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Absiract. The Einstein equations R, =Pk, k,, & being tangent to 2 twisting shear-free
congruence of null geodesics, are formulated as equations in a three-dimensional Cauchy-
Riemann space. If the NUT parameter M vanishes and the Cauchy-Riemann space is a
hypersurface in C* then the equations reduce to a single linear second-order equation.
New gravitational solutions are found for the case of the Robinson congruence.

1. Introduction

We study the Einstein equations with pure radiation fields
R,.=®kk. (1.1)

in a four-dimensional spacetime # with metric g of the signature (+——-). All
considerations are local. We assume that spacetime admits a twisting shear-free con-
gruence of null geodesics, which are integral lines of k*g, (also for ® =0). Goldberg
and Sachs proved [1] that the Weyl tensor of g is algebraically special and k* is its
multiple null eigenvector. This property of g leads to significant simplifications of the
Einstein equations. Many solutions of this type have been found, among them the
celebrated Kerr solution (see [2] for a review and references).

Let r, x' (i=1, 2, 3) be coordinates such that 3, is tangent to the congruence. Locally
M =R x AN, where & is a submanifold of # defined by r = const. The metric tensor of
J# can be written in the form [3]

g=rw — pad (1.2)

where k (real)} and « (complex) are 1-forms on & (no dependence on ¢} and p, o are
a real function and real 1-form, respectively (r dependent in general). The form & is
the complex conjugate of «. The non-degeneracy of g requires
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The forms « and @ are not uniquely defined by decomposition {1.2}. We will restrict
ourselves to « such that

c>0 (1.3)
where

kande =iok na A d.
Under condition (1.3) the forms «, @ are defined up to the transformations

w'= Ak A>0

a'=Ba+Ck B#0

where the function A is real and B, C are complex.

A three-dimensional differential manifold with a pair (x, a) of 1-forms (real and
complex, respectively) satisfying w A @ A & # 0 and defined up to transformations (1.4)
(with A # 0 rather than A > 0) is called the Cauchy-Riemann {cr) space {see [4] and
references therein). It is said to be non-degenerate if &« A dx # 0. Thus every twisting
null geodesic shearfree congruence corresponds to a2 ¢r space [4]. From now on by a
cr space we will always mean a non-degenerate CR space.

One says that a CR space is realizable (as a hypersurface in C?) if the equation

(1.4)

déaknra=0 (1.5}
or, equivalently,
3¢=0 (1.6)

for a complex function £ has two independent solutions ¢£,, &. The functions £,, &
exast e.g. when the CR structure is real analytic. They define a three-dimensional surface
A in C*. And conversely, given a surface in C? defined by one real equation

R{¢,, &, fl, 52) =0
one ¢an impose a CR structure on it by taking [5]

k =1(85 R d&,+3.,R d&s) a=d& or e =dg,.
In terms of &, & the general solution of (1.5) is given by
E=f(£&, &) (1.7)

where f is a holomorph1c function of two complex variables defined on one side (at
least) of the surface N [3].

With every representative {x, a) of the cr structure one can connect the so-called
Fefierman metric gr (of the Lorentzian signature} on R X A {6, 7]. This metric transforms
conformally

gr=Agr (1.8)

under transformation {1.4). It does not depend on a particular choice of «. To define
gg it is convenient to assume

de=ianra (1.9)

a condition which can be achieved by means of transformation (1.4) with A =1, Under
assumption (1.9) the Fefferman metric is given by

gr=2x[dr+3ite ~Hca ~3c, +iRp)k]—2ad (1.10)
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where

Rr=—¥ac+ac—2cé+c,) (1.11)
and ¢, (real) and ¢ {complex) are defined by

de=iekratickad+caad. (1.12)

The function Rg is the curvature scalar of gg.

If £ is a solution of (1.5} then d£ = Ba + Ck and the CR structure can be represented
by k and d& Re £ Im £ can be completed by u to form a coordinate system on A such
that

k=du+Ld¢é+ LdE (1.13)
In terms of these coordinates 8,=4,, 8=9,— L3, and

dk =9, Lk ndé+a,Lx ndE+io déndE (1.14)
where

o=i(dL-aL). (1.15)
Condition (1.9) is satisfied, in particular, by

o =\/Ed§—\/%aHLK. (1.16)

