two real values of β:

βS1 = −
(
6(3+ 2

√
2)
) 1
3
, βS2 = −

(
6(3− 2

√
2)
) 1
3
.

Thus the two corresponding metrics g1/4(βS1), and g1/4(βS2) are further examples of Bach Lorentzian metrics, which are
again of Petrov type III. One can check by direct calculation that they are also not conformal to any Einstein metric.
Motivated by this last example we calculated the Bach tensor for all the metrics g1/4 (not necessarily those associated

with the β-parametrized-structures (7.37)). This calculation leads to the following

Theorem 10.4. If t = 1
4 and a structure (M, λ, µ) with nonvanishing twist and vanishing shear has the relative invariant K1

satisfying

K111̄ + K11̄1 ≡ 0,

then the Bach tensor Bt of the metrics gt corresponding to the structure (M, λ, µ), as defined in (10.6), has a very simple form

B1/4 =
3
32

(
4K11K11̄ + 2i(K11K̄2 − K11̄K2)− 7K2K̄2 − 4(K21̄0 + K̄210)

)
θ3 � θ3,

in which nine out of the a priori ten components, identically vanish.
Apart from the structures with βS1 and βS2 we do not know examples of structures satisfying condition K111̄ + K11̄1 ≡ 0.
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11. Application 2: Algebraically special spacetimes

All the metrics discussed in Section 10 are examples of algebraically special spacetimes. These are 4-dimensional
Lorentzianmetrics, whoseWeyl tensor is degenerate in an open region of the spacetime. The algebraically special vacuum (or
in otherwords: Ricci flat)metrics have the interesting property that they define a congruence of shearfree and null geodesics
in the underlying spacetime. At this stage wemust emphasize that the congruence associated with such metrics lives in four
dimensions and the vanishing shear and the geodesic condition is a four dimensional notion here. Nevertheless we observe
that the 3-dimensional oriented congruences in our sense are related, at least at the level of the Lorentzianmetrics discussed
so far, to an analogous notion in 3 + 1 dimensions, where the metric is of Lorentzian signature. In this section we discuss
this relationship more closely. Note that in all the examples of Section 10 the four-dimensional congruence of shearfree null
geodesics was always tangent to the vector field k = ∂r .
Before passing to the main subject of this section we remark that the algebraically special Lorentzian metrics are very

important in physics. To be more specific we consider the metric

g = 2
(
P 2µµ̄+ λ(dr +Wµ+ W̄µ̄+Hλ)

)
, (11.1)

where

λ = du+
i (2M + (a+M)zz̄)
z(1+ K

2 zz̄)
2

dz −
i (2M + (a+M)zz̄)
z̄(1+ K

2 zz̄)
2

dz̄, µ = dz,

P 2 =
r2

(1+ K
2 zz̄)

2
+

(
KM − a+ (KM + a) K2 zz̄

)2
(1+ K

2 zz̄)
4

,

W =
iKaz̄

(1+ K
2 zz̄)

2
, (11.2)

H = −
K
2
+

mr + KM2 − aM 1−
K
2 zz̄

1+ K2 zz̄

r2 +

(
KM−a+(KM+a) K2 zz̄

)2
(1+ K2 zz̄)

2

,

andm, a,M, K are real constants.
This scary-lookingmetric has very interesting properties. First, it admits a 4-dimensional congruence of null and shearfree

geodesics, which is tangent to the vector field k = ∂r . Second, if K = 1, it is algebraically special, actually of Petrov typeD, and
more importantly, it is Ricci flat. The parameter values K − 1 = M = 0, correspond to the celebrated Kerr metric, describing
a gravitational field outside a rotating black hole, with mass m and angular momentum parameter a. In this case the angular
momentum parameter ameasures the twist of the congruence tangent to k. If in addition a = 0, the twist of the congruence
vanishes, and themetric becomes the Schwarzschild metric. Third, in the K−1 = a = m = 0 case themetric is the Taub-NUT
vacuum metric, which is important in Relativity Theory because its serves as a ‘counterexample for almost everything’ [13].
Fourth, it should be also noted that ifM = 0 and the other parameters, including K , are arbitrary, the metric is again type D
and Ricci flat. Finally, we should mention that for general values of K 6= 1 andM 6= 0 the metric is algebraically general and
neither Ricci flat nor Einstein.
From the point of view of our paper the relevance of the metric (11.1) and (11.2) is self evident. The four dimensional