Substituting (1.16) into (1.12) yields the functions ¢;, ¢ in terms of L and its derivatives.
In consequence the Fefferman metric and its curvature scalar take the form [8]

ge=2x(dr—3ib de+4ib dE—3Vk)—20 dEdE (1.17)
RF=§-3; Re(9d In o —368,L+25,L3,L) (1.18)
where
1 -
b=3 L+alno V=—234b. (1.19)
der
The functions o and b can be equivalently defined by
dic k) =bo 'k ndé+bo 'k adé+idendE {1.20)

It follows from (1.20) that b’ = b, o’ = Ao, V' = A™'V under the transformation ' = Ax,

§=¢

2. Equations

The main purpose of this work is to reduce equations (1.1) to a form which is invariant
under transformations (1.4}). This problem was partially soived by Lewandowski and
Nurowski [9]. In this paper we present another approach. To simplify calculations
and to keep contact with classical work on the subject we start with partially solved
equations (1.1) that can be found in textbooks {we follow [2]). In suitably chosen
coordinates r, u, £ £ these equations read

o(m+iM)=3(m+iM)a,L (2.1)
P? Re[392 —2038,L— 28,00 +25(83 In P—d0,L)]= M (2.2
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where

3 = —4oP? (2.3)
and all the unknown functions, m, M, P (all real, P # 0) and L, are independent of r.
There is also a condition of the non-negativity of the energy density of matter (®=0
in (1.1))

& [P N m+iM)]+ P(3-2G)a(3G - G <0 (2.4)
where

G=3,L-3lnP.

(Note that the Lus of (2.4) is real due to (2.2).) Given L, m, M and P the metric
tensor is defined by

g=2x(dr+ Wdé+ Wdf+ He)~2P72(r+3) dg dé (2.5)
where

W= —(r+iZ)s,L+idZ (2.6)

H=—-r3,In P—{mr+ M) +Z))'+ P*Refa(3In P—a,L}]. (2.7)

Equations (2.1}, (2.2} can be regarded as equations for m, M and P in a given Cr
geometry represented by L. They are invariant under the transformation

u'=F(u, & £) &' =h{¢}
followed by an appropriate transformation of other variables. They are not invariant
under the transformation £~ £, where £’ is an arbitrary solution of (1.5}, This means
that, given a cr structure, a class of solutions 2(£) of (1.5) is distinguished by the
Einstein equations.
Equation (2.1) can be replaced by equation (1.5) for a complex function 7 related
to m and M by the formula

m+iM = (8,7). (2.8)

Indeed, substituting (2.8) into (2.1} yields 83, =43,L8,7, hence 3,87 =0 in virtue of
the identity [4, 8.]1=28.L38,. We can modify n, without viclating (2.8), to obtain

3n=0. (2.9)

If the cR space is realized as a hypersurface in C? then the general solution for 7
is known (see (1.7)). In this case the only equation to be solved is equation (2.2) for
P. The latter is not as non-linear as it seems. In terms of the variable 2 related to P by

P=vo P ’ ' (2.10)
(2.2) can be written in the form

P +30P - 3,LoP —8,LaP + oV, P =loMP™? (2.11)
where

oV, =-3(83+33) Ino+19,La,L—3(5,L+33,L). (2.12)

Equation (2.11) becomes linear with respect to @ when M =0. We will use this fact
in the next section, where examples of solutions will be constructed.
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Equation (2.11) resembles the Laplace equation in the complex plane. For instance,
if 3,2 =0, then the part of (2.11) with highest order derivatives is 23,9:%. For general
8,7 equation (2.11) is equivalent to

o2 d*dP + oV P =toMP™ : (2.13)
where the Hodge star corresponds to any metric g, on .# of the form
g1 =2k(dr+ W, dé+ W, df+ Hk) =20, de dE 3,W =0=3,0,.

It is convenient to use the Fefferman metric (1.17) in place of g;. It follows from
(1.18), (1.19) and (2.12) that

V,=tRg—3V (2.14)
hence equation (2.13) reads

=;da;d@+(éRF—3V)@=%M -3 (2.15)

where ® denotes the Hodge star with respect to gr. Unlike (2.2) eguation {2.15) is

invariant under transformation (1.4). This is due to {1.8) and the following transforma-
tion properties of the other variables

P =(JA)'P Vi=A"'V M =AM (2.16)

A price paid for this invariance is the change of the character of £ In (2.2} it was an
independent variable and in (2.15) it is a dependent variable (constrained by equation
{1.5}}. The potential V depends essentially on &

Equations (2.1), {2.15) and the metric tensor (2.5) can be written in any representa-
tion (x, @) of the cr structure. We will do it for (x, ) satisfying condition {1.9). Let
£ be a distinguished solution of (1.5). We introduce variables g, g, related to £ by

o =g, dé+igk. (217)
It follows from (2.17) and (1.14) that

d.L=—qq0 = godo. (2.18)
Substituting these relations into {1.19) and using the exterior derivative of (2.17) vields