spacetimeM on which the metric is defined, locally parametrized by (u, z, z̄, r), is locally a productM = M × R, with M
being parametrized by (u, z, z̄). The 3-dimensional manifold M is then naturally equipped with the oriented congruence
structure (M, λ, µ), defined in terms of the 1-forms λ,µ from (11.2). Note that these forms, although defined on M, do
not depend on the r coordinate, and as such project to M . Note also that the oriented congruence structure defined by
these forms has always vanishing shear s ≡ 0. It has nonvanishing twist, with the exception of the Schwarzschild metric
a = M = 0, or the case when K = 0 andM + a = 0. In this last case the metric is of Petrov type D, but is neither Ricci flat
nor Einstein.
Since in the case of Ricci flat metrics (11.1) and (11.2) only the Schwarzschild metric has the corresponding structure of

an oriented congruence with vanishing twist, in the next sections we decided to make a systematic study of the Lorentzian
metrics (11.1) (not necessarily of the form (11.2)), with forms λ,µ defining an oriented congruence structure in three
dimensions which have vanishing shear, but nonvanishing twist, only. Actually, for the sake of brevity, we only discuss
the case when the structural invariants K1 and K2 of the congruence structures, as defined in Section 7.1, satisfy K1 6= 0,
K2 ≡ 0.

11.1. Reduction of the Einstein equations

As we know from Section 7.5 every structure (M, [λ,µ]) having K1 6= 0, K2 ≡ 0 defines an invariant coframe (ω, ω1, ω̄1)
on M which satisfies the system (7.29) and (7.31). Given such a structure we consider a 4-manifoldM = R × M with a
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distinguished class of Lorentzian metrics. These metrics can be written using any representative of a class [λ,µ]. Since the
invariant forms (ω, ω1) provide us with such a representative it is natural to use them, rather than a randomly chosen pair
(λ, µ). Thus, given a structure (M, [λ,µ]) having K1 6= 0, K2 ≡ 0, we write a metric on

M = R×M (11.3)

as

g = P2 [2ω1ω̄1 + 2ω(dr +Wω1 + W̄ ω̄1 + Hω)]. (11.4)

Here the forms (ω, ω1, ω̄1) satisfy the system (7.29) and (7.31), r is a coordinate along theR factor inM, and P 6= 0, H (real)
andW (complex) are arbitrary functions onM.
The null vector field k = ∂r is tangent to a congruence of twisting and shearfree null geodesics inM. This is a distinguished

geometric structure onM.
Nowwepass to the question if themetrics (11.4)maybe Einstein. To discuss thisweneed to specifywhat is the interesting

energymomentum tensor that will constitute the r.h.s. of the Einstein equations. Since the only geometrically distinguished
structure onM is the shearfree congruence generated by k = ∂r it is natural to consider the Einstein equations in the form

Ric(g) = Φk� k. (11.5)

If the real function Φ satisfies Φ > 0 the above equations have the physical interpretation of a gravitational field of ‘pure
radiation’ type in which the gravitational energy is propagated with the speed of light along the congruence k. If Φ ≡ 0
we have just Ricci-flat metrics, which correspond to vacuum gravitational fields. This last possibility is not excluded by our
Einstein equations. In the following analysis we will not insist on the conditionΦ ≡ 0.
At this point it is worthwhile to mention that a similar problem was studied by one of us some years ago in [14]; see

also the more modern treatment in [6]. Using the results of [6,14] and the symbolic calculation program Mathematica, we
reduced the Einstein equation (11.5) to the following form:
First, it turns out that the Einstein equation (11.5) can be fully integrated along k, so that the r dependence of the functions