V=¢{Re+ V, V.=Re(ég—39)+393 (2.19)

where now 9 corresponds to («, o) and c¢ is defined by (1.12). With V, defined in this
way equation (2.15) reads

[83+33—cd— cd—3Rp—3Vo]P = iMP . (2.20)
In a similar way one shows that equation {2.1) is equivalent to

d{m+iM)==-3g(m+iM) {2.21)
or {in virtue of (2.8) and (2.9})

m—1iM =(3,n +igan)’ an=0 (2.22)

and that the metric tensor takes the form
g=2x{dr+ Wa+ Wa + Hx) - 29 2P + 10" a —igx}(@+ige)  (2.23)
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where
W=g(r—4i9?) —iPs? (2.24)
. IMPP—mr M _ _
H=-r3,In P+W+@-@z(ia In 93+%q|2+ V—43) (2.25)
g, In P=35ln P +1Im(=2g48 In ?+3q — &g). (2.26)

Equations (2.20)-(2.26) depend on £ only via the function ¢. It follows from (2.17)
that g satisfies

3g+q’+cg=—co. o -2

And conversely, given a solution g of (2.27) one can find ¢ and g, such that (2.17)
and (1.5} are satisfed. Thus one can use either £ or g to describe the metric and the
field equations.

Theorem. The Einstein equations (1.1) with k* being a twisting shear-free null geodesic
vector field reduce to equations (2.20), (2.21), (2.27) for functions g, m, M, # in a CrR
space represented by {k, @) satisfying condition (1.9}. The metric tensor is given by
(2.23)-(2.26).

An advantage of equations {2.20), (2.21), (2.27) is that we can write them in the
simplest possible coordinates describing the cr structure whereas dependence of this
structure on u, £, & where £ is a fixed solution of (1.5), can be complicated even for
highly symmetric congruences. Given a solution to these equations condition (2.4)
should be verified. To do this one should first calculate P and 3,L from (2.10), (2.18)
and to find, using (2.17), a transformation between the derivatives ;, d related to x,

AL Am Aana hand and . i th thar hamd We i 1t1
G¢ On Ofe f1and and x, @ On ule OUlsT Nana. we have not maﬂaged tc write condition

(2.4) in terms of g, m, M, P in a digestible form. Fortunately, if M =0and 3,(mP ™) #0
(hence m # 0) then (2.4) can always be satisfied by a suitable choice of m (note that
for M =0 equations (2.20), (2.21} are invariant under the multiplication of m by a
constant), We will use this fact in the next section.

3. Symmetric congruences and examples of solutions

There is no problem in finding general forms of £ (or q), m, M when the CR space is
defined by a hypersurface in C*. In order to simplify equation (2.20) for 2 we assume
in this section that

M=0. (3.1

It follows from (3.1) and (2.1) that m =0 (type {II or N) or the CRr structure has a
continnous symmetry preserving & Indeed, if M =0 and m#0 then we can use
transformation (1.4) to obtain m = const. Equation (2.1) shows that 8,L =0 in that
gauge, i.e. the transformed form « is invariant under translations in u.

Let the cr structure admit a non-trivial Lie group of symmetries [5, 10]. Then it
can be represented by d¢&’ and «’=du'+ L' dg' + L’ d¢', where

L'=—idgs 35 =0 (3.2)
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and s is a real function such that
o' =2378,5 > 0.

A general solution of equation (1.5} is given by £ =7£(&,, &), where

&H=¢ L=u'+is (3.3)
1t follows from (2.17) with k =x" and o =o' d¢&’ that
g=ivo' (35,/ Wos f—2L3: )", (3.4)

Equation (2.20} is invariant under translations of u’, hence easier to solve, when g is
independent of »'. This is the case when

E=¢ (3.5)
or
E=u't+is+h(£) (3.6)

where h is a holomorphic function of &'. In the first case we can have m# 0, in the
latter this is possible only when the symmetry group is at least two-dimensional.