P , H ,W is explicitly determined. Actually we have:

P =
p
cos r2

W = iαe−ir + β

H = −
m̄
p4
e2ir −

m
p4
e−2ir +

1
2
φ̄eir +

1
2
φe−ir +

1
2
χ,

(11.6)

where the functions p, χ (real) and α, β,m (complex) do not depend on the r coordinate. Thus, using some of the Einstein
equation (11.5), one quickly reduces the problem from M to a system of equations on the CR-manifold with preferred
splitting (M, [λ,µ]).
Now we introduce a preferred set of vector fields (∂0, ∂, ∂̄) on M defined as the respective duals of the preferred forms

(ω, ω1, ω̄1). Note that this notation is in agreement with the notation of CR-structure theory. In particular ∂̄ is the tangential
CR-operator onM , so that the equation for a CR-function ξ onM is ∂̄ξ = 0.
With this notation the remaining Einstein equation (11.5) for g give first:

α = 2(∂ log p− c)
β = 2i(∂ log p− 2c − A1)

φ = (∂̄ + A1 + iB̄1 + iβ̄)α − 4
m
p4

χ = 3αᾱ + 2i(∂ + A1 − iB1)β̄ − 2i(∂̄ + A1 + iB̄1)β ∓ 1,

(11.7)

where we have introduced a new unknown complex function c on M and used the Cartan invariants A1 > 0, B1 and±1 of
the system (7.29) and (7.31).
Finally the differential equations for the unknown functions c,m and p equivalent to the Einstein equation (11.5) are:

(∂ − 3A1 + iB1)c − 2c2 + a11 − A21 +
i
2
A1(3B1 + B̄1) = 0 (11.8)

(∂̄ − 6c̄)m = 0 (11.9)

(∂ + 3A1 − iB1)∂̄p+ (∂̄ + 3A1 + iB̄1)∂p+−3
[
(∂ + 3A1 − iB1)c̄ + (∂̄ + 3A1 + iB̄1)c + 2cc̄

+
8
3
A21 +

4
3
a11 +

2i
3
A1(B̄1 − B1)±

1
6

]
p = −

m+ m̄
p3

. (11.10)

We thus have the following theorem.



168 C.D. Hill, P. Nurowski / Journal of Geometry and Physics 59 (2009) 133–172

Theorem 11.1. Let (M, [λ,µ]) be a structure of an oriented congruence having vanishing shear, nonvanishing twist and the
invariants K1 6= 0, K2 ≡ 0. Then a Lorentzian metric g associated with (M, [λ,µ]) via (11.3) and (11.4) satisfies the Einstein
equation (11.5) if and only if the metric functions are given by means of (11.6) and (11.7) with the unknown functions c,m
(complex), p (real) on M satisfying the differential equations (11.8)–(11.10).

Remark 11.2. Note that contrary to the invariants (ω, ω1, ω̄1) the coordinate r , and in turn the differential dr , has no
geometric meaning. Actually the coordinate freedom in choosing r is r → r + f , where f is any real function f on M .
This induces some gauge transformations on the variables β and χ . Nevertheless the Eqs. (11.8)–(11.10) are not affected by
these transformations.

Remark 11.3. Eqs. (11.8)–(11.10) should be understood in the following way. Start with a structure of an oriented
congruence (M, [λ,µ]) having vanishing shear, nonvanishing twist and the invariants K1 6= 0, K2 ≡ 0. Calculate its
invariants (ω, ω1, ω̄1), (∂0, ∂, ∂̄), A1, B1, a11 of (7.29) and (7.31). Using this data write down Eqs. (11.8)–(11.10) for the
unknowns c,m, p. As a hint for solving these equations observe that the Eq. (11.8) involves only the unknown c. Thus,
solve it first. Once you have the general solution for c insert it into the Eq. (11.9). Then this equation becomes an equation
for the unknown m. In particular m = 0 is always a solution of (11.9). Once this equation for m is solved, insert c and m to
the Eq. (11.10), which becomes a real, second order equation for the real unknown p. In particular, if it happens that you are
only interested in solutions for whichm+ m̄ = 0, this equation is a linear second order PDE onM . For particular choices of
(M, [λ,µ]) it can be reduced to well known equations of mathematical physics, such as, for example, the hypergeometric
equation [14].

Remark 11.4. The unknown variablem is related to a notion known to physicists as complex mass. For physically interesting
solutions, such as for example the Kerr black hole, the imaginary part ofm is related to the mass of the gravitational source.
The real part of m is related to the so called NUT parameter. Moreover m is responsible for algebraical specialization of the
Weyl tensor of the metric. If m ≡ 0 the metric is of type III, or its specializations, in the Cartan–Petrov–Penrose algebraic
classification of gravitational fields.

11.2. Examples of solutions

Here we give examples of metrics (11.4) satisfying the Einstein equation (11.5). In all these examples the structures of
oriented congruences (M, [λ,µ])will be isomorphic to the structures with a 3-dimensional group of symmetries described
by Proposition 7.16. The invariant forms (ω, ω1, ω̄1) for these structures are:

ω =
2τ 2

1∓ 4τ 2
(y−2(1∓2τ

2)du− y−1dx),

ω1 = ±iτy−1(dx+ idy),

ω̄1 = ∓iτy−1(dx− idy).

(11.11)

We recall that the real parameter τ is related to the invariants A1, B1 of the structures (11.11) via:

A1 = −
∓1+ 2τ 2

2τ
, B1 = iτ .

Since these invariants are constant, all the higher order invariants for these structures, such as for example the a11 in (7.31),
are identically vanishing. Although Proposition 7.16 excludes the values τ 2 = 1

2 in the upper sign case, we include it in the
discussion below. This value corresponds to A1 = 0 and therefore must describe one of the two nonequivalent structures
(M, [λ,µ]) of Example 7.7. From the two structures of this example, the one corresponding to τ 2 = 1

2 is defined by
(ε1, ε2) = (0, 1). In particular, it has a strictly 4-dimensional symmetry group.
First we assume that the metric (11.4) has the same conformal symmetries as the structures (11.11). This assumption,

together with Einstein’s equation (11.5), which are equivalent to the Eqs. (11.6) and (11.7), (11.8)–(11.10), implies that all
the metric functions p,m, c must be constant. Then the system (11.8)–(11.10) reduces to the following algebraic equations
form, p, c:

(−3A1 + iB1)c − 2c2 − A21 +
i
2
A1(3B1 + B̄1) = 0 (11.12)

c̄m = 0 (11.13)

3
[
(3A1 − iB1)c̄ + (3A1 + iB̄1)c + 2cc̄ +

8
3
A21 +

2i
3
A1(B̄1 − B1)±

1
6

]
p =

m+ m̄
p3

. (11.14)

Thus we have two cases.
• Either c = 0
• orm = 0.

Strangely enough in both cases Eqs. (11.12)–(11.14) admit solutions only for the upper sign in (11.14).
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If c = 0 then we have only one solution corresponding to τ = ± 1
√
2
with arbitrary constant p 6= 0 and m = p4

4 + iM ,
whereM is real constant. The corresponding metric

ds2 =
p2

cos2 r2

[
dx2 + dy2

y2
+ 2

(
dx
y
− du

)(
dr − 2 cos2

r
2
(cos r + 4M sin r)

(
dx
y
− du

))]
is vacuum i.e. it satisfies Eq. (11.5) withΦ ≡ 0.
Ifm = 0 then p 6= 0 is an arbitrary constant, and we have the following solutions:

• τ =
ε1
4

√
5+ ε2

√
17, c = − ε1√

5+ε2
√
17
,

• τ =
ε1
2

√
1
2 (7+ ε2

√
17), c = ε1

4

√
1
2 (7+ ε2

√
17)(3+ ε2

√
17).