If a cr space admits an Abelian two-dimensional symmetry group [10] then we
can assume that

L=—la,s  s=s() o'=1825>0 (3.7)

where £ =x'+1y’. There are two cases for which m#0 and ¢ is independent of u',
namely

£=¢ g=0 m=my, (3.8)
and

L , e -

E=u'+is+2at q_Z(a-L') m (L —a) (3.9)

where m, and a are real constants.
In the case (3.9)

where

u=4x"sgn(L'—a) L (3.11)
In principle one can consider equation (2.20) in the representation (k, vo d£) (then
g =0) but to find an explicit dependence of L on y one has to solve the equation

y=s(y)+2ay (3.12)

with respect to y'. This is often not possible in practice. In these cases it is more
convenient to use the original coordinates u’, &, £
For £ given by (3.8) or (3.9) equation (2.20) is independent of v’ and x":

’ 2 e
&

\
w) &

P+ (9, —-2L'3
+[—49% In(3, L") +3e62 In(L' —a) —3e(a,, L'V(L'—a)?]#'=0 (3.13)

o h

]
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where £ equals 0 or 1 for the case (3.8) or (3.9}, respectively. In some cases equation
(3.13) can be reduced to certain well known equations of mathematical physics. For
instance let us consider the cr structure related to the Robinson congruence [11]. This
can be represented by d£’ and

k'=du' +(2/y")dx". (3.14)

(The standard representation of this structure is given by d¢” and <" =du"+2y" dx".
The pnmed and double pnmed coordinates are related by the transformation £"=
vy exp(m: ), 2" = —x"+y' sin(3u").) If e =0 or & = 1, a = 0 then we can easily transform
to the coordinates u, £ £ Here we focus on the case (3.9) with a # 0. In this case we
can assume a =1 without loss of generality due to the transformation &' ->a”'¢’
preserving . Then

i : ome _moyié
2('=1) (y'-n*

Let us assume that @' is independent of x” and that it admits the Fourier transform
with respect to ',

E=u'=2Ilny'+2¢ g= === (3.15)

P = I dk exp(iku"y Yk »"). (3.16)

Substituting (3.16) into (3.13) with L'=y"™" and a =1 yields the following equation

for ¥
. 3 1-16k* 9 )
Y—i-( —— S —— Y =0 3.17

2'(p —1)  4p? 4(p'-1)° (3.17)

where a dot denotes the differentiation with respect to y'. Equation (3.17) becomes
the hypergeometric equation

Y1 =y VE+[8k+1—(4k+142k)y 1 F=[(4k+ Dky+3]F =0  (3.18)

under the substitution
Y=Iyrl2k+1/2[yl_1]koF %(l:t\/_) - (3'19)
it follows from {3.16)-(3.19) that

&=y~ 115Re | dk €1y P AGIF () (3:20

where A(k) is a free complex function and F(k, »¥" is any solution of (3.18) such that
y**F(k, ') and p'"2* F(—k, y") are linearly independent. For instance, when y'e (0, 1}
one can take for F(k, y") the hypergeometric function F(a, b, c; ¥") with

a =2k + ko+ (4k2+ Y2 b=2k+ky—(4k*+3)"/? c=4k+1. (3.21)

Formulae (3.1}, (3.15), (3.20) define all the functions needed to obtain the metric
tensor. For sufficiently large m, the metric satisfes the Einstein equations with a
non-negative energy density.

As an example we will calculate constituents of the metric tensor in a relatively
simple case when

P =y =¥y — 1) sin(k,u') ky =35(2ko + 1}. (3.22)
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Then the metric is defined by (2.23), where ¢ =%(y' =1)™", k =«', @ ="' d¢' and
. ir '
T2(y-1)

mory” k'
(F+i2H0 -1 y'-1

+kl.@’2(1cot(k1u ) G—;g’_—-ﬁ—z) (3.23)

H=- cot(k;u’)

_ke¥i ko+%
(r 1)2 —1

- 5”'( kZ cot*(l,u)+ +4k3+ ) (3.24)

4. Conclusions

We have shown that the Einstein equations R,,=®k,k, with k" being a twisting
shear-free geodesic null vector field can be considered as equations in an arbitrarily
chosen non-degenerate Cauchy-Riemann geometry. The equations have been written
in various forms. For instance, a complete set of equations consists of equations (1.5),
(2.9), (2.15) for & n and P. Another set is given by equations (2.20), (2.21), (2.27) for
g, m, M and . All the equations of the first system become linear when M =0, If the
CR space is realized as a hypersurface in C? then the general solution of equations
(1.5), (2.9) (or (2.21), (2.27)) is known. The remaining equation (2.15) (in version
(2.20)) was considered in more detail for symmetric congruences and M =0. Under
some assumptions on £ and P it was reduced to a linear second-order ordinary
differential equation (section 3). Using this formulation of the Einstein equations we
have found new gravitational solutions related to the Robinson congruence.
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