Here ε21 = ε
2
2 = 1. Sadly, irrespectively of the signs of ε1, ε2, all these solutions haveΦ = const < 0, and as such do not

correspond to physically meaningful sources.
In the next example we still consider structures (M, [λ,µ]) with the invariants (11.11), and assume that the metrics

have only two conformal symmetries ∂u and ∂x. For simplicity we consider only solutions withm = 0 in (11.9). Under these
assumptions we find that the general solution of (11.8)–(11.10) includes a free real parameter t and is given by

c =
−2+ 4τ 2

4τ
+
1− 4τ 2

4τ
1

1− ty(4τ2−1)
, (11.15)

with the real function p = p(y) satisfying a linear 2nd order ODE:

4y(y− ty4τ
2
)2[yp′′ + (4τ 2 − 2)p′] + [(−32τ 4 + 20τ 2 − 1)y2 + 4t2(4τ 4 − 7τ 2 + 2)y8τ

2

− 16t(8τ 4 − 5τ 2 + 1)y(4τ
2
+1)
]p = 0. (11.16)

If this equation is satisfied, the only a’priori nonvanishing component of the Ricci tensor is

R33 = −
1
8

(
cos( r2 )

τ (y− ty4τ2)p

)4
(((8τ 2 − 3)(128τ 6 − 160τ 4 + 92τ 2 − 21)y4

+ 8t4τ 2(32τ 6 + 8τ 4 − 28τ 2 + 9)y16τ
2
+ 4t(8τ 2 − 3)(256τ 6 − 248τ 4 + 58τ 2 + 3)y3+4τ

2

+ 36t2(4τ 4 + τ 2 − 1)(32τ 4 − 12τ 2 − 1)y2+8τ
2
+ 16t3τ 2(128τ 6 − 184τ 4 + 122τ 2 − 27)y1+12τ

2
)p2

− 4y(y− ty4τ
2
)((8τ 2 − 3)(16τ 4 − 3)y3 + 4t3τ 2(16τ 4 − 3)y12τ

2

+ 6t(8τ 2 − 3)y2+4τ
2
+ 96t2τ 2(1− 2τ 2)2y1+8τ

2
)pp′ + 4y2(y− ty4τ

2
)2((8τ 2 − 3)y+ 4tτ 2y4τ

2
)2p′2).

It follows that this R33, with p satisfying (11.16), may identically vanish for some values of parameter τ . This happens only
when the parameter t = 0. If

t = 0

the values of τ for which R33 may be identically zero and for which the function p = p(y) satisfies (11.16) are:

τ = ±
1
2

√
2, τ = ±

1
2

√
3
2
, τ = ±

1
2

√
5
3
, τ = ±

1
2

√
3,

τ− = ±
1
2

√
1
6
(11−

√
13), τ+ = ±

1
2

√
1
6
(11+

√
13).

Of these distinguished values themost interesting (modulo sign) are the last two, τ− and τ+, since for them the corresponding
metrics (11.4) may be vacuum and not conformally flat. Actually, restricting our attention to the plus signs above and
assuming t = 0, we have the following possibilities:

• τε =
1
2

√
1
6 (11+ ε

√
13), ε = ±1; for these two values of τ the general solution of (11.16) is

pε = y
1
12 (1−ε

√
13)(s2 + s1y),

and the only potentially nonvanishing component of the Ricci tensor is

R33 = −
4
9
(7+ ε

√
13)s22y

−
1
6 (1−ε

√
13)
(
cos r2
s2 + s1y

)4
.

This vanisheswhen s2 = 0. If s2 = 0 the corresponding metrics gε , as defined in (11.4), read

gε = 2P2
(
ω1ω̄1 + ω

(
dr +Wω1 + W̄ ω̄1 +

3+ (9− 20τ 2ε ) cos r
12τ 2ε

ω

))
,
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with

P =
s1y2(1−τ

2
ε )

cos r2
, W = i

2(20τ 2ε − 9)+ (8τ
2
ε − 9)e

−ir

24τ 3ε
,

and ω,ω1, ω̄1 given by (11.11). For both values of ε = ±1 the metric is Ricci flat and of Petrov type III . In particular it is
neither flat, nor of type N .

In all other cases of the distinguished τ s the corresponding vacuummetrics are the flat Minkowski metrics. In fact,

• if τ = 1
2

√
3
2 , the general solution to (11.16) is

p = s1
√
y+ s2y,

and the corresponding metric (11.4) is flat.

• if τ = 1
2

√
5
3 , the general solution to (11.16) is

p = y
2
3 (s1 + s2 log y),

and the potentially nonvanishing Ricci component R33 is

R33 = −
8
25
s2(2s1 + s2 + 2s2 log y)

(
cos r2

(s1 + s2 log y)y
1
3

)4
.

This vanishes when s2 = 0. In such case the metric is flat.
• if τ = 1

2

√
2, the general solution of (11.16) is

p =
√
y(s1 + s2 log y),

and

R33 = −
2s22
y

(
cos r2

s1 + s2 log y

)4
;

this vanishes when s2 = 0; in such cases the metric is flat.
• if τ = 1

2

√
3, the general solution of (11.16) is

p = s1y+ s2y−1,

and

R33 = −32s22y
2
(
cos r2
s2 + s1y2

)4
;

this vanishes when s2 = 0; in such case the metric is the flat Minkowski metric.

We close this section with an example of a metric that goes a bit beyond the formulation of the Einstein equations
presented here. Remaining with the structures of an oriented congruence with the upper sign in (11.11), we take c as in
(11.15) with t = 0, and consider the metric (11.4), (11.6) and (11.7) with a constant function p given by

p =

√
3

4sτ

√
ε(−1+ 20τ 2 − 32τ 4).

Here the ε is±1, and is chosen to be such that the value ε(−1+ 20τ 2 − 32τ 4) is positive; s is a nonzero constant. A short
calculation shows that the Ricci tensor for this metric has the following form

Ric = (τ 2 − 1)(8τ 2 − 5)
16Λ(4τ 2 + 1) cos4 r2
3τ 2(1− 20τ 2 + 32τ 4)

k� k+Λg.

Thus, this metric is Einstein, with cosmological constant equal toΛ = εs2, provided that

τ = ±1, or τ = ±
1
2

√
5
2
.

It is remarkable that the Einstein metric

g = −
3

5Λ cos2 r2

(
ω1ω̄1 + ω

(
dr +

i(2e−ir + 5)
√
10

ω1 −
i(2eir + 5)
√
10

ω̄1 +
7
10
(3+ 2 cos r)ω

))
,
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corresponding to τ = ± 12

√
5
2 , is of Petrov type N with the quadruple principal null direction of the Weyl tensor being

twisting. It was first obtained by Leroy [11] and recently discussed in [17]. The Einstein metric

g = −
39

8Λ cos2 r2

(
ω1ω̄1 + ω

(
dr +

i(e−ir + 4)
2

ω1 −
i(eir + 4)
2

ω̄1 +
5
8
(3+ 2 cos r)ω

))
,

corresponding to τ = ±1 is of Petrov type III .

11.3. Discussion of the reduced equations

Here we discuss the integration procedures for Eqs. (11.8)–(11.10) along the lines indicated in Remark 11.3. We start
with Eq. (11.8). This is an equation for the unknown c . Remarkably, the existence of a function c satisfying this equation is
equivalent to an existence of a certain CR function η onM . To see this we proceed as follows. We consider a 1-formΠ onM
given by

Π = ω1 + 2i(A1 + c̄)ω, (11.17)

where c is an arbitrary complex function onM . Of course

Π ∧ Π̄ 6= 0, (11.18)

since otherwise the forms ω1 and ω̄1 would not be independent. Now using the differentials dω, dω1, dA1 given in (7.29)
and (7.31), we easily find that

dΠ ∧Π = 2i
[
(∂̄ − 3A1 − iB̄1)c̄ − 2c̄2 + a11 − A21 −

i
2
A1(3B̄1 + B1)

]
ω1 ∧ ω̄1 ∧ ω.

Thus our Eq. (11.8) is satisfied for c if and only if dΠ ∧Π = 0. Due to our Lemma 5.1,Π satisfying dΠ ∧Π = 0 defines a
complex valued function η on M such thatΠ = hdη. Because of (11.18) we have hh̄dη ∧ dη̄ 6= 0. Furthermore, sinceΠ is
given by (11.17) thenΠ ∧ω ∧ω1 = 0, which after factoring out by h gives dη ∧ω ∧ω1 = 0. Thus η is a CR-function onM .
Conversely, suppose that we have a CR-function η onM such that

dη ∧ dη̄ 6= 0. (11.19)

Then the three one-forms ω1, ω and dη are linearly dependent at each point. Thus there exist complex functions x, y on M
such that

dη = xω1 + yω. (11.20)

Due to the nondegeneracy condition (11.19) we must have xx̄ω1 ∧ ω̄1 + xȳω1 ∧ ω − x̄yω̄1 ∧ ω 6= 0, so that the complex
function xmust be nonvanishing. In such case we may rewrite (11.20) in the more convenient form hdη = ω1 + z̄ω, where
h = 1/x and z̄ = y/x. Now, defining c to be c = iz

2 − A1, we see that the trivially satisfied equation (hdη) ∧ d(hdη) = 0
implies that the function c must satisfy Eq. (11.8). Summarizing we have the following proposition.

Proposition 11.5. Every solution η of the tangential CR equation ∂̄η = 0 satisfying dη ∧ dη̄ 6= 0 defines a solution c of Eq.
(11.8). Given η, the function c satisfying Eq. (11.8) is defined by

c =
i
2
ȳ
x̄
− A1, (11.21)

where dη = xω1 + yω. Also the converse is true: every solution c of Eq. (11.8) defines a CR function η such that dη ∧ dη̄ 6= 0.

Remark 11.6. Recall that the structures (M, [λ,µ]) satisfying the system (7.29) and (7.31) admit at least one CR-function
ζ , since they have zero shear s ≡ 0. Associated to ζ , by the above Proposition, there should be a solution c of the Einstein
equation (11.8). One checks by direct calculation that

c = −A1

automatically satisfies (11.8). And this is the solution c associatedwith ζ . This is consistentwith formula (11.21), since y ≡ 0
means that dη ∧ dζ ≡ 0 (compare with (11.20)).

We now pass to the discussion of the second Einstein equation (11.9). Eq. (11.9), the equation for the function m, has
a principal part resembling the tangential CR-equation. Remarkably its solutions m are also expressible in terms of CR-
functions. To see this consider an arbitrary complex valued function ξ and definem to be

m = [∂0ξ − 2i(A1 + c̄)∂ξ + 2i(A1 + c)∂̄ξ ]3. (11.22)

Here c is supposed to be a solution to the first Einstein equation (11.8). Observe, that since the vector field ∂0−2i(A1+ c̄)∂+
2i(A1 + c)∂̄ is real, then givenm one can always locally solve for ξ . Our goal now is to show that if ξ is a CR-function onM ,
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thenm given by (11.22) satisfies Eq. (11.9). To prove this one inserts (11.22) into Eq. (11.9) and commutes the operators ∂̄∂0
and ∂̄∂ . After this is performed the Eq. (11.9) form becomes the following equation for ξ :

(∂0 + 2i∂̄(A1 + c)+ 2i(A1 + c)∂̄ − 2i(A1 + c̄)∂ − 4ic̄(A1 + c)+ A1 − iB1)∂̄ξ = 0.

This, in particular, means that if ξ is a CR-function then this equation is satisfied automatically. Thus given a CR-function ξ ,
via (11.22), we constructed m which satisfies Eq. (11.9). To see that all solutions m of (11.9) can be constructed in this way
is a bit more subtle (see [6]).
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